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Abstract The influence of the electron coupling with non-polarized optical phonons
on magnetoelectric effects of a two-dimensional electron gas system has been investi-
gated in the presence of the Rashba and Dresselhaus spin–orbit couplings. Numerical
calculations have been performed in the non-equilibrium regime. In the previous stud-
ies in this field, it has been shown that the Rashba and Dresselhaus couplings cannot
generate non-equilibrium spin current and the spin current vanishes identically in the
absence of other relaxationmechanisms such as lattice vibrations. However, in the cur-
rent study, based on a semiclassical approach, it was demonstrated that in the presence
of electron–phonon coupling, the spin current and other magnetoelectric quantities
have been modulated by the strength of the spin–orbit interactions.

1 Introduction

During the last several years, spin-based semiconductor electronics has attracted more
attention that the electron spin rather than electron charge is at the very center attention
[1,2].

The pure spin current is a flow of particles with opposite spin projections in opposite
directions. The generation and effective control of the spin-polarized currents are
necessary and very important for the practical implementation of semiconducting
spin electronics. Many device setups, based on the spin–orbit interactions (SOIs),
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have been proposed to produce a spin-polarized transport current in semiconductors
[3]. The Rashba SOI is a prime instance which arises due to the presence of structure
inversion asymmetry (SIA) introduced by heterojunction surfaces or external fields
[4]. This type of SOI led Datta and Das to design a spin field-effect transistor (SFET)
[5–7], in which the spin of the electron passing the device is controlled by the Rashba
SOI. In the presence of structure inversion asymmetry, the proposed transistor has
generated great attention in the field of mesoscopic spin-polarized transport.

The other spin–orbit coupling that occurs in structures without the bulk inversion
asymmetry [8] is the Dresselhaus coupling [9]. These two different SOIs introduce an
effective magnetic field that can effectively control both the magnitude and direction
of non-equilibrium spin accumulation [10].

By forgoing SOIs and short-range delta function impurity, Huang and Hu found
the accountable spin accumulation; however, they have shown that the spin current
vanishes identically in the non-equilibrium regime in a two-dimensional electron gas
[10]. In addition, based on the Green’s function approach, Inoue obtained a similar
conclusion for two-dimensional electron gas stuctures [11].

It should be noted that for theRashba type two-bandmodel, the discrepancybetween
the exactmethod and approximativeBoltzmann approach (1/τ approach) remains only
on the higher order corrections [12,13].

In thiswork, based on the semiclassical approach,we have theoretically investigated
the spin-transport quantities in a two-dimensional electron gas when the spin–orbit
couplings, magnetic impurity, and optical phonon scattering are present. Electron–
phonon scattering leads to the non-vanishing spin current that can be controlled by the
strength of spin–orbit interactions. Results have also shown that spin accumulation
and spin torque are critically dependent on the deformation potential and the Rashba
coupling constant.

2 Model and Approach

In the presence of lattice vibrations of a two-dimensional electron gas can be described
by the following Hamiltonian Ĥ = Ĥ0 + Ĥel−ph +Vim . Here Ĥ0 is the kinetic energy
and spin–orbit Hamiltonian including both of the Rashba and Dresselhaus spin–orbit
couplings that in the basis of plane waves functions is given as follows [4,9]:

Ĥ0 = h̄2k2

2m
+ α(σ̂x ky − σ̂ykx ) + β(σ̂x kx − σ̂yky), (1)

in which k represents the wave vector of conduction electrons, σi (i = x, y) are Pauli
matrices, α and β denote the Rashba and Dresselhaus strengths, respectively.
For a given wave vector k, the eigenfunctions of Ĥ0 are determined as

| kλ >= 1√
2

(
ei

φk
2

λe−i
φk
2

)
, (2)
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where λ = ±1 and the angle φk are defined easily by

tan φk = αkx + βky
αky + βkx

. (3)

The corresponding eigenvalues of Ĥ0 are εkλ = λ

√
(α2 + β2)k2 + 4αβkxky .

The expectation values of the electron spin along the x and y directions in the state
| kλ > can be found to be

S(0)
λ,x (k) = h̄

2
λ cos(φk), S(0)

λ,y(k) = −h̄

2
λ sin(φk). (4)

The second term of the total Hamiltonian, Ĥel−ph , is the electron–phonon interaction
that can be expressed as [14]

Ĥel−ph = Dopt .U (�r). (5)

Dopt is the deformation potential for electron scattering by optical phonons andU (�r)
is defined as displacement vector of an ion from equilibrium position �R. For the two-
dimensional system, the displacement vector is determined as

U (�r) =
∑
q

√
h̄

2MNWe
�eq [aqei �q.�r + a†qe

−i �q.�r ], (6)

where N and M are number of the ions and ion mass, respectively. �eq is the unit
vector in displacement direction and a†q/aq are the creation/annihilation operators for
phonons with wave vector q.

Therefore, we obtain directly the following result:

Ĥel−ph =
∑
q

[C(q)aqe
i �q.�r + C∗(q)a†qe

−i �q.�r ]. (7)

where

C(q) = Dopt

√
h̄

2MNWe
(i êq .�q). (8)

The eigenstate of the electron–phonon Hamiltonian in harmonic approximation is
defined by |n >, where n is the Bose–Einstein distribution function of phonons, so we
can define a new basis as follows, | kλn >=| kλ >

⊗ | n >. The scattering matrix
of electron–phonon interaction is given by

< k′λ′n′
q | Ĥel−ph | kλnq > =

{
δn′

q ,nq−1δλ′λC(q)
√
nq , if k′ = k + q,

δn′
q ,nq+1δλ′λC∗(q)

√
nq + 1, if k′ = k − q.

(9)
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The last term of the total Hamiltonian, Vim(r), is the impurity scattering potential
that can be defined by

Vim(r) =
∑
i

J σ̂ . �mδ(r − ri), (10)

where J is the exchange interaction constant ofmagnetic impuritieswith conduction
electrons and m̂ denotes the unit vector of the magnetization.

< k′λ′n′
q | Vim(r) | kλnq > = δńq ,nq δḱ,k

(
Jz Jx + i Jy

Jx + i Jy −Jz

)
. (11)

Here Jz = m̂z J, Jy = m̂ y J, Jx = m̂x J. For long- range magnetic interactions, due
to the shape anisotropy, we take m̂z = 0 and because of the random distribution, we
assume < mx >=< my >= 0 that < m2

x >=< m2
y >= 1

2 . We have also used the
approximation

∑
j exp(i �q.�r j ) � 1 and

∑
j
∑

j ′ exp(i �q.(�r j − �r j ′)) = ni , where ni is
the impurity density.

For spin-dependent and spin-independent relaxation mechanisms, we have consid-
ered the two last terms of the total Hamiltonian, so we can rewrite these two terms
as

V = V̂im + Ĥel−ph (12)

The scattering state of a conduction electron is determined from the Lippman–
Schwinger equation where in the Born approximation one has

| kλnq >scat = | kλnq > +
∑
k′n′

qλ′

Vk′λ′n′
q,kλnq

εkλ − εk′λ′ + iη
| k′n′

qλ
′ >, (13)

where η is a small positive quantity. Then the expectation value of the electron spin is
modified as follows:

Sλ,i (k) = S(0)
λ,i (k) + h̄

∑
k′n′

qλ′
Re

[
Vk′λ′ńq ,kλnq < σi >k′λ′ńq ,kλnq

εkλ − εk′λ′ + iη

]
,

(14)

where we have defined Sλ,i (k) =< kλn | Ŝi | kλn >scat . One can write

Sλ,i (k) = S(0)
λ,i (k) + h̄

∑
k′λ′

Re

[
Vk′λ′ń,kλn < σ̂i >k′λ′ń,kλn Pr

1

εkλ − εk′λ′

−Vk′λ′ń,kλn < σi >k′λ′ń,kλn iπδ(εkλ − εk′λ′)

]
, (15)

where < σi >k′λ′ń,kλn is the expectation value of the Pauli Matrix in a Lippman-
Schwinger scattering state. The ith component of the net spin density can be given
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by

< Si >=
∑
λ,k,q

Sλ,i (k) fλ(k,q), (16)

where fλ(k,q) is the distribution function of conduction electrons, and in the absence
of external electric field, it will be given by the equilibriumFermi distribution function,

fλ(k,q) = f0(εkλ) = 1

1 + e
(εkλ−εF )

kB T

. (17)

To drive the non-equilibrium distribution function for a homogeneous system, we
solve the Boltzmann transport equation for a steady state (in the weak scattering
regime),

�̇k. ∂ fλ(k)

∂ f (k)
=

(
∂ fλ
∂t

)
coll

, (18)

in which k̇ = −eE
h̄ and the collision integral due to scatterings,

(
∂ fλ
∂t

)
coll

, reads [15]

(
∂ fλ
∂t

)
= −

∑
k′q′λ′

Wk′λ′ń,kλn fλ(k)(1 − fλ′(k′)δ(εkλ − εk′λ′) +
∑
k′q′λ′

Wk′λ′ń,kλn fλ′(k′)(1 − fλ(k))δ(εkλ − εk′λ′) +
∑
k′q′λ′

W (2)
k′λ′ń,kλn( fλ′(k−q) − fλ(k))δ(εk′λ′ −εkλ−h̄ω)δ(k′−k−q) +

∑
k′q′λ′

W (3)
k′λ′ń,kλn( fλ′(k+q) − fλ(k))δ(εk′λ′ − εkλ+h̄ω)δ(k′ − k + q)

. (19)

Wk′λ′ń,kλn are the transition probabilities which are given by Fermi’s golden rule,
Wk′λ′ń,kλn = 2π

h̄ |Vk′λ′ń,kλn|2.
δń,nδḱ,k selects the diagonal elements of |Vk′λ′ń,kλnq |2 and δn′

,n−1δk′−k−q and

δn′,n+1δk′−k+q choose the non-diagonal elements of |Vk′λ′ń,kλnq |2, so one can eas-
ily obtain

|Vk′λ′ń,kλn|2 = | < k′λ′n′ | Ĥel−ph | kλn > |2 + |Vk′λ′ń,kλn|2, (20)

and accordingly

Wk′λ′ń,kλn = W (1)
k′λ′ń,kλn + W (2)

k′λ′ń,kλn + W (3)
k′λ′ń,kλn, (21)
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where W (1)
k′λ′ń,kλn is due to impurity potential,

W (1)
k′λ′ń,kλn =

(
0 J 2

J 2 0

)
niδn′,nδk′,k. (22)

where ni is the density of impurities. W (2)
k′λ′ń,kλn and W (3)

k′λ′ń,kλn are due to electron–

phonon Hamiltonian, which W (2)
k′λ′ń,kλn represents the phonon absorbtion,

W (2)
k′λ′ń,kλn = δn′,n−1δk′,k−qδλ′,λ

(
cq

√
n 0

0 cq
√
n

)
, (23)

and W (3)
k′λ′ń,kλn corresponds to phonon emission,

W (3)
k′λ′ń,kλn = δn′,n+1δk′,k+qδλ′,λ

(
c∗
q

√
n + 1 0
0 c∗

q

√
n + 1

)
. (24)

The deviation of the distribution function from equilibrium state is given by [10]

δ fλ = e
∂ f0(εkλ)

∂εkλ

τkqλ(E. vkλ). (25)

where vkλ = 1
h̄∇kεkλ is the velocity of conduction electrons, and ez is a unit vector

directed along the normal of the two-dimensional plane, δ fλ = fλ − f0. Meanwhile
τkqλ is defined as follows:

1

τkqλ

=
∑
k′,λ′

W (1)
k′λ′nq́,kλnq

{
1 − |vk′λ′ |

|vkλ| cos[θ(vkλ ∧ vk′λ′)]
}

δ(εk′λ′ − εkλ) +

∑
k′,λ′

W (2)
k′λ′nq́,kλnq

{
1 − |vk′λ′ |

|vkλ| cos[θ(vkλ ∧ vk′λ′)]
}

δ(εk′λ′ − εkλ − h̄ω) +

∑
k′λ′

W (3)
k′λ′nq́,kλnq

{
1 − |vk′λ′ |

|vkλ| cos[θ(vkλ ∧ vk′λ′)]
}

δ(εk′λ′ − εkλ + h̄ω). (26)

that θ(vkλ ∧ vk′λ′) denotes the angle between vkλ and vk′λ′ .
The expectation value of the spin current in scattering state is defined by

J ix (k, λ) = J i(0)x (k, λ) + h̄
∑
k′λ′

Re

[
Vk′λ′ń,kλn < J ix >k′λ′ń,kλn Pr

1

εkλ − εk′λ′

−Vk′λ′ń,kλn < J ix >k′λ′ń,kλn iπδ(εkλ − εk′λ′)

]
. (27)
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The transport spin current in x direction with spin along the x and y axes will be
given by

J ix =
∑
k,q,λ

Ĵ ix (k, λ)δ fλ(k,q), (i = x, y) (28)

where Ĵ ix = h̄
2 {σi , v̂x } is the spin current operator and v̂x = h̄−1( ∂ Ĥ

∂kx
) is the velocity

operator.
The spin-transfer torque is defined as a time derivative of the spin moment and one

can obtain this quantity of interest using by its operator defined as

τ̂α(k, λ) = −i[σ̂α, Ĥ ], (29)

τα =
∑
k,q,λ

τ̂α(k, λ)δ fλ(k,q), (α = x, y) (30)

3 Results

Our study has been performed on a two-dimensional electron gas system in the
presence of spin–orbit couplings and electron–phonon interaction. By utilizing the
semiclassical approach, we have calculated the spin accumulation, spin torque, and
spin current in the non-equilibrium regime.

In this paper, the electric field is assumed to be applied in x direction and the typical
parameters have been considered to be ε f = 10eV , J = 0.1eV , ni = 1016cm−2 and
T = 1K . In addition, Rashba andDresselhaus spin–orbit couplings have been denoted
by εα = mα2/h̄2, εβ = mβ2/h̄2, respectively.

In the field of information transfer technologies, charge-current could be replaced
with spin current that results in improved energy efficiency [16,17].

As shown in Figs.1 and 2, optical phononsmediate the non-equilibrium spin current
in the presence of the spin–orbit couplings and magnetic impurities. These figures
clearly show that the sign and themagnitude of the spin current can be controlled by the
SOCs in which the magnitude of spin current components decreases for high εβ or εα .
First the spin current changes rapidly at low lattice vibrations and then, by increasing
the Dopt , reaches a constant value. Comparing Fig. 1 with Fig. 2 demonstrates that
for a same value of εα and εβ , different spin current components do not have similar
behavior even when the given parameters are identical. Forgoing results have shown
that in the presence of electron–phonon interaction, both components of the spin
current could take non-zero values. Therefore, details of the scattering potential are
very important in the generation of the spin current. As reported in Ref. [10], Rashba
and Dresselhaus couplings in the presence of the short-range delta function impurity
cannot be responsible for the non-equilibrium spin current. It should be noted that
the numerical results have indicated that the spin current vanishes in the limit of
Dopt −→ 0 (is not shown in these figures). In the case of non-magnetic impurities,
J = 0, and for Dopt = 0, the spin current identically vanishes, which is in agreement
with the results in Ref. [10].
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Fig. 1 Longitudinal spin current as a function of the deformation potential for different SO couplings
(Color figure online)

Different spin accumulation components have been depicted as a function of
the deformation potential in Figs. 3 and 4. In the intermediate range of the opti-
cal deformation potential, the momentum of the electrons would be randomized by
the electron–phonon interaction. Therefore, by increment of the electron–phonon cou-
pling, spin currents and spin accumulations of the system are reduced to approximately
constant values.

As illustrated in these figures, the behavior of the spin accumulation with respect
to the electron–phonon interaction can be determined by the spin–orbit couplings.

The influence of the impurities has been considered to provide a realistic system
with a typical density of impurities. Fig. 5 shows the spin current components as a
function of the deformation potential for ni = 1010cm−2, εα = 1meV ,εβ = 1meV .

Therefore, in addition to the electron–phonon interaction, that plays a key role in
obtaining the spin current, the density of impurities is also important for the spin
current values (Figs. 6, 7).

The important results which can be inferred from the Figs. 1, 2, 3, 4 and 5 could be
listed as follows: The magnitudes of the spin current and spin accumulation decrease
at high Dresselhaus coupling strength. In addition, the Rashba interaction controls
both magnitude and the sign of the spin current and spin accumulation. On the other
hand, the magnetic configuration of the system has also a dominant contribution in
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Fig. 2 Transverse spin current
as a function of the deformation
potential for different SO
couplings (Color figure online)

(a)

(b)

(c)
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Fig. 3 Longitudinal spin
accumulation as a function of
the deformation potential for
different SO couplings (Color
figure online) (a)

(b)

(c)
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Fig. 4 Transverse spin
accumulation as a function of
the deformation potential for
different SO couplings (Color
figure online)

(a)

(b)

(c)
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Fig. 5 Transverse and longitudinal spin currents as a function of the deformation potential for ni =
1010cm−2, εα = 1meV ,εβ = 1meV (Color figure online)
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Fig. 6 a Longitudinal and b transverse spin current as a function of the Rashba SO for different Dresselhaus
SO couplings for Dopt = 50 meV (Color figure online)

the transport process. Both the Rashba and Dresselhaus SOIs act like a momentum-
dependent effective magnetic fields, the directions of which are different from each
other.Whenβ 
= 0 in thepresenceof an external electric field (e.g., in the x direction)<
HR >
= 0 and < HD >
= 0, non-equilibrium spin density results. Since < kx >�<

ky >, so the average effective magnetic field due to Rashba spin–orbit coupling will
tend to be in y direction < HR >=< α(kyêx − kx êy) >� −α < kx > êy but the
average effective magnetic field due to Dresselhaus spin–orbit coupling will tend to
be in x direction< HD >=< β(kx êx −kyêy) >� −β < kx > êx . The total effective
magnetic field that the conduction electrons feel is the sum of the two average effective
fields,< HR > and< HD >; therefore, this direction depends strongly on the relative
strength of the spin–orbit couplings.

Finally, we discuss the spin transfer torque components as function of the defor-
mation potential (Figs. 8 and 9). A decrease in the SO couplings leads to a significant
change of the spin torque. These spin–orbit couplings can also control the sign of the
transverse spin torque.
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Fig. 7 a Longitudinal and b transverse spin current as a function of the Rashba SO for different Dresselhaus
SO couplings for Dopt = 50meV (Color figure online)
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Fig. 8 longitudinal spin torque as a function of the deformation potential for different SO couplings (Color
figure online)

Figure 10 shows the spin torque in x and y directions as a function of the Rashba
coupling. The differences between the these curves clearly demonstrate the importance
of the spin–orbit couplings.
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Fig. 9 Transverse spin torque as a function of the deformation potential for different SO couplings (Color
figure online)
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Fig. 10 aLongitudinal and b transverse spin torque as a function of theRashba SO for differentDresselhaus
SO couplings for Dopt = 50meV (Color figure online)

Spin–orbit couplings can change the band shape and the population of a given state,
so these interactions can effectively control the spin-transport parameters. Electron–
phonon coupling can also modulate the scattering if the both of the initial and final
states be in the same spin-band.
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The critical point in our results is the generation of the spin current by the Rashba
spin–orbit interaction. Since we can change the Rashba coupling by the gate voltage,
we can easily control the spin current of a two-dimensional electron gas in the presence
of electron–phonon coupling.

4 Conclusion

In this paper, a semiclassical method by using the Boltzmann approach has been
employed for studying the spin-related transport effects in a two-dimensional elec-
tron gas system. The results have shown that the electron–phonon coupling plays an
important role in generating the non-equilibrium spin current because it was shown
that in the absence of the lattice vibrations, Rashba and Dresselhaus SOIs cannot be
responsible for the non-equilibrium spin current. It was also demonstrated that even
at low electron–phonon coupling, the lattice vibrations have important effects in the
spin-transport process modulated by SOIs.
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