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Abstract In the quantum Efimov effect, identical bosons form infinitely many bound
trimer states at the bound dimer dissociation threshold, with their energy spectrum
obeying a universal geometrical scaling law. Inspired by the formal correspondence
between the possible trajectories of a quantum particle and the possible conformations
of a polymer chain, the existence of a triple-stranded DNA bound state when a double-
strandedDNA is not stablewas recently predicted bymodelling three directed polymer
chains in low-dimensional lattices, both fractal (d < 1) and euclidean (d = 1). A finite
melting temperature for double-stranded DNA requires in d ≤ 2 the introduction of
a weighting factor penalizing the formation of denaturation bubbles, that is non-base
paired portions of DNA. The details of how bubble weighting is defined for a three-
chain system were shown to crucially affect the presence of Efimov-like behaviour on
a fractal lattice. Here we assess the same dependence on the euclidean 1+1 lattice, by
setting up the transfer matrixmethod for three infinitely long chains confined in a finite
size geometry. This allows us to discriminate unambiguously between the absence of
Efimov-like behaviour and its presence in a very narrow temperature range, in close
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correspondence with what was already found on the fractal lattice. When present,
however, no evidence is found for triple-stranded bound states other than the ground
state at the two-chain melting temperature.

Keywords Efimov effect · Triplex DNA · Poland–Scheraga model · Transfer matrix

1 Introduction

The Efimov effect was first predicted by Efimov in 1970 [1] for identical bosons
that occupy a spatially symmetric s-state and interact with a short-range pair-wise
potential. When the two-body state is exactly at the dissociation threshold, the trimer
spectrum obeys a geometrical scaling law, such that the ratio of the successive energy
eigenvalues of the system is a constant and accumulation of states near zero energy
takes place [2]. Infinitely many three-body bound states are stable when two-body
ones are not. Efimov physics is universal and does not depend on the details of the
pair-wise potential, which could occur, for example, between atoms with a van der
Waals interaction, or between halo nuclei with a nuclear force [3]. Efimov trimers are
loose states with sizes much larger than the short range of the pair-wise interaction. In
the last decade, Efimov states were experimentally detected and characterized in the
context of quantum gases with ultracold atoms [4].

In recent years, the analogue of Efimov behaviour in the context of polymer physics
was suggested [5–9], relying on the well-known formal correspondence between free
particle trajectories in quantum mechanics and continuous flexible Gaussian polymer
chains, whereby the imaginary time along the quantum trajectory is equivalent to
the polymer contour length. The partition function of a Gaussian chain with elastic
constant κ and total contour length s at temperature T , expressed as a path integral

over all possible trajectories r
(
s′): Z = ∫ DR exp

[
−β

∫ s
0 ds′ κ

2

(
∂r
∂s′

)2]
, is formally

equivalent to the Green’s function at time t of a free quantum particle with mass m
by using h̄

m = 1
βκ

= KBT
κ

; s = i t . The infinite time limit, with the ensuing ground
state dominance, corresponds to the thermodynamic limit s → ∞ of an infinitely long
polymer. As two particles interacting with each other do so only at the same time, the
corresponding polymeric constraint yields, for a discrete chain, the sequential base
pairing typical of the Poland–Scheraga DNA-like polymer model: only monomers
with the same chain index interact with each other [10]. A quantum two-body bound
state, stabilized by the interaction potential, corresponds to a double-stranded DNA,
stabilized throughWatson–Crick base pairing. Quantum fluctuations in the classically
forbidden regions corresponds to thermal fluctuations opening portions within double-
strandedDNA, called bubbles. The overall melting of double- strandedDNA, achieved
by raising the temperature, is equivalent to the disappearance of a stable bound state
obtained by decreasing the strength of the two-body potential. In close analogy with
the related quantum problem, the above happens in d = 3; in low dimension d ≤ 2, a
bound state always exists for an arbitrarily weak short-range attractive potential, and
a double-stranded DNA is correspondingly stable at any finite temperature.

The Efimov state is naturally translated within the polymer DNA-like context as
a triple-stranded DNA state that is stable when a double-stranded DNA is not. It is
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indeed well known that a double-stranded DNA allows a third strand to bind via
the Hoogsteen or the reverse Hoogsteen pairing to form a triple helix [11,12]. NMR
experiments show that Hoogsteen pairing can be formed dynamically (1% of time)
even in a normalDNA[13]. The formation of a triple helix controls the gene expression,
with possible therapeutic applications such as developing antibiotics [14] and targeting
a specific sequence in gene therapy [15]. The short range of both Watson–Crick and
Hoogsteen pairings is determined by the hydrogen bond length. The hypothesized
Efimov-DNA, however, would be a loosely bound state that should not depend on
a specific pairing mechanism and be stable only close to the double-stranded DNA
melting temperature.

We already addressed the study of the Efimov effect in polymer physics by
employing low-dimensional lattice models. We could then perform exact analytical
computations in the thermodynamic limit on fractal lattices [8] and carry on exact
finite size enumerations on euclidean lattices [5]. In the latter case, which is also the
focus of the present study, discrete polymer chains are considered, whereas the quan-
tum mapping holds rigorously for continuous polymer chains. One price to pay in
low dimensions (d ≤ 2) is that the formation of DNA bubbles needs to be penal-
ized by either a non-crossing constraint [16] or an “ad-hoc” weight in order for the
melting temperature of the two-chain problem to be finite. Bubble weighting is indeed
extensively used to take into account the cooperativity of stacking interactions between
consecutive base pairs in realistic DNAmodelling [17], yet its mapping onto the quan-
tum formalism would require additional care.1 At the same time, bubble weighting
can be introduced in different ways when dealing with the opening/closing of a three-
stranded DNA portion, so that several models can be devised [5,8]. As a result, we
were able to demonstrate the presence of an Efimov-like feature, that is the stability
of a triple-stranded DNA in a narrow temperature range above the double-stranded
melting temperature, but only within some of the considered models. On top of that,
the presence of the Efimov signature could depend on the kind of lattice used, either
fractal or euclidean.

A yet unanswered question concerns the possibility of finding the full spectrum of
Efimov triplet DNA states, verifying the universal geometrical scaling law. It should
be noted, in this respect, that the quantum Efimov effect for identical bosons only
occurs for a narrow range of dimensions, 2.30 < d < 3.76 [18]. On the other hand,
bubble weighting, chain discreteness, and the absence of quantum statistics may alter
the Efimov properties that are known from quantum mechanics, leading to a possibly
different, yet related, three-body polymer physics.

Here, we address the role of three-chain bubbleweightingwithin a low-dimensional
euclidean latticemodel.More specifically, wemodel DNA chains with N steps (bases)
that can cross each other using the Poland–Scheraga recipe for directed self-avoiding
polymers in a 1+1 square lattice.Bubble formationbetween strandpairs isweighted by
a fugacity σ (see Sect. 2). We consider a two-body Boltzmann weight y = exp (−βε)

for all possible base pairs. A base triplet is given the two-body contribution due to

1 The mapping of bubble weighting onto the quantum formalism might be possible by introducing a
tunnelling coefficient through a δ-potential barrier at the boundary of a short-range square well. Hermiticity
would, however, require both the opening and the closing of bubbles to be given the same weight.
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all three base pairs within it, together with a pure three-body Boltzmann weight w =
exp (−βη), yielding an overall weight y3w = exp (−3ε − η). Throughout all this
work, we choose w = 1/y, so that y3w = y2 = exp (−2ε) and the three-chain
melting transition temperature is the same as the two-chain one if a Y -fork model
where bubble formation is suppressed (σ = 0) is considered [5]. On the other hand,
the possibility of forming bubbles is crucial for the Efimov-like effect [5], and we use
σ = 1/2 in order to have a finite melting transition temperature y2,t = 4/3 (see Sect.
2). The opening (closing) of a three-chain bubble can happen in our model only by
separating (joining) a double- and a single-stranded portion (see Fig. 1). Three-chain
bubble formation is then given the two-body contribution due to the two different two-
chain bubbles that form, together with a pure three-chain bubble fugacity ρ, yielding
an overall weight σ 2ρ.

It is important to observe that, both within the classic Poland–Scheraga approach
[19], further revisited to study DNA overstretching by a pulling force [20], and within
more refined models for real DNA molecules [17], the entropic weight f (l) due to
bubbles of size l is modelled explicitly f (l) ∼ l−c through the knowledge of the
so-called reunion exponent c.2 On the other hand, within our model, the entropic con-
tribution of bubbles to the partition function is already taken care of exactly by the
enumeration of all possible conformations. Bubble fugacity parameters can thus be
seen as extra-weights, which are in principle related to the cooperativity of stacking
interactions between consecutive base pairs or base triplets [17]. The energy parame-
ters ε and η in our model are in principle related to base pairs dissociation free energies
in more realistic models that take into account both nucleotide and solvent degrees of
freedom [17].

Our aim is to verify whether the three-chainmelting transition temperature is higher
than the two-chain one (y3,t < y2,t ), evidencing a temperature window for y3,t < y <

y2,t where a double-stranded state is not stable, whereas a triple-stranded state is stable,
akin to the Efimov effect in quantum mechanics.

We had previously claimed that such an effect is present in the directed 1 + 1
square lattice model where three-chain bubble formation is weighted by an overall
σ 2 factor, obtained by choosing ρ = 1 [5]. We called this Model A. That conclusion
was based on the extrapolation of finite size transition temperature estimates obtained
by evaluating the partition function of a three-chain unconfined system within an
iterative transfer matrix approach (see Sect. 2). Finite size estimates were obtained by
evaluating the temperatures where rescaled end-to-end distance curves for different
sizes cross each other up to a size (chain length) of N � 4000. In particular, bubble
fugacity was implemented in [5] by weighting both bubble closing and opening. A
different possibility, employed in this work, is to weight either only closing, or only
opening. Different realizations provide different finite size estimates, but all should
yield the same result in the thermodynamic limit N → ∞.

2 The value of the reunion exponent c is related to the order of the melting transition of double-stranded
DNA and was computed for a fully self-avoiding (i.e. non-directed) d = 3 polymer model [19]. The
values of the reunion exponent for several directed polymers are known exactly in d = 1 [21] and through
renormalization group estimates in generic dimension [22].
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Subsequently, however, we found that a similar model (w = 1/y and σ 2 factor
associated to three-chain bubble formation, called T S2 model in that context) did not
show a similar Efimov-like effect, when defined on a fractal Sierpinski gasket, for
which d + 1 = ln 3/ ln 2 < 2. A different model (called T S3 in that context) was
instead found to exhibit the Efimov-like effect y3,t < y2,t on the Sierpinski gasket. In
this model, that we call Model C here, w = 1/y and three-chain bubble formation is
weighted by an overall σ factor, obtained by choosing ρ = 1/σ . The fractal lattice
results were based on an exact renormalization group computation [8].

This conflicting result could be ascribed to the different nature (euclidean vs. fractal)
of the used lattices. Yet, it appears particularly paradoxical since three-chain bubble
formation is less favoured in Model A than in Model C , implying that the triple-
stranded state is expected to be more stable in model C , because of the entropy gain
due to enhanced bubble formation. The Efimov-like behaviour found on the fractal
lattice would seem thus sensible in this respect.

Here, we reconsider Model A and we compare it to Model C for directed chains in
a 1 + 1 square lattice. In order to achieve a better extrapolation in the thermodynamic
limit, we undertake two different strategies, both fully exploiting the symmetries of
the system (see Sect. 2 and Fig. 1). On the one hand, we compute finite size estimates
of the three-chain melting temperature for the unconfined system as we already did
[5]. We consider two alternative realizations for weighting bubble formation, and,
most importantly, we are able to reach the size N = 12000 due to full symmetry
exploitation. On the other hand, we set up the transfer matrix for three chains in a
confined system with periodic boundary conditions on the surface of a cylinder with
base circumference L . The largest eigenvalue of the transfer matrix (together with
the corresponding eigenvector) yields the exact behaviour of the infinite chain system
in the confined geometry. Extrapolations in the L → ∞ limit are in general highly
reliable within this approach [23–25] that allows to compute easily the free energy
and the correlation length and to access the properties of the excited states as well
(see Sect. 2). In particular, the transfer matrix approach within the confined system
may allow to detect the geometrical scaling law for the energies of the Efimov triplet
states, if present.

2 Methods

2.1 Directed Polymer Model

We model DNA chains within the Poland–Scheraga spirit [10] for directed self-
avoiding polymers in a 1+1 square lattice. In particular, the strands move as shown
in Fig. 1; at each step, their coordinates increase along the (1, 1) direction (parallel
direction in the following) so that the possible moves need to be along either (1, 0)
or (0, 1). In this way, intra-chain self-intersections are forbidden and only inter-chain
interactions between bases with the same monomer index are allowed, as it should
happen for two complementary DNA strands.

Within our model, DNA strands can cross each other (see Fig. 1), get a Boltzmann
weight y = exp (−βε) for each base pair interaction (ε < 0 → y > 1), and get a
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Fig. 1 DNA strands are self-avoiding walks (polymers) directed along the (1,1) direction of a two-
dimensional square lattice. Left example for two DNA strands in unconfined geometry with end-to-end
distance x12 = x2 − x1 = −1 along the transverse direction (−1, 1). The Boltzmann weight of the
shown conformation would be y4σ 3 if bubble opening is weighted or y4σ 2 if bubble closing is weighted.
Right example for three DNA strands in the confined geometry with periodic boundary conditions result-
ing in a cylinder surface. The strands are directed along the cylinder axis while end-to-end distances
x12 = x2 − x1 = −1, x23 = x3 − x2 = −1 are measured along the transverse direction. The Boltzmann
weight of the shown conformation would be y6wσ 5ρ if bubble opening is weighted or y6wσ 2 if bubble
closing is weighted (Colour figure online)

bubble fugacity σ whenever a bubble—a portion of single-stranded bases in between
two double-stranded portions—is formed between strand pairs. We further introduce
similar weights w = exp (−βη), for each base triplet interaction, and ρ, for three-
chain bubble formation (a portion of either single- or double-stranded bases in between
two triple-stranded portions). Bubble fugacity can be assigned alternatively to bubble
opening (the strands split) or closing (the strands join), resulting in two different
realizations of the model that, however, should yield exactly the same results in the
thermodynamic limit.

The two-chain model in a d+1 directed euclidean lattice can be exactly solved in
the thermodynamic limit of infinite chain length [16]. For such reason, similar models
played an important role in clarifying melting, cold unzipping (opening induced by
transverse force), and overstretching (induced by parallel force) properties of duplex
DNA [26–30].

If bubble formation is not weighted (σ = 1), the two-chain model does not show
any melting transition at finite temperatures in 1 + 1 dimensions. In the quantum
mechanics analogy, the dimension along which the polymers are directed plays the
role of time: then it is well known that any short-range potential, no matter how weak,
will produce a bound state for d ≤ 2.

A bubble fugacity that disfavours bubble formation (σ < 1) and thus entropically
destabilizes the double-stranded state is then needed to obtain a finitemelting transition
temperature (that is y2,t > 1) in d = 1 for the two-chain system. The transition
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temperature can be computed exactly in the thermodynamic limit:

y2,t = 2

1 + σ
. (1)

In the following, we will use σ = 1/2, so that y2,t = 4/3. We will always set w =
1/y, so that the energy of an interacting base triplet (≈ − ln

(
y3

) − lnw ≈ −2 ln y)
is twice the energy of an interacting base pair (≈ − ln y). We will instead consider the
two different cases:

ρ = 1 ⇒ Model A,

ρ = 1/σ = 2 ⇒ Model C.
(2)

In our directed 1 + 1 model, three-chain bubble formation involves the formation
of two distinct two-chain bubbles as well, so that the corresponding overall weighting
factor is σ 2ρ. As a result, three-chain bubbles are more penalized in Model A (σ 2

weight) than in Model C (σ weight).
In the absence of an exact solution for the three-chain model in the thermody-

namic limit, one can follow two alternative strategies, both based on a transfer matrix
approach, which can be easily set up in a directed polymer model:

– Evaluating exactly the partition function for three unconfined chains with N
monomers each and extrapolate the results for N → ∞. This involves the iteration
of the transfer matrix N times. In the quantum analogy, it is equivalent to consider
only finite time trajectories.

– Setting up the transfer matrix for a three-chain system confined within a lattice
strip of width L along the transverse direction. The largest eigenvalue and the
corresponding eigenvector of the transfer matrix yield the exact thermodynamic
limit behaviour as N → ∞. The thermodynamic limit for the unconfined system
is then estimated by extrapolating the results for L → ∞. This corresponds to
consider full infinite time trajectories for quantum particles within a confined
geometry.

Note that a single chain performs a random walk along the transverse direction so
that one expects the general scaling N � L2 to hold when comparing the unconfined
(N finite, L = ∞) and confined (L finite, N = ∞) systems.

2.2 Unconfined System

The canonical partition function can be written in general

ZN =
N∑

x12=−N

N∑

x23=−N

dN (x12, x23), (3)

where x12 = x2 − x1, x23 = x3 − x2 are the end-to-end distances (with sign) between
chain pairs (1, 2), (2, 3), and the state vector dN (x12, x23) is the partition function
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for all configurations with fixed x12, x23 (distances are measured along the transverse
direction in units of the diagonal of the elementary square in the lattice, see Fig. 1).

For the unconfined system, the state vector dN (x12, x23) can be obtained from the
initial condition d0 (x12, x23) = y3wδx12,0δx23,0 (the three chains start from the same
point) through the iteration of the following recursion relation (x13 = x23 + x12 =
x3 − x1):

dN (x12, x23) = [
2dN−1(x12, x23) + dN−1(x12 − 1, x23)σ

δx12,1+δx13,1ρδx12,1δx13,1

+ dN−1(x12 + 1, x23)σ
δx12,−1+δx13,−1ρδx12,−1δx13,−1

+ dN−1(x12, x23 − 1)σ δx23,1+δx13,1ρδx23,1δx13,1

+ dN−1(x12, x23 + 1)σ δx23,−1+δx13,−1ρδx23,−1δx13,−1

+ dN−1(x12 + 1, x23 − 1)σ δx12,−1+δx23,1ρδx12,−1δx23,1

+ dN−1(x12 − 1, x23 + 1)σ δx12,1+δx23,−1ρδx12,1δx23,−1
]

× yδx12,0+δx23,0+δx23,0wδx12,0δx23,0 .

(4)

The above equation employs bubble opening to weigh bubble formation. A similar
equation can be written if bubble closing is employed. For a given N , we will compute
the average squared end-to-end distance:

r2N =
∑N

x12=−N
∑N

x23=−N
x212+x223+x213

3 dN (x12, x23)
∑N

x12=−N
∑N

x23=−N dN (x12, x23)
. (5)

In practice, one can exploit the symmetries of the system (exchange symmetry of
the three chains and the mirror symmetry by changing transverse coordinate signs) to
define state vectors with reduced dimensions and considerably speed up their com-
putation. The recursion equations need to be changed accordingly, similarly to what
is described in detail below for the confined system. For the unconfined system, we
managed to compute the state vectors and the average squared end-to-end distance up
to N = 12000.

2.3 Transfer Matrix for the Confined System

In the confined systemwe use periodic boundary conditions along the transverse direc-
tion, so that the chains move along the surface of a cylinder with base circumference L
(see Fig. 2). We consider all possible symmetries of the system (exchange symmetry
of the three chains, mirror symmetry due to the change of distance sign, x → −x , and
to the periodic boundary, x → L − x) to restrain the possible states within the triangle
in the (rm, rs) plane shown in Fig. 2, with vertexes in (0, 0), (L/3, L/3) and (L/2, 0)
and edges given by rs = 0, rs = rm , rs = L − 2rm . Upon using symmetries, rs ,
rm are the smallest, medium (respectively) distances between chain pairs. The whole
discussion below relies on choosing L as a multiple of 6.

The recursion relation for dN (rm, rs) needs to take into account howmany different
configurations are possible, related to each other by symmetries, in the full (x12, x23)
state plane, for a given choice of (rm, rs).
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Fig. 2 Allowed states in the (rm , rs ) plane can be restricted by using symmetry considerations to points
within the triangle with coloured sides. Different colours represent different properties with respect to
symmetry and consequently different factors to be used in Eq. (8) according to Eqs. (6,7). Dashed arrows
represent all possible (rm , rs ) states fromwhich a given

(
r ′
m , r ′

s
)
state can be reached. Each arrow describes

a different summandweighted by the corresponding b
(
rm , rs , r ′

m , r ′
s
)
factor in Eq. (8) (Colour figure online)

Different colours in Fig. 2 show states which have special symmetry properties in
the recursion relation. In order to write the latter, it is useful to define the functions
f (rm, rs) that takes into account how symmetry affects the staying in the same state,
and b

(
rm, rs, r ′

m, r ′
s

)
that takes into account how symmetry affects the going from

state (rm, rs) to state
(
r ′
m, r ′

s

)
(see Fig. 2):

f (rm, rs) =

⎧
⎪⎪⎨

⎪⎪⎩

3 if (rm, rs) ∈ red dots
4 if (rm, rs) = (L/3, L/3 − 1) upper yellow dot
2 + 2σ if (rm, rs) = (1, 0) lower yellow dot
2 otherwise

(6)

b
(
rm, rs, r

′
m, r ′

s

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if (rm, rs) ∈ edge ∧ (
r ′
m, r ′

s

)
/∈ same edge

6 if (rm, rs) = (0, 0) | | (rm, rs) = (L/3, L/3) :
from green to yellow

2 if (rm, rs) = (L/2, 0) ∧ (
r ′
m, r ′

s

) = (rm − 1, rs) :
from green to grey

4 if (rm, rs) = (L/2, 0) ∧ (
r ′
m, r ′

s

) = (rm − 1, rs + 1) :
from green to red

0 if (rm, rs) outside the triangle
1 otherwise

(7)

Then the recursion equation for dN (rm, rs) can be written as (note that rm = 0 ⇒
rs = 0):
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dN (rm, rs) = [
f (rm, rs) dN−1 (rm, rs)

+ dN−1 (rm, rs − 1) σ δrs ,1b (rm, rs − 1, rm, rs)

+ dN−1 (rm − 1, rs) σ 2δrm ,1ρδrm ,1b (rm − 1, rs, rm, rs)

+ dN−1 (rm + 1, rs − 1) σ δrs ,1b (rm + 1, rs − 1, rm, rs)

+ dN−1 (rm, rs + 1) b (rm, rs + 1, rm, rs)

+ dN−1 (rm + 1, rs) b (rm + 1, rs, rm, rs)

+ dN−1 (rm − 1, rs + 1) b (rm − 1, rs + 1, rm, rs)
]

× yδrs ,0+2δrm ,0wδrm ,0 . (8)

The above equation employs bubble opening to weigh bubble formation. A similar
equation can bewritten if bubble closing is used instead.We can nowdefine the transfer
matrix for the three-chain system, so that

dN
(
r ′
m, r ′

s

) = ∑

rm ,rs
Tr ′

mr
′
s ,rmrs dN−1 (rm, rs)

dN (a) = ∑

b
TabdN−1 (b) = ∑

b
T N
abd0 (b) ; (9)

where the indexes a, b run over all states of the symmetrized system.
The total number of states M is equal to the number of points inside the triangular

domain of area A:

M = A + L/2 + 1 = (L2/12) + L/2 + 1 . (10)

For L = 1980, the largest size used in this work, M = 327691.
The transfer matrix T is non-negative, real and not symmetric. It can be shown,

however, that T can be symmetrized [31]. As a result, the eigenvalues and eigenvectors
of T are real, as we indeed find. Interestingly, the change in bubble weighting (either
opening or closing) does not affect the computed eigenvalues and eigenvectors, and
the symmetrized matrix is the same in both cases. This is indeed expected, since in
the N → ∞ limit the two model realizations have to yield the same results, even for
finite L .

We are interested in computing the eigenvalues λi,L and the corresponding right
eigenvectors vi,L(a). Eigenvalues are ranked so that i = 1 corresponds to the largest,
i = 2 to the second largest, and so on. The largest eigenvalue is related to the ground
state, and all the components of the corresponding eigenvector are positive [31].

In the thermodynamic limit of infinite chain length N → ∞, one can exactly
compute the free energy at fixed L as the ground state free energy f1,L = − ln λ1,L ,
the correlation length ξ‖,L = 1/ ln

(
λ1,L/λ2,L

)
along the parallel direction, the average

squared smallest distance r2s,L =
∑

a r
2
s (a)v1,L (a)∑
a v1,L (a)

between chain pairs.
A generic eigenvector i is a bound state if its free energy fi,∞ = − ln λi,∞ is lower

than the free energy −3 ln 2 of 3 non-interacting chains in the limit of infinite strip
width that is if ln

(
8/λi,∞

)
< 0.
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Note that due to the scaling relation N � L2, one expects quantities such as ξ‖,L ,
r2s,L to scale with L2 in the limit of infinite strip width.

3 Results

3.1 Model A Does not Have Efimov-Like Behaviour

For Model A, we computed the average squared end-to-end-distance r2N for three
unconfined chains up to a chain length N = 12000, using two different ways to weigh
bubble formation. Finite size estimates of the three-chain transition temperature y3,t
were obtained by looking at the crossing of the curves r2N (y) /N for different sizes,
as already done [5]:

r2N
(
y3,t

)

N
= r2N−1

(
y3,t

)

N − 1
. (11)

The results are reported in the top panel of Fig. 3 as a function of 1/N . Finite size
estimates of y3,t dependonhowbubble formation isweighted, as expected.Both curves
exhibit an unusual non-monotonic “backbending” such that y3, t is initially decreasing
for small N and then increasing for larger N , after having reached a minimum (barely
visible on the shown scale for the black curve). This feature makes extrapolations in
the infinite size limit a delicate issue. In particular, if finite size estimates are available
only for sizes smaller than the “backbending size”, the resulting extrapolation may
end up being grossly wrong. If, for example, the red curve is extrapolated based only
on N < 4000 (that is 1/N > 0.00025), one gets an apparently clear indication
that y3,t < 4/3 with an estimate of the difference roughly consistent with the one,
(−7 ± 1) · 10−4, reported in [5]. Yet, the availability of the data for N ≤ 12000, with
the consequent uncovering of the “backbending” feature, allows to clearly rule out
that estimate. A quantitative assessment of whether y3,t < 4/3 or not for Model A in
the infinite size limit is still made difficult by the non-monotonic behaviour, so that
polynomial extrapolations (not shown) strongly depend on the range of the sizes used
for the fit and on polynomial order.

We thus considered, again for Model A, the system of three chains of infinite
length confined on a cylinder surface of base circumference L . We obtained finite size
estimates of y3,t in a similar way, by computing the average squared smallest end-to-
end distance r2s,L among the three possible chain pairs and looking at the crossing of

the curves r2s,L (y) /L2 for different sizes:

r2s,L
(
y3,t

)

L2 = r2s,L−6

(
y3,t

)

(L − 6)2
. (12)

L needs to be a multiple of 6 in order to properly exploit symmetries. L2 needs to
be used at the denominator because the typical length explored by a chain of length N
along the transverse direction is ≈ N 1/2 in the high temperature random walk regime,
so that a finite chain length N in the unconfined system should roughly correspond to
a finite size L ≈ N 1/2 for the confined case.
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Fig. 3 In model A, the transition temperature y3,t of the three-chain system is the same as in the two-chain
system y2,t = 4/3 (y3,t − y2,t is reported). Top panel finite size estimates of transition temperature for three
chains in the unconfined system obtained by using the crossing of < r2N > /N and < r2N+1 > / (N + 1)
curves; both possibilities for bubble weighting are shown: weight on bubble closing (black) and on bubble
opening (red). Middle panel finite size estimates of transition temperature for three chains in the confined
system obtained by using the crossing of < r2s,L > /L2 and < r2s,L−6 > / (L − 6)2 curves; the green
points (330 ≤ L ≤ 1020) are used to obtain the 4th-degree polynomial extrapolation (dashed line): the
magenta point is obtained for L = 1980 to test the polynomial extrapolation. Bottom panel data collapse
of the < r2s,L > /L2 curves for three chains in the confined system as a function of y; 123 different L and
nine different y values are used (Colour figure online)

The results are reported in the middle panel of Fig. 3 as a function of 1/L . Note that
finite size estimates for the confined system do not depend on how bubble formation is
weighted, because the infinite chain limit has been already taken when considering the
largest eigenvalue of the transfer matrix. A non- monotonic “backbending” is hinted
at by the reported data for L ≤ 1020 (green points), similarly to the unconfined case.
However, the difference y3,t −4/3 that can be assessed in the confined case is lower by
a 100 factor, roughly. In fact, a reliable polynomial extrapolation (dashed line) of the
non-monotonic behaviour can be obtained by fitting the data for sizes smaller than the
backbending size. Extrapolation reliability is tested through the excellent comparison
with the actual estimate, not used in the extrapolation, computed for a size (L = 1980,
magenta circle), larger than the backbending size. The reported extrapolation allows
us to conclude that yt,3 = 4/3 within an accuracy of 2 · 10−6.
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A further evidence that Efimov-like behaviour is not present inModel A for directed
chains on a 1 + 1 square lattice and that the three-chain melting transition share the
same properties as the two-chain one is obtained through data collapse. As shown
in the bottom panel of Fig. 3, all data for r2s,L (y) in the confined system that were
used to obtain finite size estimates of y3,t collapse almost perfectly on a single scaling
function g (t) according to the scaling law

r2s,L (y)

L2 = g
((

y − y3,t
)
L2φ

)
, (13)

where φ is the crossover exponent [16].
The collapse shown in Fig. 3 is obtained using y3,t = 4/3 and φ = 1/2, as it would

be the case for the two-chain melting transition [16] and involve 123 different sizes for
9 different y values. By optimizing the quality of the data collapse [32] with respect
to both φ and y3,t for L ≤ 1020 data, we obtain the estimates y3,t = 1.33333302,
2φ = 1.03854. Taken together, the evidence we reported for Model A showing a
three-chain melting transition at the same temperature as the two-chain one is fairly
convincing.

3.2 Model C has Efimov-Like Behaviour

We then studiedModelC in the confined case.We obtained finite size estimates of y3,t
in a different way, by computing the correlation length ξ‖,L in the parallel direction
for a finite size L , and looking at the crossing of the curves ξ‖,L (y) /L2 for different
sizes:

ξ‖,L
(
y3,t

)

L2 = ξ‖,L−6
(
y3,t

)

(L − 6)2
. (14)

The y3,t estimate obtained by crossing the end-to-end distance curves yielded very
accurate results for Model A, but it requires the computation of the ground state eigen-
vector for several y values at each different size. The computation of the correlation
length ξ‖,L requires the two largest eigenvalues of the transfer matrix and is thus
computationally cheaper. Estimating critical parameters by the crossing of correlation
length curves at different sizes is a well-known phenomenological renormalization
procedure [24,25].

The finite size estimates of y3,t obtained in this way in the confined case are reported
in the top panel of Fig. 4 for both Model A (black) and Model C (red). Backbending
is actually present in this case as well for Model A, but the backbending size is very
small and left out of the scale of the plot. Backbending is instead not present forModel
C . Polynomial extrapolations, based on 84 ≤ L ≤ 378, are shown as dashed lines. In
the infinite size limit L → ∞, we recover the result that y3.t = 4/3 for Model A, even
though with less accuracy (2 · 10−5) than for the end-to-end distance data. Model C
data clearly demonstrate a higher transition temperature, resulting in the infinite size
estimate y3,t − 4/3 = (−4.8 ± 0.2) · 10−4. Since systematic errors are necessarily
involved in extrapolating finite size data, we associate to the latter estimate the same
accuracy with which Model A estimate allows to confirm that y3,t = 4/3.
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The different behaviour of Model A and Model C is confirmed from another per-
spective in the bottom panel of Fig. 4, where we plot the finite size estimates of the free
energies of the ground states and the first excited states for bothmodels at the two-chain
critical temperature y2,t = 4/3.More precisely, we plot the free energy differencewith
respect to the three-chain unbound state, whose free energy is −3 ln 2 = − ln 8, being
determined by the entropy of 3 isolated strands:

fi,L(y2.t ) + ln 8 = ln

(
8

λi,L
(
y2,t

)

)

, (15)

where λi,L is the i-th largest eigenvalue of the transfer matrix. Negative values in the
infinite size limit signal the presence of a bound state, whereas extrapolation to zero
difference is expected for unbound states.

The data clearly show that the ground state of model C is a bound state at
y = 4/3, consistent with the Efimov-like picture. An extrapolation of finite size
data using f1,L = A0 − A1 exp(−L/A2) (dashed line) yields fi,L(y2.t ) + ln 8 =
A0 = (−1.163 ± 0.001) × 10−5. On the other hand, the ground state of model A can
be shown to be unbound, that is f1,L + ln 8 = 0 within an accuracy of 2 × 10−10

upon polynomial extrapolation, again consistently with the absence of Efimov-like
behaviour. All excited states display the features of unbound states for both models,
that is f1,L + ln 8 = 0 upon polynomial extrapolation within an accuracy varying from
1× 10−7 to 2× 10−9, with a remarkable one-to-one correspondence in the spectrum
of unbound states between the two models.

The different melting transition properties of Model A and C can be easily visu-
alized at a glance by looking at probability distributions, as given by ground state
eigenvectors. We report them in Fig. 5 for L = 420. System microstates are defined
in the (rm, rs) plane through the smallest, rs, and middle, rm, end-to-end distances
among the three pairs of chains. The minimal set of microstates that can be used to
describe the whole system by means of symmetry properties is defined within the
triangle shown in Fig. 2 (see Sect. 2). The triplet interaction microstate corresponds
to the lower left triangle vertex. The microstates on the lower triangle edge represent
a base pair interaction with the third strand on its own. In the microstate represented
by the top triangle vertex, all strand pairs are equally far apart.

In the high temperature regime (y = 1.33 < y3,t for both models), the eigenvector
components describe a delocalized macrostate, corresponding to three single-stranded
chains, that is very similar within both models: the most probable microstate is the top
triangle vertex.

At the transition point of the two-chain system (y = y2,t = 4/3), however, the
two models behave quite differently, as already signalled by the largest eigenvalue
behaviour. This is the melting transition point for Model A as well, and the ground
state eigenvector is indeed characterized by an almost evenly distributed probability
across all microstates. At the melting transition of the two-chain system one would
indeed get an exactly uniform probability distribution across all possible end-to-end
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distance values.3 For Model C , instead, 4/3 > y3,t and the corresponding ground
state indeed clearly describes a triplet bound state whose probability is localized in
the lower left triangle corner and rapidly decays away from it.

In the low temperature regime, y = 1.34 > y3,t for both models and a triplet bound
state is clearly seen accordingly. However, the localization extent of the ground state is
much higher for model C , evidencing again that the triplet bound state is more stable
than in model A.

4 Discussion

We studied two different models for three directed polymer chains in the 1+ 1 square
lattice. Directedness allows inter-chain interactions only between monomers with the
same index along the chain, thus mimicking base pair interaction between comple-
mentaryDNA strands. For the same reason, it is possible tomap theDNA-like polymer
problem to a quantum problem of interacting particles where monomer index is imag-
inary time and chain configurations are particle trajectories. Thermal fluctuations in
the polymer problem are akin to quantum fluctuations.

The two studied models differ only in three-chain bubble formation being more
penalized in Model A with respect to Model C . Weighting bubble opening or closing
is necessary in low dimension, in order to have a finite transition temperature (in the
quantum analogy any attractive potential no matter how weak would admit a bound
ground state). In principle, the analogue of bubble weighting could be introduced in
the quantum problem as well (see Footnote 1).

We extended previous transfer matrix computations for Model A for a finite uncon-
fined system to bigger chain lengths, by fully exploiting all symmetries. Moreover,
we implemented the transfer matrix technique for a confined system with periodic
boundary conditions. This allowed us to compute exact results in the thermodynamic
limit for the confined system. Full considerations of system symmetries allowed to
reach system sizes that are effectively much larger than in the unconfined case. In
addition, free energies and probability distributions were easily obtained through the
largest eigenvalue and the corresponding eigenvector of the transfer matrix.

Thanks to the combination of both approaches, we showed that the minute piece
of evidence shown in [5] for the presence of Efimov-like behaviour in Model A was
an artefact based on not having reached too large chain lengths and on a subtle back-
bending effect in the thermodynamic limit convergence of the transition temperature
estimates for finite systems. Model A does not show any Efimov-like behaviour on
the Sierpinski gasket as well [8].

We further showed that Model C displays Efimov-like behaviour, again in agree-
ment with what we had found on the Sierpinski gasket. Moreover, the transfer matrix
approach in the confined system allowed us to show that only one triple-stranded DNA

3 At the melting transition, the two-chain problem is equivalently described by a fully unbiased (y = 1,
σ = 1) random walk, thus yielding a uniform probability distribution at equilibrium in a finite size system
with periodic boundary conditions
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state is stable, just above the double-stranded melting temperature. We are thus not
recovering the full quantum Efimov picture, indeed not expected to hold in d = 1.

Our results show that the three-body polymer physics is subtle. The temperature
window and the energy difference involved in the effect that we uncover are very
narrow. Our results further underline how the details of bubble weighting are crucial
in driving the Efimov-like behaviour in low d and how the nature of the lattice is not
a relevant factor, at least for d ≤ 1 (d + 1 = ln 3/ ln 2 in the Sierpinski). They also
lead to the further questions of what is the origin of the Efimov-like feature that we are
observing and whether and upon which conditions the full Efimov picture could be
observed in polymer physics. Relevant factors are most likely dimension and particle
statistics, besides bubble weighting.

In this respect, we observe that the transfer matrix for confined system that we
set up in this work is a promising approach, capable of reaching a very good accu-
racy in the extrapolation to the infinite size limit, within a reasonable computational
effort. Combined with proper symmetry considerations, it may be a valuable strategy
to investigate the possible emergence of the full Efimov physics in polymer models for
both the standard problem for identical particles in higher dimension and a suitably
modified Calogero problem for non-identical particles in d = 1, where the full Efimov
picture holds [33]. On the other hand, confined geometries “per se” are an interesting
playground for further studies of the quantum Efimov physics [34], making the cor-
responding investigation of the polymer Efimov analogy straightforward within the
transfer matrix approach.

In a broader perspective, one may ask whether the melting of an actual triple-
stranded DNA molecule could indeed take place at a temperature higher than for the
corresponding double-stranded one. Further work is needed to properly assess such
speculation, especially given the sensitivity of the shown results to model details.

Distinctive features of real DNAmolecules that are not considered in the simplified
models presented here are sequence heterogeneity and the semiflexibility of double-
stranded DNA resulting in its persistence length being around 50 nm, or 150 base pairs
(triple-stranded DNA should behave similarly in this respect).

In principle, a bending rigidity term can be easily included in the present transfer
matrix approach, whereas sequence heterogeneity could be included only for uncon-
fined systems, when the matrix is explicitly used at each step. Qualitatively, however,
we do not expect any of the above features to alter the basic nature of a bubble driven
transition that is at the basis of the polymer Efimov effect.

As long as bubble size getsmuchbigger than the persistence length, double-stranded
DNA rigidity becomes irrelevant. Moreover, the single-stranded DNA portions that
make up a bubble are essentially flexibles, with a persistence length of around 2 nm,
or 4 − 5 bases.

The melting transition of a double-stranded heterogeneous DNA was studied by
introducing random interactions [35]. Although there are subtle changes (disorder is a
“marginally relevant variable” in d = 1), the basic feature of a bubble driven transition
is again preserved. This is because the heterogeneity involves merely a distribution of
the strength of base pair attraction and there is no other competition.

One essential ingredient in our approach is strict DNA strand complementarity, at
the basis of the quantum analogy. In this respect, we observe that in modelling realistic

123



120 J Low Temp Phys (2016) 185:102–121

DNAmolecules, one should think of one monomer in our model as the coarse-grained
representation of a stretch of several DNA bases. In this way, the lack of interaction
betweenmonomerswith different chain indexes and the absence of the helical structure
(or at least of some reduction in chain flexibility) in the double- and triple-stranded
phases can be more easily rationalized.

An equally important and delicate issue concerns a realistic estimate of model para-
meters. The value of the two-chain cooperativity parameter σ is typically very low
(� 10−5) in realistic applications [17], thereby suggesting that bubble formation is
highly suppressed. On the other hand, a proper estimate of the three-chain cooperativ-
ity parameter ρ would require a careful analysis of the experimental melting curves
for triplex DNA, together with the knowledge of the thermodynamics parameters
associated to both Watson–Crick and Hoogsteen pairings. The latter are considered
equivalent in the results shown here.

Finally, temperature is not the only actor playing a role in stabilizing double- and
triple-stranded DNA helices. Inter- and intra-helices interactions are sensitive to the
presence of cations that may trigger the precipitation of DNA helices into a condensed
phase [36]. In particular, divalent cations are not able to condense double-stranded
DNA, whereas they succeed in doing so with triple-stranded DNA [37]. This points
again to a higher stability of the latter, at least in the condensed phase stabilized by
counterion mediated inter-helical attractions.
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