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Abstract The study of superconductivity arising from doping a Mott insulator has
become a central issue in the area of superconductivity. Within the framework of the
kinetic-energy-driven superconducting (SC) mechanism, we discuss the thermody-
namic properties in the triangular-lattice cobaltate superconductors. It is shown that a
sharp peak in the specific heat appears at the SC transition temperature Tc, and then the
specific heat varies exponentially as a function of temperature for temperatures T < Tc
due to the absence of d-wave gap nodes at the charge-carrier Fermi surface. In partic-
ular, the upper critical field follows qualitatively the Bardeen–Cooper–Schrieffer-type
temperature dependence, and has the same dome-shaped doping dependence as Tc.

Keywords Thermodynamic property · Specific heat · Upper critical field ·
Triangular-lattice superconductors

1 Introduction

The parent compounds of cuprate superconductors are identified as Mott insulators
See, e.g., the review, [1,2], in which the lack of conduction arises from the strong
electron–electron repulsion. Superconductivity then is obtained by adding charge
carriers to insulating parent compounds with the superconducting (SC) transition
temperature Tc having a dome-shaped doping dependence [3]. Since the discovery of
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superconductivity in cuprate superconductors, the search for other families of super-
conductors that might supplement what is known about the SC mechanism of doped
Mott insulators has been of great interest. Fortunately, it has been found [4] that there
is a class of cobaltate superconductors NaxCoO2 · yH2O, which displays most of
the structural and electronic features thought to be important for superconductivity in
cuprate superconductors: strong two-dimensional character, proximity to a magnet-
ically ordered nonmetallic state, and electron spin 1/2. In particular, Tc in cobaltate
superconductors has the same unusual dome-shaped dependence on charge-carrier
doping [5–8]. However, there is one interesting difference: in the cuprate supercon-
ductors [1,2], Cu ions in a square array are ordered antiferromagnetically, and then spin
fluctuations are thought to play a crucial role in the charge-carrier pairing, while in the
cobaltate superconductors [4–8], Co ions in a triangular array are magnetically frus-
trated, and therefore this geometric frustration may suppress Tc to low temperatures.
It has been argued that the triangular-lattice cobaltate superconductors are probably
the only system other than the square-lattice cuprate superconductors where a doped
Mott insulator becomes a superconductor.

The heat-capacity measurement of the specific heat can probe the bulk proper-
ties of a superconductor, which has been proven as a powerful tool to investigate
the low-energy quasiparticle excitations, and therefore gives information about the
charge-carrier pairing symmetry, specifically, the existence of gap nodes at the Fermi
surface [9]. In conventional superconductors [9], the absence of the low-energy qua-
siparticle excitations is reflected in the thermodynamic properties, where the specific
heat of conventional superconductors is experimentally found to be exponential at
low temperatures, since conventional superconductors are fully gapped at the Fermi
surface. However, the situation in the triangular-lattice cobaltate superconductors is
rather complicated, since the experimental results obtained from different measure-
ment techniques show a strong sample dependence [10–24]. Thus it is rather difficult
to obtain conclusive results. The early specific-heat measurements [12–14] showed
that the specific heat in the triangular-lattice cobaltate superconductors reveals a sharp
peak at Tc, and can be explained phenomenologically within the Bardeen–Cooper–
Schrieffer (BCS) formalism under an unconventional SC symmetry with line nodes.
However, by contrast, the latest heat-capacity measurements [18,19] indicated that
among a large number of the gap symmetries that have been suggested [25,26],
the SC state with d-wave (d1 + id2 pairing) symmetry without gap nodes at the
Fermi surface is consistent with the observed specific-heat data. Furthermore, by
virtue of the magnetization measurement technique, the value of the upper critical
field and its temperature dependence have been observed for all the temperatures
T ≤ Tc [14–17], where the temperature dependence of the upper critical field fol-
lows qualitatively the BCS-type temperature dependence. On the theoretical hand,
there is a general consensus that superconductivity in the triangular-lattice cobal-
tate superconductors is caused by the strong electron correlation [27–34]. Using the
resonating-valence-bond mean-field approach, it has been suggested that the spin fluc-
tuation enhanced by the dopant dynamics leads to a d-wave SC state [27–29]. Based
on the mean-field variational approach with Gutzwiller approximation, a d-wave
SC state is realized in the parameter region close to the triangular-lattice cobaltate
superconductors [30]. Within the framework of the kinetic-energy-driven SC mech-
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anism See, e.g., the review, [35–37], it has been demonstrated that charge carriers
are held together in d-wave pairs at low temperatures by the attractive interaction
that originates directly from the kinetic energy by the exchange of spin excitations
[31,32]. Moreover, superconductivity with the d-wave symmetry has been explored
by a large-scale dynamical cluster quantumMonte Carlo simulation on the triangular-
lattice Hubbard model [33]. In particular, using the diagram technique in the atomic
representation, the SC phase with the d-wave symmetry in an ensemble of the Hub-
bard fermions on a triangular lattice has been discussed [34], where the domelike
shape of the doping dependence of Tc is obtained. However, to the best of our knowl-
edge, the thermodynamic properties of the triangular-lattice cobaltate superconductors
have not been treated starting from a microscopic SC theory, and no explicit cal-
culations of the doping dependence of the upper critical field have been made so
far.

In this case, a challenging issue for theory is to explain the thermodynamic prop-
erties of the triangular-lattice cobaltate superconductors. In our recent study [32], the
electromagnetic response in the triangular-lattice cobaltate superconductors is stud-
ied based on the kinetic-energy-driven SC mechanism [35–37], where we show that
the magnetic-field-penetration depth exhibits an exponential temperature dependence
due to the absence of the d-wave gap nodes at the charge-carrier Fermi surface. More-
over, in analogy to the dome-shaped doping dependence of Tc, the superfluid density
increases with increasing doping in the lower doped regime, and reaches a maximum
around the critical doping, then decreases in the higher doped regime. In this paper,
we start from the theoretical framework of the kinetic-energy-driven superconduc-
tivity, and then provide a natural explanation to the thermodynamic properties in the
triangular-lattice cobaltate superconductors.We evaluate explicitly the internal energy,
and then qualitatively reproduced some main features of the heat-capacity and mag-
netization measurements on the triangular-lattice cobaltate superconductors [10–19].
In particular, we show that a sharp peak in the specific heat of the triangular-lattice
cobaltate superconductors appears at Tc, and then the specific heat varies exponentially
as a function of temperature for temperatures T < Tc due to the absence of the d-wave
gap nodes at the charge-carrier Fermi surface, which is much different from that in
the square-lattice cuprate superconductors [38], where the characteristic feature is the
existence of the gap nodes on the charge-carrier Fermi surface, and then the specific
heat in the square-lattice cuprate superconductors decreases with decreasing temper-
atures as some power of the temperature in the temperature range T < Tc. Moreover,
the upper critical field follows qualitatively the BCS-type temperature dependence,
and has the same dome-shaped doping dependence as Tc.

The rest of this paper is organized as follows. We present the basic formalism in
Sect. 2, and then the quantitative characteristics of the thermodynamic properties in
the triangular-lattice cobaltate superconductors are discussed in Sect. 3, where we
show that although the pairing mechanism is driven by the kinetic energy by the
exchange of spin excitations [32,35–37], the sharp peak of the specific heat in the
triangular-lattice cobaltate superconductors at Tc can be described qualitatively by
the kinetic-energy-driven d-wave BCS-like formalism. Finally, we give a summary in
Sect. 4.
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2 Formalism

In the triangular-lattice cobaltate superconductors, the characteristic feature is the
presence of the two-dimensional CoO2 plane [4–8]. In this case, a useful microscopic
model that has beenwidely used to describe the low-energy physics of the doped CoO2
plane is the t–J model on a triangular lattice [27]. This t–J model is defined through
only two competing parameters: the nearest-neighbor (NN) hopping integral t in the
kinetic-energy term, which measures the electron delocalization through the lattice,
and the NN spin–spin antiferromagnetic (AF) exchange coupling J in the magnetic-
energy part, which describes AF coupling between localized spins. In particular, the
NN hopping integral t is much larger than the AF exchange coupling constant J in
the Heisenberg term, and therefore the spin configuration is strongly rearranged due
to the effect of the charge-carrier hopping t on the spins, which leads to a strong
coupling between the charge and spin degrees of freedom of the electron. Since the
triangular-lattice cobaltate superconductors are viewed as an electron-doped Mott
insulator [4–8], this t–J model is subject to an important local constraint

∑
σ C†

lσClσ ≥
1 to avoid zero occupancy, where C†

lσ (Clσ ) is the electron creation (annihilation)
operator. In the hole-doped side, the local constraint of no double electron occupancy
has been treated properly within the fermion-spin approach [37,39,40]. However,
for an application of the fermion-spin theory to the electron-doped case, we [31,32]
should make a particle-hole transformation Clσ → f †l−σ , where f †lσ ( flσ ) is the hole

creation (annihilation) operator, and then the local constraint
∑

σ C†
lσClσ ≥ 1 without

zero occupancy in the electron-doped case is replaced by the local constraint of no
double occupancy

∑
σ f †lσ flσ ≤ 1 in the hole representation. This local constraint of

no double occupancy now can be dealt by the fermion-spin theory [37,39,40], where
the hole operators fl↑ and fl↓ are decoupled as fl↑ = a†l↑S

−
l and fl↓ = a†l↓S

+
l ,

respectively, with the charge degree of freedom of the hole together with some effects
of spin configuration rearrangements due to the presence of the doped charge carrier
itself that are represented by the spinful fermion operator alσ = e−iΦlσ al , while the
spin degree of freedomof the hole is represented by the spin operator Sl . The advantage
of this fermion-spin approach is that the local constraint of no double occupancy is
always satisfied in actual calculations.

Based on the t–J model in the fermion-spin representation, the kinetic-energy-
driven SC mechanism has been developed for the square-lattice cuprate superconduc-
tors in the doped regime without an AF long-range order (AFLRO) [35–37], where
the attractive interaction between charge carriers originates directly from the inter-
action between charge carriers and spins in the kinetic energy of the t–J model by
the exchange of spin excitations in the higher powers of the doping concentration.
This attractive interaction leads to the formation of the charge-carrier pairs with d-
wave symmetry, while the electron Cooper pairs originated from the charge-carrier
d-wave pairing state are due to the charge-spin recombination [41], and they condense
into the d-wave SC state. Furthermore, within the framework of the kinetic-energy-
driven superconductivity, the doping dependence of the thermodynamic properties in
the square-lattice cuprate superconductors has been studied [38], and then the strik-
ing behavior of the specific heat in the square-lattice cuprate superconductors is well

123



J Low Temp Phys (2016) 183:329–341 333

reproduced. The triangular-lattice cobaltate superconductors on the other hand are
the second known example of superconductivity arising from doping a Mott insulator
after the square-lattice cuprate superconductors. Although Tc in the triangular-lattice
cobaltate superconductors is much less than that in the square-lattice cuprate super-
conductors, the strong electron correlation is common for both these materials, which
suggest that these two oxide systemsmay have the same underlying SCmechanism. In
this case, the kinetic-energy-driven superconductivity developed for the square-lattice
cuprate superconductors has been generalized to the case for the triangular-lattice
cobaltate superconductors [31,32]. The present work of the discussions of the ther-
modynamic properties in the triangular-lattice cobaltate superconductors builds on
the kinetic-energy-driven SC mechanism developed in Refs. [31,32], and only a short
summary of the formalism is therefore given in the following discussions. In our previ-
ous discussions in the doped regime without AFLRO, the full charge-carrier diagonal
and off-diagonal Green’s functions of the t–J model on a triangular lattice in the
charge-carrier pairing state have been obtained explicitly as [31,32],

g(k, ω) = ZaF

(
U 2
ak

ω − Eak
+ V 2

ak

ω + Eak

)

, (1a)

�†(k, ω) = −ZaF
�̄

(a)
Zk

2Eak

(
1

ω − Eak
− 1

ω + Eak

)

, (1b)

where the charge-carrier quasiparticle coherent weight ZaF, the charge-carrier qua-
siparticle coherence factors 2U 2

ak = 1 + ξ̄k/Eak and 2V 2
ak = 1 − ξ̄k/Eak,

the charge-carrier quasiparticle energy spectrum Eak =
√

ξ̄2k+ | �̄
(a)
Zk |2, and the

charge-carrier excitation spectrum ξ̄k. In the early days of superconductivity in the
triangular-lattice cobaltate superconductors, some NMR and NQR data are consis-
tent with the case of the existence of a pair gap over the Fermi surface [8,20], while
other experimental NMR and NQR results suggest the existence of the gap nodes
[21,24]. In particular, it has been argued that only involving the pairings of charge
carriers located at the next NN sites can give rise to the nodal points of the complex
gap appearing inside the Brillouin zone [34,42]. Moreover, the nodal points of the
complex gap has been obtained theoretically by considering the interaction between
the Hubbard fermions [34]. However, although the recent experimental results [18]
obtained from the specific-heat measurements do not give unambiguous evidence for
either the presence or absence of the nodes in the energy gap, the experimental data
of the specific heat [18] are consistent with these fitted results obtained from phenom-
enological Bardeen–Cooper–Schrieffer (BCS) formalism with the d-wave symmetry
without gap nodes. Furthermore, some theoretical calculations based on the numerical
simulations indicate that the d-wave state without gap nodes is the lowest state around
the electron-doped regimewhere superconductivity appears in triangular-lattice cobal-
tate superconductors [43–45]. In particular, the recent theoretical studies based on a
large-scale dynamical cluster quantum Monte Carlo simulation [33] and a combined
cluster calculation and renormalization group approach [46] show that the d-wave
state naturally explains some SC-state properties as indicated by experiments. In this

123



334 J Low Temp Phys (2016) 183:329–341

case, we only consider the case with the d-wave pairing symmetry as our previous
discussions [32], and then the d-wave charge-carrier pair gap �̄

(a)
Zk in Eq. (1) has been

given in Ref. [32].
Since the spin part in the t–J model in the fermion-spin representation is

anisotropic away from half filling [37], two spin Green’s functions D(l − l ′, t − t ′) =
〈〈S+

l (t); S−
l ′ (t

′)〉〉 and Dz(l − l ′, t − t ′) = 〈〈Szl (t); Szl ′(t ′)〉〉 have been defined to
describe properly the spin part, and can be obtained explicitly as,

D(k, ω) = Bk

2ωk

(
1

ω − ωk
− 1

ω + ωk

)

, (2a)

Dz(k, ω) = Bzk

2ωzk

(
1

ω − ωzk
− 1

ω + ωzk

)

, (2b)

where the function Bk and spin excitation spectrum ωk in the spin Green’s function
(2a) have been given in Ref. [32], while the function Bzk = ελχ(γk −1), and the spin
excitation spectrum ωzk in the spin Green’s function (2b) is obtained as,

ω2
zk = ελ2

[

αχγk − εA1 + 1

6
αχ

]

(γk − 1), (3)

where γk = [cos kx+2 cos(kx/2) cos(
√
3ky/2)]/3, the parameters A1,λ, ε, the decou-

pling parameterα, and the spin correlation functionχ have been also given inRef. [32].
In particular, the charge-carrier quasiparticle coherent weight ZaF, the charge-carrier
pair gap parameter �̄(a), all the other order parameters, and the decoupling parameter
α have been determined by the self-consistent calculation [32]. In spite of the pair-
ing mechanism driven by the kinetic energy by the exchange of spin excitations, the
results in Eq. (1) are the standard BCS expressions for a d-wave charge-carrier pair
state.

Now we turn to evaluate the internal energy of the triangular-lattice cobaltate
superconductors. The internal energy in the charge-spin separation fermion-spin rep-
resentation can be expressed as [38] Utotal(T ) = Ucharge(T ) + Uspin(T ), where
Ucharge(T ) and Uspin(T ) are the corresponding contributions from charge carriers
and spins, respectively, and can be obtained in terms of the charge-carrier spec-
tral function Acharge(k, ω, T ) = −2Img(k, ω), and the spin spectral functions

Aspin(k, ω, T ) = −2ImD(k, ω) and A(z)
spin(k, ω, T ) = −2ImDz(k, ω). Following

the previous work for the case in the square-lattice cuprate superconductors [38], it is
straightforward to find the internal energy of the triangular-lattice cobaltate supercon-
ductors in the SC state as,

U (s)
total(T ) = − ZaF

N

∑

k

[

Eaktanh

(
1

2
βEak

)]

+ ZaF

N

∑

k

ξ̄k + 6Jeff(χ + χz), (4)

where Jeff = (1 − δ)2 J with the doping concentration δ, while the spin correlation
function χz has been given in Ref. [32]. In the normal state, the charge-carrier pair
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gap �̄(a) = 0, and in this case, the SC-state internal energy (4) can be reduced to the
normal-state case as,

U (n)
total(T ) = − ZaF

N

∑

k

[

ξ̄ktanh

(
1

2
βξ̄k

)]

+ ZaF

N

∑

k

ξ̄k + 6Jeff(χ + χz). (5)

3 Thermodynamic Properties

We are now ready to discuss the thermodynamic properties in the triangular-lattice
cobaltate superconductors. The charge-carrier pair gap parameter �̄(a) is one of the
characteristic parameters in the triangular-lattice cobaltate superconductors, which
incorporates both the pairing force and charge-carrier pair order parameter, and there-
fore measures the strength of the binding of two charge carriers into a charge-carrier
pair. In particular, the charge-carrier pair order parameter and the charge-carrier pair
macroscopic wave functions in the triangular-lattice cobaltate superconductors are the
same within the framework of the kinetic-energy-driven SC mechanism [37], i.e., the
charge-carrier pair order parameter is a magnified version of the charge-carrier pair
macroscopicwave functions. For the convenience in the following discussions, we plot
the charge-carrier pair gap parameter �̄(a) as a function of temperature at the doping
concentration δ = 0.15 for parameter t/J = −2.5 in Fig. 1. It is shown clearly that
the charge-carrier pair gap parameter follows qualitatively a BCS-type temperature
dependence, i.e., it decreases with increasing temperatures, and eventually vanishes
at Tc.

3.1 Specific Heat

One of the characteristics quantities in the thermodynamic properties is the specific
heat, which can be obtained by evaluating the temperature-derivative of the internal
energy as,

C (s)
v (T ) = dU (s)(T )

dT
= γs(T )T, (6a)

Fig. 1 The charge-carrier pair
gap parameter as a function of
temperature at δ = 0.15 for
t/J = −2.5
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Fig. 2 The specific heat as a
function of temperature at
δ = 0.20 for t/J = −2.5 and
J = 50meV. The dashed line is
obtained from a numerical fit
C(s)
v /C(n)

v = A exp[−B�̄(a)

(T )/T ], with A ∼ 10.69 and
B ∼ 270.65. Inset the
corresponding experimental data
of NaxCoO2 · yH2O taken from
Ref. [18]

C (n)
v (T ) = dU (n)(T )

dT
= γn(T )T, (6b)

in the SC state and normal state, respectively, where γs(T ) and γn(T ) are the tem-
perature dependence of the specific-heat coefficients in the SC state and normal state,
respectively. In Fig. 2, we plot the specific heat C (s)

v /C (n)
v (solid line) as a function

of temperature at δ = 0.20 for t/J = −2.5 and J = 50meV. For comparison,
the corresponding experimental result [18] of NaxCoO2 · yH2O is also shown in
Fig. 2 (inset). Apparently, the main feature of the specific heat observed experi-
mentally on the triangular-lattice cobaltate superconductors [10–19] is qualitatively
reproduced. As can be seen from Fig. 2, the specific-heat anomaly (a jump) at Tc
appears. The SC transition is reflected by a sharp peak in the specific heat at Tc,
however, the magnitude of the specific heat decreases dramatically with decreasing
temperatures for the temperatures T < Tc. Moreover, the calculated result of the
specific-heat difference �Cv(Tc)/C

(n)
v (Tc) = [C (s)

v (Tc) − C (n)
v (Tc)]/C (n)

v (Tc) = 4.7
for the discontinuity in the specific heat at Tc, which is roughly consistent with the
experimental data [19] �Cv(Tc)/C

(n)
v (Tc) ≈ 2.08 observed on NaxCoO2 · yH2O.

For a better understanding of the physical properties of the specific heat in the
triangular-lattice superconductors, we have fitted our present theoretical result of
the specific heat for the temperatures T < Tc, and the fitted result is also plotted
in Fig. 2 (dashed line), where we found that C (s)

v /C (n)
v varies exponentially as a

function of temperature (C (s)
v /C (n)

v = A exp[−B�̄(a)(T )/T ] with A ∼ 10.69 and
B ∼ 270.65), which is an expected result in the case without the d-wave gap nodes
at the charge-carrier Fermi surface, and is in qualitative agreement with experimental
data [10–19]. However, this result in the triangular-lattice superconductors is much
different from that in the square-lattice cuprate superconductors, where the charac-
teristic feature is the existence of the gap nodes on the charge-carrier Fermi surface,
and then the specific heat of the square-lattice cuprate superconductors decreases
with decreasing temperatures as some power of the temperature for the temperatures
T < Tc.

123



J Low Temp Phys (2016) 183:329–341 337

Fig. 3 The condensation energy
as a function of temperature at
δ = 0.20 for t/J = −2.5 and
J = 50meV

3.2 Condensation Energy

In the framework of the kinetic-energy-driven SC mechanism [31,32], the exchanged
bosons are spin excitations that act like a bosonic glue to hold the charge-carrier pairs
together, and then these charge-carrier pairs (then electron pairs) condense into the SC
state. As a consequence, the charge-carrier pairs in the triangular-lattice cobaltate
superconductors are always related to lower the total free energy. The condensa-
tion energy Econd(T ) on the other hand is defined as the energy difference between
the normal-state free energy, extrapolated to zero temperature, and the SC-state free
energy,

Econd(T ) =
[
U (n)(T ) − T S(n)(T )

]
−

[
U (s)(T ) − T S(s)(T )

]
, (7)

where the related entropy of the system is evaluated from the specific-heat coefficient
in Eq. (6) as,

S(a)(T ) =
T∫

0

γa(T
′)dT ′, (8)

where a = s, n referring to the SC state and normal state, respectively. We have
made a calculation for the condensation energy (7), and the result of Econd(T ) as a
function of temperature at δ = 0.20 for t/J = −2.5 and J = 50meV is plotted in
Fig. 3. In comparison with the result of the temperature dependence of the charge-
carrier pair gap parameter shown in Fig. 1, we therefore find that in spite of the
pairing mechanism driven by the kinetic energy by the exchange of spin excitations,
the condensation energy of the triangular-lattice cobaltate superconductors follows
qualitatively a BCS-type temperature dependence.

3.3 Upper Critical Field

A quantity which is directly related to the condensation energy Econd(T ) in Eq. (7) is
the upper critical field Bc(T ),

123



338 J Low Temp Phys (2016) 183:329–341

Fig. 4 The upper critical field
as a function of doping with
T = 0.0002J for t/J = −2.5
and J = 50meV

1

2μ0
B2
c (T ) = Econd(T ). (9)

This upper critical field Bc(T ) is a fundamental parameter whose variation as a
function of doping and temperature provides important information crucial to under-
standing the details of the SC state. In Fig. 4, we plot the upper critical field Bc(T ) as
a function of doping with T = 0.0002J for t/J = −2.5 and J = 50meV. It is shown
clearly that the upper critical field takes a dome-shaped doping dependence with the
underdoped and overdoped regimes on each side of the optimal doping, where Bc(T )

reaches its maximum. Moreover, the calculated upper critical field at the optimal dop-
ing is Bc ≈ 6.1T , which is not too far from the range Bc ≈ 1.7T ∼ 9T estimated
experimentally for different samples of NaxCoO2 · yH2O [14–17]. For a supercon-
ductor, the upper critical field is defined as the critical magnetic field that destroys
the SC state at zero temperature, which therefore means that the upper critical field
also measures the strength of the binding of charge carriers into the charge-carrier
pairs. In this case, the domelike shape of the doping dependence of Bc(T ) is a natural
consequence of the domelike shape of the doping dependence of �̄(a) and Tc as shown
in Ref. [32]. To further understand the intrinsic property of the upper critical field
Bc(T ) in the triangular-lattice cobaltate superconductors, we have also performed a
calculation for Bc(T ) at different temperatures, and the result of Bc(T ) as a function
of temperature at δ = 0.20 for t/J = −2.5 and J = 50meV is plotted in Fig. 5
in comparison with the corresponding experimental result [17] of NaxCoO2 · yH2O
(inset). It is thus shown that Bc(T ) varies moderately with initial slope. In particular,
as in the case of the temperature dependence of the condensation energy shown in Fig.
3, the upper critical field Bc(T ) also follows qualitatively the BCS-type temperature
dependence, i.e., it decreases with increasing temperature, and vanishes at Tc, which
is also qualitatively consistent with the experimental results [14–17].

The coherence length ζ(T ) also is one of the basic SC parameters of the triangular-
lattice cobaltate superconductors, and is directly associated with the upper critical
field as ζ 2(T ) = Φ0/[2πBc(T )], where Φ0 = hc/(2e) is the magnetic flux quan-
tum. In Fig. 6, we plot the coherence length ζ(T ) as a function of doping with
T = 0.0002J for t/J = −2.5 and J = 50meV. Since the coherence length
ζ(T ) is inversely proportional to the upper critical field Bc(T ), the coherence length
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Fig. 5 The upper critical field
as a function of temperature at
δ = 0.20 for t/J = −2.5 and
J = 50meV. Insets the
corresponding experimental data
of NaxCoO2 · yH2O taken from
Ref. [17]

Fig. 6 The coherence length as
a function of doping at
T = 0.0002J for t/J = −2.5
and J = 50meV

ζ(T ) in the triangular-lattice cobaltate superconductors reaches a minimum around
the optimal doping, then grows in both the underdoped and overdoped regimes. In
particular, at the optimal doping, the anticipated coherence length ζopt ≈ 7.1nm
approximately matches the coherence length ζopt ≈ 4.4nm observed in the optimally
doped NaxCoO2 · yH2O [14]. This coherence length ζopt ≈ 7.1nm at the optimal
doping estimated from the upper critical field using the Ginzburg–Landau expression
also is qualitatively consistent with that obtained based on the microscopic calcula-
tion ζopt = h̄vF/(π�(a)) ≈ 7.94nm, where vF = h̄−1∂ξk/∂k|kF is the charge-carrier
velocity at the Fermi surface. This relatively short coherence length is surprising for
a superconductor with such a low Tc, but is consistent with the narrow bandwidth in
the triangular-lattice superconductors [17], since the charge-carrier quasiparticle spec-

trum Eak =
√

ξ̄2k+ | �̄aZ(k) |2 in the full charge-carrier diagonal Green’s function
(1a) and off-diagonal Green’s function (1b) has a narrow bandwidth Wa ∼ 2J .

4 Conclusions

Within the framework of the kinetic-energy-driven SCmechanism, we have discussed
the doping dependence of the thermodynamic properties in the triangular-lattice cobal-
tate superconductors. We show that the specific-heat anomaly (a jump) appears at Tc,
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and then the specific heat varies exponentially as a function of temperature for tem-
peratures T < Tc due to the absence of d-wave gap nodes at the charge-carrier Fermi
surface, which is much different from that in the square-lattice cuprate superconduc-
tors [38], where the characteristic feature is the existence of the gap nodes on the
charge-carrier Fermi surface, and then the specific heat of the square-lattice cuprate
superconductors decreases with decreasing temperatures as some power of the tem-
perature in the temperature range T < Tc. On the other hand, both the condensation
energy and the upper critical field in the triangular-lattice cobaltate superconductors
follow qualitatively the BCS-type temperature dependence. In particular, in analogy
to the dome-shaped doping dependence of Tc, the maximal upper critical field occurs
around the optimal doping, and then decreases in both underdoped and overdoped
regimes. Incorporating the present result [38] with that obtained in the square-lattice
cuprate superconductors, it is thus shown that the dome-shaped doping dependence
of the upper critical field is a universal feature in a doped Mott insulator, and it does
not depend on the details of the geometrical spin frustration. Since the knowledge
of the thermodynamic properties in the triangular-lattice cobaltate superconductors is
of considerable importance as a test for theories of superconductivity, the qualitative
agreement between the present theoretical results and experimental data also provides
an important confirmation of the nature of the SC phase of the triangular-lattice cobal-
tate superconductors as a conventional BCS-like with d-wave symmetry, although the
pair mechanism is driven by the kinetic energy by the exchange of spin excitations.
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