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Abstract Insulating columnar inclusions in a type II chiral px ± i py superconductor
are shown to affect essentially the electronic structure of pinned vortices, and, as a
consequence, the scanning tunneling microscopy (STM) patterns and the microwave
response in the vortex phase. The structure of the anomalous spectral branch analyzed
within the Bogolubov–de Gennes theory is found to depend strongly on the mutual
orientation of the angular momenta of the center of mass and the relativemotion of two
electrons in the Cooper pair. This dependence reveals itself in the nontrivial behavior
of the Hall part of the microwave response and difference of the STM patterns for
opposite magnetic field orientations.

Keywords p-Wave superconductors · Vortex · Pinning · Quasiparticles
1 Introduction

The experimental search for superconducting compounds with unconventional order
parameters remains a “hot topic” in the condensedmatter community during the recent
decades. Such activity is certainly accompanied by a lot of theoretical works aimed
to suggest reliable tests probing the gap anisotropy at the Fermi surface. These tests
are usually based either on the presence of gap nodes at the Fermi surface or on the
order parameter peculiar phase structure in the momentum space. The latter group of
suggestions is especially effective for the detection of the so-called chiral superconduc-
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tivity which could be realized, e.g., in Sr2RuO4 [1–3] or heavy-fermions compounds
[4,5]. The Cooper pairs in such superconductors presumably have an internal orbital
momentum with a projection lz = ±1 on the crystal anisotropy axis. Such a super-
conducting state breaks the time reversal symmetry as it was observed experimentally
[1–3]. Although the compounds listed above are good candidates for p-wave con-
ductivity [6], this type of pairing has not been unambiguously identified in any real
material, which increases the importance of various suggestions to detect the p-wave
superconductivity.

The nontrivial phase structure of the gap in the momentum space can reveal itself in
the presence of an external magnetic field which introduces vortex lines in the super-
conducting sample. The resulting inhomogeneous superconducting state can reveal
many unusual magnetic and transport properties originated from the interplay between
the nonzero vorticities in both the momentum and coordinate spaces. This interplay is
known to be responsible for the specific structure of quasiparticle subgap states inside
the vortex cores investigated, e.g., in Ref. [7,8]. Unfortunately, the key difference
in the quasiparticle spectra of the vortex core states from the ones obtained within
the standard Caroli–de Gennes–Matricon (CdGM) solution appears only beyond the
quasiclassical consideration. Namely, the anisotropic gap structure can shift the qua-
siparticle energy quantization rules causing the changes in the minigap value. Taking
the simplest gap in the form px ± i py , we can get a complete suppression of the
minigap [7,8]. The resulting zero energy mode appears to be extremely robust to the
perturbations such as the ones caused by scattering centers, etc. [7,8]. However, the
interlevel energy distance inside the cores appears to be pretty small:∼ �2

0/EF, where
�0 is the superconducting gap magnitude and EF is the Fermi energy. The observation
of these discrete levels assumes, thus, the use of the experimental techniques with a
high energy resolution. The existing scanning tunneling microscopy (STM)/scanning
tunneling spectroscopy (STS) data, for instance, cannot provide the reliable evidence
for the minigap existence.

In this paper, we suggest an alternative way to detect the chiral superconductivity
in the vortex state by studying the distinctive features of the vortex electronic structure
in the presence of rather large columnar defects parallel to the applied magnetic field
so that the vortex line is pinned over the entire length. Such defects can be created arti-
ficially by proton or heavy ion irradiation, by normal particles and nanorods inclusion
and by introducing arrays of submicrometer holes. The quasiparticle spectrum in the
vortex trapped by the columnar defect was studied in the Refs. [9] and [10] for the sim-
plest case of conventional s-wave superconductor. It was shown that the defect leads
to a significant minigap increase up to the values of the order �0. One can expect that
for unconventional superconductors, the physical picture of the defect influence on the
vortex states can becomemuchmore complicated and spectacular since in this case the
subgap states bound to the defects or the sample surface can appear even without any
vortices [11,12]. These edge states should interact with the vortex-bound states, thus
changing the resulting spectrum significantly. The hybridization of these quasiparticle
modes has been studied previously for a particular case of a mesoscopic disk trapping
a singly quantized vortex [13,14]. It was shown that the vortex and antivortex spectra
differ qualitatively due to the interplay between the internal vorticity in themomentum
space and the vorticity in the coordinate space associated with the vortex.

123



344 J Low Temp Phys (2016) 183:342–358

Fig. 1 Quasiparticle specular reflection at the defect surface. Here s and b are the coordinates chosen along
and perpendicular to the classical trajectory

Besides its fundamental interest, the problem of pinned vortex spectrum in type II
superconductors with anisotropic gap is particularly important for understanding the
nature of dissipation in such compounds. Indeed, vortex pinning affects the vortex
motion and, thus, strongly modifies the superconductor transport properties in the flux
flow regime. The microscopic consideration of pinned vortex matter should become
important, of course, either at low temperatures well below the critical temperature
Tc or for defect dimensions smaller than the coherence length ξ (see discussion in
Refs. [15–19]). The opposite limits corresponding to the temperature range close to
the critical temperature or large defects can be perfectly described within phenomeno-
logical approaches [20–25].

In this paper, we do not consider, of course, the full problem of collective pin-
ning which can be resolved only taking account of the vortex–vortex interaction [26].
Instead we focus on the consideration of the individual pinned vortex and study the
modification of the local density of states (LDOS) pattern and microwave response
caused by the columnar defect. We calculate these quantities on the basis of the quasi-
particle spectrum analysis for a pinned vortex. Assuming the columnar defect to have
the form of an insulating cylinder of a finite radius R < ξ (see Fig. 1), we study the
transformation of the anomalous energy branches originated from the normal reflec-
tion at the defect boundary. Let us elucidate the key point of our work and start from
a qualitative discussion of the spectrum transformation. We analyze the spectrum
within the one-dimensional quasiclassical quantum mechanics of the electrons and
holes propagating along the classical trajectories. Each trajectory is defined by an
impact parameter b and a trajectory orientation angle θk . We assume the reflection to
be specular and the trajectory experiencing the break at the defect consists of two rays
with the same impact parameters and different θk values satisfying the Snellius law.
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According to the general theory [27], the quasiparticle spectrum at each trajectory is
determined by the order parameter phase difference δϕ at the ends of the trajectory.
This phase difference has two contributions arising from the vorticities in the coordi-
nate and momentum spaces: δϕ = δϕr + δϕk . The first term δϕr = ∓2 arcsin(b/R)

originates from the vortex phase in the coordinate space and the signs − and + corre-
spond to opposite vorticities. The second term results from the order parameter phase
circulation in the momentum space and for the simplest choice of the chiral p-wave
gap function � ∝ eiθk this contribution takes the form: δϕk = −2 arcsin(b/R) − π .
Using the standard expression εJ (b) = −�0 cos(δϕ/2) sign[sin(δϕ/2)] for the sub-
gap quasiparticle energy level in a single mode Josephson junction [27] we find:
εJ (b) = −2�0 sign

(
1 − 2b2/R2

)
b/R

√
1 − b2/R2 and εJ (b) = 0 for the coincid-

ing and opposite vorticities in the coordinate and the momentum spaces, respectively.
Let us denote these vortices as N+ vortex and N− vortex, correspondingly. The above
result illustrates the qualitative difference between the chiral and conventional super-
conductors. For the latter case, the total phase difference δϕ is completely determined
by δϕr and, thus, the change of the vorticity sign cannot change the energy levels.

The quasiparticles with large impact parameters |b| > R do not experience the
reflection at the defect surface, so the spectrum in this case should be the same
as the CdGM spectrum. Provided this crossover occurs at small b � ξ we get
εCdGM (b) ≈ �0b/ξ while in the large b � ξ limit the spectrum saturates at the
gap value [28]. The above reasoning cannot give this crossover to the CdGM branch
because theDoppler shift associatedwith the superfluid velocity has been omitted.One
can expect that in the limit R � ξ and b < R, this Doppler shift contribution cannot
exceed the value of the CdGM energy ∼ �0b/ξ . Thus, for N− vortices, the spectrum
should only slightly deviate from the Fermi level being close to the CdGM solution.
In the case of N+ vortices, the Doppler shift correction is small comparing to the term
−2�0b/R introduced above. The negative sign in the latter expression results in the
important spectrum peculiarity: the inversion of the anomalous branch slope for the
N+ vortex pinned by the defect comparing to the slope for a free vortex. Note that this
inversion effect has been overlooked in numerical calculations presented in Ref. [29].
The change in the slope sign can cause rather drastic changes in the measurable char-
acteristics. In particular, according to the spectral flow theory [30], it is the behavior
of the anomalous branch which determines the high-frequency conductivity and Kerr
effect. The qualitative behavior of the Kerr angle dependence on the magnetic field is
discussed.

The rest of the paper is organized as follows. In Sect. 2, the basic equations used for
the spectrum calculation are introduced. In Sect. 3, we find the quasiparticle spectrum
for a single-quantum vortex trapped by a columnar defect. Section 4 is devoted to the
analysis of the local density of states (DOS). In the next Sect. 5, we discuss the defect
influence on the high-frequency field response.

2 Model

We consider a columnar defect as an insulator cylinder of the radius R. The magnetic
field B is parallel to the cylinder axis z, and the vortex axis coincides with the cylinder
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axis. Thus, the system is invariant with respect to the translations along the z-axis and
the rotations around it. For simplicity, we restrict ourselves with a two-dimensional
case and consider a motion of quasiparticles only in the (x, y) plane. The excitation
spectrum can be obtained from the Bogolubov–de Gennes equations (BdG) written
for a two-component quasiparticle wave function ψ(r) = (u, v):

− h̄2

2m

(
∇2 + k2F

)
τ3ψ + (

�̂(r)τ+ + h.c.
)
ψ = εψ , (1)

where τ± = (τ1 ± iτ2)/2, τ1, τ2, and τ3 are the Pauli matrices in the Nambu space,
h̄kF is the Fermi momentum, and �̂ is the superconducting gap operator. Considering
an extreme type II superconductor with a large London penetration depth λ � ξ , we
neglect the vector potential of the magnetic field Aθ ≈ Br/2 because its contribution
to the superfluid velocity A/Φ0 ∝ r/λ2 is small compared to the gradient of the
order parameter phase ∝ 1/r [31]. Here r and θ are the polar coordinates and Φ0 is
the magnetic flux quantum. We assume that the quasiparticle wavefunction does not
penetrate the defect and imply the zero boundary conditions at the defect surface:

ψ(R, θ) = 0 . (2)

2.1 Quasiclassical Approach

The superconducting gap �̂ varies at the spatial scale ξ which is much greater than the
atomic scale k−1

F in all known superconductors. Hence one can solve the system (1)
within the quasiclassical approximation.We follow the approach described in Refs. [9,
30] and introduce the momentum representation:

ψ(r) =
∫

d2k

(2π)2
eikrψ(k) , (3)

where k = k(cos θk, sin θk) = kk0. The unit vector k0 which depends on the angle θk
determines the trajectory direction in the (x, y) plane. We assume that the solutions
of the Eq. (1) correspond to the absolute momentum values close to h̄kF: k = kF + q
(q � kF). Using the Fourier transformation

ψ(k) = 1

kF

+∞∫

−∞
ds ei(kF−k)sg(s, θk), (4)

one can finally express the wavefunction in the coordinate space ψ(r) through the
function g(s, θk):

ψ(r, θ) =
2π∫

0

eikFr cos(θk−θ)g [r cos(θk − θ), θk]
dθk
2π

. (5)
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To obtain the quasiclassical equation along the quasiparticle trajectory, we introduce
an angular eikonal:

g(s, θk) = ei S(θk )ψ(s, θk) , (6)

assuming ψ to be a slowly varying function of θk . Quasiparticles propagating along
the trajectories are characterized by the angular momentum μ:

μ = −kFb = ∂S

∂θk
. (7)

Here we introduce the impact parameter b which determines the classical trajectory
alongwith the θk angle. The angularmomentum is conserved due to the axial symmetry
of the system.

Substituting (5) and (6) into (1), one can obtain the equation for ψ at the classical
trajectory (see Fig. 1):

− i h̄vFτ3
∂ψ

∂s
+ (

τ+�(r, θk) + h.c.
)
ψ = εψ , (8)

wheremvF = h̄kF,� is the quasiclassical formof the gapoperator, and s is a coordinate
along the classical trajectory. The transition from the (s, b) coordinates (see Fig. 1) to
the usual cartesian (x, y) coordinates can be performed as follows:

x = s cos θk − b sin θk, y = s sin θk + b cos θk . (9)

Further consideration requires an explicit expression of the gap operator �̂.
In the homogeneous case, the gap operator for the superconductors with spin-triplet

coupling is determined by a momentum-dependent vector d [32]:

�̂(k) = −iσy(d(k), σ )

=
(−dx (k) − idy(k) dz(k)

dz(k) dx (k) − idy(k)

)
. (10)

We consider a superconductor with dx = dy = 0 and dz ∝ k̂x + i k̂y, k̂x − i k̂y . Such
an order parameter possibly describes a superconducting state in Sr2RuO4 [33] and
heavy-fermion compounds [34]. Separating the spin dependence and generalizing the
operator for the inhomogeneous case, we get the following expression for �:

�̂ = �0

2kF
({η+(r), −i∂+} + {η−(r), −i∂−}) , (11)

where �0 is a gap magnitude, η±(r) are the coordinate-depending order parame-
ters, which describe the Cooper pairs with the opposite angular momenta directions,
{a, b} = ab + ba is an anticommutator and ∂± = ∂/∂x ± i∂/∂y. Two degenerate
ground states are described by the following order parameters: η+ = 1, η− = 0 and
η− = 1, η+ = 0. In a general inhomogeneous case, both order parameters are nonzero,
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while usually far from the topological defects, one of them is suppressed. The areas
where only one order parameter is nonzero are called chiral domains.

One can find the quasiclassical form of �̂, neglecting the terms of the order of
(kFξ)−1:

�(r, θk) = �0

(
η+(r)eiθk + η−(r)e−iθk

)
. (12)

Hence the Eq. (8) takes the following form:

− iξτ3
∂ψ

∂s
+ (D(r, θk)τ+ + h.c.) ψ = εψ , (13)

where ξ = h̄vF/�0 is the coherence length and D(r, θk) = η+(r) exp(iθk) +
η−(r) exp(−iθk), ε = ε/�0.

The axially symmetric vortex solutions are described by the following order para-
meters [35,36]:

η±(r) = f (m)
± (r)ei(m∓1)θ , (14)

where m is the sum of the winding numbers in the coordinate and the momentum
spaces. One of the functions f± saturates at unity at large r � ξ and another one
vanishes far from the core. The magnetic flux carried by the vortex is determined by
the winding number of the dominating order parameter component, i.e., it is equal to
m + 1 flux quanta for a vortex trapped in the η− domain and m − 1 flux quanta for
a vortex in the η+ domain. Using (9) and (14), we find the order parameter profile at
the classical trajectory:

Db(s, θk) = eimθk
∑

f (m)
±

(√
s2 + b2

) (
s + ib√
s2 + b2

)m∓1

. (15)

We can separate the θk dependence, introducing a new function:

ψ = ei(mτ3/2)θk ψ̃ (16)

and the Eq. (13) becomes

− iξτ3
∂ψ̃

∂s
+ (

D̃b(s)τ+ + h.c.
)
ψ̃ = εψ̃, (17)

where D̃b(s) = exp(−imθk)Db(s, θk). For definiteness, we consider the η+ domain,
thus, the values m = 2 and m = 0 correspond to N+ and N− vortices, respectively.

The true quasiparticle wavefunction ψ(k, θk) must be, of course, a single-valued
function of θk . This requirement imposes a certain quantization rule: the value of
μ +m/2 must be an integer number. Since m is even for the singly quantized vortex,
the angular momentum μ is an integer (cf. Ref. [7,8]). It means that defect does not
change the quantization rule and does not shift the zero energy level.

In this paper, we do not solve the gap equation self-consistently restricting ourselves
to the consideration of several model profiles of the radial dependence of the gap
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function. Such consideration is justified by the fact that the main factor affecting the
quasiparticle energy branches comes from the order parameter phase difference at
the ends of the classical trajectories and the Doppler shift caused by the superfluid
velocity. We claim that the qualitative behavior of the spectral branches is only weakly
influenced by the specific shape of the profile of the order parameter absolute value.
In order to check this statement, we compared subgap spectra for two different model
profiles of the order parameters. In the first one, we assumed the order parameters to
behave similarly to the free vortices:

f+ = r
√
r2 + ξ2

, f− = 0 . (18)

The second model form assumes the order parameter suppression near the defects or
the sample surface [37,38]:

f+ = tanh

(
r − R

ξ

)
, f− = 0 , (19)

where r > R. As we expected, the qualitative behavior of the subgap spectral branches
appears to be robust to the changes in the order parameter profile.

2.2 Boundary Conditions

Now we need to rewrite the boundary condition (2) imposed on the quasiparticle
wavefunction in the quasiclassical form. Using the expressions (5) and (16), we obtain

2π∫

0

eikFR cosα+iμαeimτ3α/2ψ̃ (R cosα) dθk = 0 (20)

Supposing the argument of the first exponent to vary rather fast we can use the station-
ary phasemethod in order to evaluate the integral. The stationary phase points are given
by the equation sin α = μ/kFR = −b/R. This equation has no solutions if the impact
parameter is greater than the defect radius. It means that the integral (20) is negligible
and no boundary conditions are required because the trajectory does not hit the defect.
In the opposite case |b| < R, there are two stationary angles α1 = − arcsin(b/R)

and α2 = π − α1 that correspond to the incident and specularly reflected classical
trajectories. The sum of the two contributions provides the boundary condition:

eiϕ0ψ̃(s0) = e−iϕ0ψ̃(−s0) , (21)

where s0 = √
R2 − b2 and

ϕ0 = kFs0 + (μ + mτ3/2)(α1 − α2)/2 + π/4 .
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3 Excitation Spectrum

3.1 Large Impact Parameters |b| > R

In this case, the trajectory does not hit the defect and does not experience any reflection,
thus, the spectrum should be similar to the standard CdGM solution [28].

Here we find spectrum and wave functions considering the imaginary part of D̃ as
a perturbation [39,40]. Neglecting the corresponding part in (17), we find

− iξτ3
∂ψ̃

∂s
+ τ1ReD̃b(s)ψ̃ = εψ̃ . (22)

This equation has a zero eigenvalue with the following eigenfunction:

ψ̃b = 1√
2Ib

(
i
1

)
e−Kb(s) , (23)

where

Kb(s) = 1

ξ

s∫

0

ReD̃b(s
′) ds′, Ib =

+∞∫

−∞
e−2Kb(s) ds .

The first-order perturbation theory yields the following excitation spectrum:

εb = 1

Ib

+∞∫

−∞
Im D̃b(s)e

−2Kb(s) ds . (24)

3.2 Small Impact Parameters |b| < R

In this case, the quasiparticle experiences reflection from the cylinder surface which
modifies the spectrum. In order to solve the Eq. (17), we have to take into account the
boundary conditions (21), so we introduce the function:

Ψ (s) =
{
e+iϕ0ψ̃(s), s > 0
e−iϕ0ψ̃(s), s < 0

(25)

Due to the boundary condition (21), Ψ (s0) = Ψ (−s0). The new function satisfies the
following equation:

− iξτ3
∂Ψ

∂s
+ (τ+Gb(s) + h.c.) Ψ = εΨ , (26)

where Gb(s) = eiφ sign s D̃b(s) and φ = m(α1 − α2)/2. The Eq. (26) is similar to a
quasiclassical equation describing a Josephson junction: the order parameter is con-
stant if s → ±∞. Assuming such step-like form of the order parameter along the
trajectory, we find the energy [27]:
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ε = χ cos(φ + π/2) = −χ sin φ , (27)

where χ = sign (cosφ). The energy depends only on the order parameter phase dif-
ference on the trajectory ends. The additional phase difference π arises from the order
parameter symmetry property Gb(s) = −G∗

b(s). The above approximate solution can
be, of course, improved if we take account of the Doppler shift of quasiparticle energy
caused by the superflow around the core. Such improvement is particularly important
for the case of N− vortex when the expression (27) yields ε = 0 for all impact para-
meters and, thus, does not allow to get the correct slope of the anomalous spectral
branch.

We can apply the perturbation theory used above in order to obtain a more precise
solution. First we neglect the imaginary part of G and obtain the wave functions
corresponding to the zero energy ε = 0:

Ψb(s) = 1√
2Ib

(
iχ
1

)
e−Kb(s), s > s0 , (28)

where

Kb(s) = χ

ξ

s∫

s0

ReGb(s
′) ds′, Ib(s) = 2

+∞∫

s0

e−2Kb(s) ds .

The eigenfunction is even, Ψb(s) = Ψb(−s). This localized solution can be used as
a zero-order approximation for the wave function. Within the first-order perturbation
theory, we find the spectrum:

εb = 2χ

Ib

+∞∫

s0

ImGb(s)e
−2Kb(s) ds . (29)

The behavior of the subgap spectral branches found within this perturbation procedure
is illustrated in Fig. 2a, b for N+ and N− vortices, respectively. To verify the approx-
imate solution, we have also solved the quasiclassical equations (17) numerically.
Hereafter we show the results for a model form of the order parameters given by the
expression (19). The difference between the spectrum for this profile and the profile
defined by the expression (18) results in a minor change of the slope of the spectral
branches. The results of numerical calculations shown in Fig. 2 demonstrate a good
coincidence with the ones obtained using the perturbation approach except the ener-
gies close to the superconducting gap �0. The failure of the perturbation procedure
for the N+ vortex arises from the divergence of the wave function (28) localization
radius at the points μ = ±kFR/

√
2. At these points, the analytical solution marked

as blue-dashed lines experiences a break which is shown in Fig. 2a by blue- dotted
lines. The sharpness of the features at the points μ = ±kFR is an artifact of the qua-
siclassical approach. These peculiarities should be slightly smoothed out at the scale
of μ ∼ 1 if one takes the diffraction effects into account.

The spectrumof the N− vortex does not differ qualitatively from theCdGMsolution
(see Fig. 2b). In this vortex, the order parameter vorticity in r-space is compensated by
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(a) (b)

Fig. 2 Quasiparticle spectrum for two vortex types found from the solution of the quasiclassical Eq. (17).
The numerical solution is shown by the solid red lines, the dashed blue lines correspond to the results of
perturbation theory, the black dotted line is the CdGM branch. The defect radius is R = 0.4ξ , (kFξ)−1 =
0.06, μ = −kFb. The blue vertical dotted lines in the panel (a) correspond to the values μ = ±kFR/

√
2

(Color figure online)

its chirality in k-space and the phase difference at the ends of every classical trajectory
is always equal to π . All the changes result from the order parameter suppression at
the scale of ξ near the defect. Thus, we see that this suppression does not cause any
qualitative changes in the spectrum.

In opposite, for the N+ vortex, the phase difference at the ends of classical trajectory
causes a significant spectrum modification even for small impact parameters (see
Fig. 2a). As a result, the subgap spectrum consists of three branches. Within the
perturbation approach, these branches reveal themselves in the spectrum discontinuity
at the pointsb = ±R/

√
2,where perturbation theory is not applicable.One canobserve

this energy discontinuity even in the simplified expression (27) where χ changes sign
at the points b = ±R/

√
2. There are two branches which transform into the CdGM-

like branch at large |b| > R and approach the superconducting gap at small b. The
similar spectral branches have been observed earlier in the spectrum of a pinned vortex
in a s-wave superconductor [9]. In addition to these branches, there is an almost linear
branch that goes through the origin with the slope inversed with respect to the CdGM
solution (cf. the introductory section). We propose that this branch corresponds to the
edge states bound to the surface of the unconventional superconductor. The spectrum
of these surface states can be easily found within the quasiclassical approach solving
the Eq. (26) with D = exp(iθk)which corresponds to the homogeneous chiral domain.
Performing the same calculations as we had done for a vortex, we obtain the following
spectrum:

εb =
{− b

R , |b| < R
− sign b, |b| > R

. (30)
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Fig. 3 Comparison of the subgap spectral branches (red lines) in the N+ vortex with the ones found in
Ref. [29] from numerical simulations on the basis of BdG theory (blue-dashed lines) (Color figure online)

Note that this simple form of the spectrum does not take into account the order
parameter suppression at the defect surface. The improved description accounting
for this suppression results in a slight modification of the spectral branch slope. This
quasiparticle spectrum is close to the anomalous spectrum branch in Fig. 2a, so we can
claim that this branch corresponds to the surface states. The spectrum of quasiparticles
in the N− vortex does not contain the branch of the edge states and, thus, the N−
vortex suppresses the edge states on not very large defects R � ξ . In the opposite
limit R � ξ , we can expect that the spectra of quasiparticles for both vortices are
similar to the spectra of the defect, because the superfluid velocity decays as 1/r and
the major contribution to the quasiparticle energy arises from the internal chirality of
the superconductor.

The anomalous branch with the inverse slope has been overlooked by the authors
of Ref. [29]. The results of their numerical calculations are shown in Fig. 3. Note that
at large angular momenta, the spectrum found in Ref. [29] transforms into the CdGM
solution as expected. Our solution shows the similar behavior at large momenta but
the spectrum is shifted because of the suppression of the order parameter.

The spectrum is certainly sensitive to the type of the quasiparticle reflection at the
defect boundary. We have shown that the reflection of the trajectories is specular in
the quasiclassical limit kFR � 1 for a cylindrical defect. Assuming the defect to be
smooth on the atomic length scale, one can expect this reflection to remain specular
for an arbitrary defect shape. However, the reflection is no more specular if the defect
surface is rough on the atomic length scale. The deviations from the specular reflection
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can cause the coupling of the trajectories with different impact parameters and, thus,
result in the broadening of the spectral branches for μ < kFR.

4 Local Density of States

As a next step, we turn to the calculations of the LDOS which can be probed, e.g.,
in the STM/STS studies. The measurable quantity in these experiments is the local
differential conductance:

dI/dV

(dI/dV )N
=

+∞∫

−∞

N (r, ε)
N0

∂ f (ε − eV )

∂V
dε , (31)

where V is the voltage, (dI/dV )N is the junction conductance in the normal state,
N is the LDOS in the superconductor, N0 is the normal state DOS, and f (ε) =[
1 + exp(ε/T )

]−1 is the Fermi function. Within the quasiclassical approach, the local
DOS is determined as follows:

N (r, ε) = 1

2π

∫
kF |ub(r)|2 δ (ε − εb) db . (32)

Substituting (32) into (31), we obtain

dI/dV

(dI/dV )N
= kF

+∞∫

−∞

|ub(r)|2
N0

∂ f (εb − eV )

∂V
db . (33)

The local DOS and the differential conductance are both expressed through the
electron-like wave function ub(r) corresponding to the energy εb. We use the expres-
sions (5), (6), and (16) in order to restore ub(r). If kFr � 1, it can be evaluated using
the stationary phase method. In this limit, the wave function is determined by the
quasiclassical wave functions at two classical trajectories passing through the point
(r, θ):

ub(r, θ) = eiμθ+imθ/2

√
2π ikFr

∑

j=1,2

eiϕ j
ψ̃u,b

(
r cosβ j

)

√
cosβ j

, (34)

where ϕ j = kF cosβ j + i(μ+m/2)β j , β1 = − arcsin b/R, β2 = π −β1. Neglecting
the part oscillating at the atomic length scale and applying the normalization condition,
we obtain

|ub(r)|2 =
exp

[
−2Kb

(√
r2 − b2

)]

π Ib
√
r2 − b2

(35)

The local conductance is shown in Fig. 4 for different types of vortices. The con-
ductance profile for the N− vortex (Fig. 4b) reveals the typical CdGM behavior for
r > R [41]. This conclusion is no more valid if we consider N+ vortex where the large
slope of the inversed anomalous branch causes changes in the LDOS pattern (Fig. 4a)
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(a) (b)

Fig. 4 The local differential conductance vs the voltage V and the distance from the vortex axis r for
different vortex types. Here we put R = 0.4ξ and T = 0.02�0 (Color figure online)

at low voltage near the defect. The local conductance distribution in this case is similar
to the one for a pinned vortex in the s-wave superconductor [9].

5 High-Frequency Conductivity

Besides the STM/STS studies, there exists another efficient method for experimental
investigation of quasiparticle subgap spectrum based on the measurements of the
conductivity tensor at finite frequencies. In the classical limit, the interaction of the
quasiparticles with the high-frequency field can be described using the following
Hamiltonian:

H(μ, θ) = ε(μ) + h̄kFvs , (36)

where ε(μ) is the energy of the anomalous spectral branch and vs = −e/(mc)A is the
superfluid velocity induced by the electromagnetic field. Taking a circularly polarized
field vs with frequency Ω , finally we obtain the following Hamiltonian:

H(μ, θ) = ε(μ) − 2eh̄kF
mc

Re
(
A±e±iθ−iΩt

)
, (37)

where the sign “+” or “−” denotes the circular polarization orientation and A± is the
complexmagnitude, i.e., the totalmagnetic potential isA = Re

(
e−iΩt A±(x0 ± iy0)

)
.

In order to find the conductivity, one should solve the Boltzmann equation written for
the quasiparticle distribution function f (θ, μ, t) :

∂ f

∂t
+ 1

h̄

(
∂H

∂μ

∂ f

∂θ
− ∂H

∂θ

∂ f

∂μ

)
= −ν ( f − f0) , (38)

where f0(μ) is the equilibrium distribution function and ν is the quasiparticle relax-
ation rate. This equation can be solved within the perturbational approach, so that
the total distribution function is represented as a sum f = f0 + f1, where f1 is the
first-order perturbation term:
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f1(θ, μ, t) = 2Re
∓iekFE±

mΩ (Ω ∓ ω − iν)

∂ f0
∂μ

e±iθ−iΩt . (39)

Here h̄ω = ∂ε/∂μ and E± = iΩ/cA± are the electric field complex magnitudes. Let
us find the current for the zero-temperature case:

j± = e2kF
2mΩ (iΩ ∓ iω0 + ν)

E± , (40)

where h̄ω0 = ∂ε/∂μ|μ=0. One can easily obtain the Ohmic and Hall conductivities
from the Eq. (40):

σO = e2kF
2mΩ

ν + iΩ

(ν + iΩ)2 + ω2
0

(41)

σH = − e2kF
2mΩ

ω0

(ν + iΩ)2 + ω2
0

(42)

Thus, one can see that the sign and the value of the Hall conductivity are strongly
determined by the slope of the anomalous spectral branch at the Fermi level. Certainly,
the above picture for the N+ vortex is valid for rather low frequencies Ω < �0R/ξ ,
i.e., when the rf field cannot induce the transitions to the levels at the broken CdGM
branch in Fig. 3.

The Hall conductivity can be probed experimentally, in particular, by the polar
Kerr effect measurements [3]. In order to verify the above results, we propose to
measure the Kerr angle dependence on the external magnetic field parallel to the z
axis. The total Kerr angle is determined by three contributions which come from the
quasiparticle transitions between the energy levels in free vortices, pure defects, and
pinned vortices, respectively. For the case of zero field, the Kerr angle is determined
only by the density of defects. An external magnetic field produces N+ or N− vortices
depending on the field orientation which may be pinned by the columnar defects.
Indeed, the exact amount of pinned and free vortices depends on the sample geometry
and the distribution of the defects. For simplicity, we assume that the free vortices
appear only after all the defects are occupied by vortices. Such vortex distribution
may be implemented experimentally in conditions of the field cooled measurements.

Consider a magnetic field creating N+ vortices in the sample. While the field is low
enough so that all vortices are pinned, the Kerr angle appears to be constant because
the slope of the anomalous branch of a pinned N+ vortex almost coincides with the
slope of the edge modes branch. With the increasing magnetic field, the free vortices
enter the sample and the Kerr angle decreases because the free and pinned vortex
contributions into the Hall conductivity have different signs. Finally, the Kerr angle
changes its sign in high enough magnetic fields.

The Kerr angle behavior changes drastically if one inverts the direction of the
external magnetic field. Low field produces pinned N− vortices whose contribution
to the Hall conductivity has the same sign as the contribution of the pure defects
but has a smaller absolute value. Thus, the Kerr angle should decrease with the field
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increase until all defects become occupied by N− vortices. Further increase of the field
introduces free N− vortices into the sample which increases total Hall conductivity of
the sample and, thus, the Kerr angle, so its dependence on the magnetic field appears
to be nonmonotonic. Such a nontrivial behavior of the Kerr angle dependence on the
external magnetic field can be helpful for unambiguous detection of px ± i py in real
compounds.

6 Summary

We have calculated the subgap excitation spectrum of quasiparticles for vortex lines
pinned by columnar defects in chiral p wave superconductors. The spectrum is shown
to depend strongly on the orientation of the magnetic field with respect to the internal
angular momentum (chirality) of the Cooper pairs. If the magnetic field produces flux
lines with the vorticity opposite to this internal angular momentum, the quasiparticle
spectra in pinned vortices are only slightly disturbed by the presence of defects. In the
case of coinciding signs of vorticity and chirality, the subgap spectra in pinned vortex
cores appear to be strongly different from the ones for free vortices: the anomalous
branch at small impact parameters changes its slope resulting in the change in the
LDOS pattern and contribution of the quasiparticles into the Ohmic and Hall conduc-
tivities at finite frequencies. Experiments which probe these quantities, i.e., STM/STS
and polar Kerr effect measurements, can be useful for probing the gap symmetry in
Sr2RuO4.

Note in conclusion that the above results can be also of interest in the context of
recent experiments studying 3He in aerogel-like nafen strands [42]. The nafen strands
act like columnar pinning centers in superconductor and 3He has a p-wave pairing
symmetry, though, with a more complicated order parameter than considered in the
present work.

Recently, we were aware about new results [43] of Boris Shapiro and his group
regarding quasiparticle spectrum calculations based on the full BdG equations. These
results appeared to be in very good accordancewith the quasiclassical results presented
in this paper.
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