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Abstract The static and dynamic properties of vortices in a nanosized superconduct-
ing strip with one central weak link (weakly superconducting region or normal metal)
are investigated in the presence of external magnetic and electric fields. The time-
dependent Ginzburg–Landau equations are used to describe the electronic transport
and have been solved numerically by a finite element analysis. Anisotropy is included
through the spatially dependent anisotropy coefficient ζ in different layers of the sam-
ple. Our results show that the energy barrier for vortices to enter a weak link is smaller
than that for vortices to enter the superconducting layers. The magnetization shows
periodic oscillations. With the introduction of the weak link, the period of oscillations
decreases.

Keywords Nanosized superconducting strips · Weak link · Applied current drive ·
Vortex

1 Introduction

The vortex matter in mesoscopic and nanopatterned superconductors has attracted a
lot of attention. A mesoscopic (or nanopatterned) sample is such that its size is com-
parable to the magnetic field penetration depth λ or the coherence ξ . The behavior of
such structures in an external magnetic field is strongly influenced by the boundary
conditions besides its size and geometry, and differs from the bulk materials. The sam-
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ples of different shapes [1–15] have been studied extensively both experimentally and
theoretically. These researches have shown two kinds of superconducting state, i.e.,
the giant vortex state [5–9] and multivortex state [10–15], which are energetically less
favorable in bulk type-II superconductors [16]. An even more exotic vortex state was
predicted to exist in nanoscale samples with artificial pinning: the vortex–antivortex
state [17–19]. Recently, the vortex states in weakly linked layered mesoscopic super-
conductors were studied in the presence of a uniform magnetic field [20–22]. The
weak link is commonly achieved by two superconducting layers separated by a nor-
mal metallic layer, or a weak superconducting region. In the weakly linked layered
samples, kinked vortex strings are formed owing to the competing interactions of vor-
tices withMeissner currents and the weak-link boundaries [23–25]. The weakly linked
layered structure of the superconducting sample has important effects on the structure
and behavior of magnetic vortices, which in turn can strongly influence the properties
of the sample.

In this paper, we use the time-dependent Ginzburg–Landau (TDGL) equations
to study the static and dynamic properties of the superconducting condensate in a
nanosized type-II superconducting strip with one central weak link in the presence of
external magnetic and electric fields, with the objective to understand the penetration
of magnetic field in such samples [26], and the formation and rearrangement of vortex
states with respect to the superconducting layers and the weak-link boundaries. This
anisotropic GL approach [27] allows both the modulus and the phase of the order
parameter to vary in both the weak and the strong superconducting regions, which
is an effective and useful vehicle for the interpretation of the experimental data on
Josephson coupled structures.

The paper is organized as follows. In Sect. 2, we show the derived TDGL equations
with an anisotropy function and explain the numerical method we use in the calcu-
lations. In Sect. 3, we analyze the results obtained for the samples with one central
weak link. Our results are finally summarized in Sect. 4.

2 Theoretical Formalism

We consider a mesoscopic superconducting stripe with one or more weakened super-
conducting regions as illustrated in Fig. 1. The superconducting state is usually
described by the complex order parameter ψ . The quantity |ψ |2 represents the elec-
tronic density of Cooper pairs. In the regions where |ψ |2 is small, superconductivity
is suppressed. At the center of the vortex |ψ |2=0, whereas the local magnetic field h
is maximum. We restrict ourselves to a sufficiently thin strip such that the thickness
d <<ξ , λ (ξ , the coherence length; λ, the penetration depth). The strip is surrounded
by vacuum with an external uniform magnetic field H=(0,0,Hz) in the z-direction.
The order parameter and the local magnetic field can be determined by the Ginzburg–
Landau equations in their time-dependent formalism, which are expressed as [20]

( ∂

∂t
+ i�

)
ψ = −( − i∇ − A

)2
ψ + (

ζ − |ψ |2 )
ψ, (1)
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Fig. 1 Schematic view of the
studied system: a
superconducting stripe (length
W , width Wh , thickness
d <<ξ ,λ) with one central weak
link of size a in the presence of a
perpendicular magnetic field H
(Color figure online)

σ
(∂A

∂t
+ ∇Φ

) = Js − κ2∇ × ∇ × A, (2)

with boundary conditions:

n · (−i∇ − A
)
ψ

∣∣⊥, boundary = 0, (3)

where� is the scalar potential; ζ is the anisotropy function [28]; Js is the supercurrent
density; ψ is the order parameter, A is the vector potential, related to the magnetic
field as h=×A; κ is Ginzburg–Landau parameter; σ is the conductivity constant, and
n is the normal unit vector on the surface. The density of the superconducting current
Js is given by

Js = i

2

(
ψ∇ψ∗ − ψ∗∇ψ

) − |ψ |2 A. (4)

Here, all of the distances are scaled with the coherence length ξ (T ); A is given
in units of Φ0/2πξ(T ) (Φ0 is the flux quantum); the magnetic field is in units
of HC2 = Φ0/2πξ2; the time is in units of Ginzburg–Landau relaxation time
τGL = π h̄/8kB(Tc − T )[29]. The transport current is introduced via the boundary
condition for the vector potential in the x-direction: ∇ × A|z(x = 0, w) = H ± HI .
The external dc current I is induced by imposed HI (approx 2π I/c) on the lateral
edges of the sample. The applied current is given in units of j0 = σnh̄/2eτGLξ (σn
is the normal-state conductivity) . The TDGL equations and their discretized form
are gauge invariant under the transformations as follows:ψ ′ = ψeiχ , A′ = A + ∇χ ,
Φ ′ = �− ∂χ/∂t .We chose the zero-scalar potential gauge, that is, Φ = 0 at all times
and positions.

The weak link, i.e., the region in the system with weak superconductivity, can be
directly modeled by the anisotropy function ζ less than unity [20,21,29]. For sim-
plicity, we assume in this work a steplike behavior of ζ across the system, so that it
becomes a coefficient equal to unity inside the superconducting layer, and less than
1 inside the weak link. Then, for a fixed applied magnetic field, we solve the TDGL
equations using the finite element method [20] and can obtain the order parameter and
the vector potential. The dimensionless magnetization in our work, which is a direct
measure of the expelled magnetic field from the nanosized superconducting strip,
can be defined as M=(〈B〉 − H)/4π , where 〈B〉 is the magnetic induction averaged
over the nanosized superconducting strip. The infinite strip is implemented through
periodic boundary conditions in the y-direction and Neumann boundary conditions
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at all sample edges. Our simulations have been carried out using σ=κ=1 for the sys-
tem. The initial conditions are |ψ |2=1 corresponding to the Meissner state and zero
magnetic field inside the superconductor. The calculation is repeated until the relative
difference of the order parameter between two consecutive iteration steps is less than
10−6.

3 Results and Discussion

In what follows, we first consider a superconducting strip of size w = wh=50 nm
[30,31] with a weak link of size a=0, 4, and 10 nm, centered in the sample. As an
example, we choose the coherence length ξ=10 nm and penetration depth λ=ξ so
that the sample is a type-II one. The weak links are characterized by the anisotropy
coefficient ζ (y) in the GL equation with ζ (y)=1 outside the weak link and ζ (y)= ζ

in the weak-link region. As a result, it is easier to suppress superconductivity inside a
weak link than in the strongly superconducting layers. For this reason, the vortex core,
as locally destroyed superconductivity, is more likely to reside inside the weak links
than elsewhere. Figure 2a–c shows the vortex states of the samples with one central
weak link of size a=0 nm, a=4m and a=10 nm for an anisotropy coefficient ζ=0, J=0,
H/HC2=1.1 and W = Wh=50 nm. The vortices make entry into the superconducting
strip through the boundary for the sample without the weak link, while the vortices
make entry into the weak- link region for the sample with a weak link of size a=4
nm and 10 nm, and sit preferably inside the weak link until the saturation number is
reached, i.e., there are enough vortices in the weak link so that the increased vortex–
vortex interaction expels some of them into the superconducting layers of the sample.
Eventually, the vortices will find an equilibrium position, in which the inward and
outward forces cancel exactly and the vortices become stable. Figure 2d shows the
magnetization in the sample with one central weak link of a=10 nm for the anisotropy
coefficients ζ=1, 0,−1. As can be seen from Fig. 2d, the magnetization shows that the
vortices more easily make entry into the samples due to the introduction of the weak
link.

Figure 3 shows magnetization versus time characteristics of the samples without
the weak link (a=0) and with one central weak link of size a=10 nm for an anisotropy
coefficient ζ=−1, J=0.05 j0, H/HC2=1.1 and W = Wh=50 nm. As can be seen in
these figures, the magnetization shows periodic oscillations, although the amplitude
of the oscillations is not much affected by the applied current for the samples without
one central weak link.With the introduction of the weak link, the period of oscillations
decreases (Fig. 3a–c). To see the origin of this behavior, we chose one point on the
curve for the sample with one central weak link of size a=10 nm and an applied current
density J=0.05 j0, andmonitored the vortex motion andmagnetization as a function of
time (shown in Fig. 3b–c). We obtained the period of oscillations τ ∼ 300τGL . For the
chosen length of the simulation region and the considered magnetic field, we actually
had N=4 vortices moving in a single row, as shown in the plots of the order parameter
(shown in Fig. 3c). Another interesting result we found is that the magnetization of the
sample decreases by introducing the weak link (Fig. 3a–b). The reason for this effect
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Fig. 2 Absolute value of the order parameter for the samples with one central weak link of size a=0 nm (a),
a=4nm(b), anda=10nm(c) and an anisotropy coefficient ζ =0, J =0, H/HC2 =1.1, andW = Wh=50nm.
d Magnetization in the sample with one central weak link of a=10 nm for the anisotropy coefficients ζ=1,
0, −1. Blue to red means that the absolute value of the order parameter ranges from minimum to maximum
(Color figure online)

is that the path of the moving vortices goes through the weak link (Fig. 3c), preserving
superconductivity in the superconducting region outside the weak link.

To obtain a better insight into the process leading to the periodic oscillations ofmag-
netization, we plotted in Fig. 4 the temporal magnetization signal in the samples with
one centralweak link of sizea=10nmfor an anisotropy coefficient ζ=−1, H/HC2=1.1,
andW = Wh=50 nmat the current values J=0.001 j0, J=0.005 j0,J=0.01 j0,J=0.03 j0,
andJ=0.05 j0. Figure 4 shows that the period of the magnetization oscillations τ varies
between 330 and 4500τGL when the applied current varies from 0.005 j0to 0.05 j0. The
oscillations of magnetization are not observed for a small value of the applied current
(such as J=0.001 j0), which shows that the vortices do not move. With an increasing
current, the period of the magnetization oscillations decreases, although the ampli-
tude of the oscillations is not much affected by the applied current. Here we provide
some estimates of the relevant quantities of the magnetization periods for Nb films
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Fig. 3 a–b Magnetization versus time characteristics in samples without the weak link (a=0) and with
one central weak link of size a=10 nm for an anisotropy coefficient ζ=−1, J=0.05 j0, H/HC2=1.1, and
W = Wh=50 nm. c The absolute value of the order parameter at time intervals indicated in Fig. 3b. Blue to
red means that the absolute value of the order parameter ranges from minimum to maximum (Color figure
online)

Fig. 4 Magnetization versus time characteristics of the samples with one central weak link of size a=10 nm
for an anisotropy coefficient ζ=−1, H/HC2=1.1, and W = Wh=50 nm at the current values J = 0.001 j0,
J = 0.005 j0,J = 0.01 j0,J = 0.03 j0, andJ = 0.05 j0 (Color figure online)
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[32]. Taking Tc=9.7 K and the working temperature T=5.5 K, and coherence length
ξ(0) = 10nm, we estimate τGL ≈ 0.71 ps. The range of the considered frequencies of
the magnetization oscillations for this particular case is from 0.3 GHz up to 4.3 GHz,
which could be detected by nanoscale superconducting quantum interference devices
(SQUIDs) [33].

4 Conclusions

In summary, we presented the static and dynamic properties of the superconducting
condensate in nanosized type-II superconducting strips with a weakly superconduct-
ing narrow metallic region in the presence of external magnetic field and current.
Our samples show magnetization oscillations in the presence of a dc current I and a
perpendicular magnetic field H . The giga-to-terahertz frequencies of magnetization
oscillations can be expected, which can be probed in magnetic measurements by the
nanoscale SQUIDs. Our results are closely related to the studies of special magnetore-
sistive features in mesoscopic stripes with weak links [30,31], and will have further
implications in the studies of vortex dynamics in two-gap superconductors (where
weak link can be realized in one gap condensate and not in the other, especially close
to ’hidden criticality’ [34], causing nontrivial dynamics of fractional vortices [35–37]),
or in the studies of vortex slippage along magnetic nanostructures and/or magnetic
domain walls in various superconductor–ferromagnet hybrids [38,39].
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5. Xu Ben, M.V. Milošević, F.M. Peeters, Phys. Rev. B 81, 064501 (2010)
6. V.A. Schweigert, F.M. Peeters, P.S. Deo, Phys. Rev. Lett. 81, 2783 (1998)
7. A. Kanda, B.J. Baelus, F.M. Peeters, K. Kadowaki, Y. Ootuka, Phys. Rev. Lett. 93, 257002 (2004)
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Phys. J. B 85, 130 (2012)
22. G. Deutscher, P.G. de Gennes, in Superconductivity, Chap 17, ed. by R.D. Parks (Marcel Dekker, New

York, 1969)
23. Chao-Yu. Liu, G.R. Berdiyorov, M.V. Milošević, Phys. Rev. B 83, 104524 (2011)
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