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Abstract The analysis of data fromX-raymicrocalorimeters requires great care; their
excellent intrinsic energy resolution cannot usually be achieved in practice without
a statistically near-optimal pulse analysis and corrections for important systematic
errors. We describe the essential parts of a pulse-analysis pipeline for data from X-ray
microcalorimeters, including steps taken to reduce systematic gain variation and the
unwelcome dependence of filtered pulse heights on the exact pulse-arrival time. We
find these steps collectively to be essential tools for getting the best results from a
microcalorimeter-based X-ray spectrometer.
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1 The Pulse Processing Problem

Calorimeters based on the superconducting transition-edge sensor (TES) have demon-
strated resolving power E/δE above 2000 at 1.5keV [1], 6keV [2], 100keV [3], and
5MeV [4]. X-ray data must be treated with great care to reach this level of precision.
The X-ray photons thermalize in an absorber, creating a pulse in the TES bias cur-
rent (Fig. 1), whose size indicates the photon energy. The statistical uncertainty on
the size of each pulse must be minimized through statistically optimal filtering, while
systematic errors must be kept to an equally low level.

In this report, we describe the procedures that we use for data from spectrometers
over a wide range of energies and applications. The figures draw their example data
from TESs measuring 4 to 7keV X-rays and designed to saturate at 12keV. This
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survey of data analysis problems and solutions should apply to single-photon energy
measurements made with TESs over a wide energy range and should be relevant to
microcalorimeter data more generally.

To reach the theoretical limits of resolution, we must employ statistically optimal
filtering (Sect. 2) to estimate pulse heights. Many challenges frustrate our ability to
reach these limits, such as slow variations in the overall system gain. This gain drift
can be largely corrected because the quiescent, or “baseline,” level of the TES readout
is found to track it well (Sect. 3.1). Also, the estimated pulse amplitude can depend
on the exact photon arrival time relative to the data sampling clock (Sect. 3.2).

2 Optimal Filtering for Pulse-height Estimation

We assume as a starting point a “clean” data set containing only valid, single-pulse
records. We choose this set by summarizing each pulse record with a few quantities
such as the pretrigger mean and rms deviation, peak time, and the largest positive slope
found after the peak. These quantities provide a fairly clear picture of pulse quality.
They allow us to consider only pulses isolated in the record and for which the sensor
is in its quiescent state when a pulse arrives.

The first step in analyzing the clean microcalorimeter pulses is the estimation of
pulse height, generally called optimal filtering. It consists of a linear operation on the
sampled and digitized sensor readings. The filtering can be performed as a continuous
convolution of a fixed-length filter with the data samples; pulse heights are then pro-
portional to localmaxima in the convolution. In practice, the pulse signal-to-noise ratio
is high enough that we easily identify pulse-arrival times (“trigger”) during the data
acquisition phase. We store for later processing a data record of N samples—typically
hundreds to thousands—omitting those samples long before or after the pulse that
contain little relevant information. This approach lets us compute and adjust the filter
later, in order to select the best balance between systematic and statistical errors for a
given measurement.

The linear optimal filter is statistically optimal if and only if the following assump-
tions about the sensor signal hold:

(1) Pulses are transient departures from a strictly constant baseline level;
(2) Regardless of the X-ray energy deposited in the sensor, pulses always have the

same shape and differ only in scale;
(3) Pulses are separated in time sufficiently that no pulse affects the measurement of

another;
(4) The noise is additive and stationary (independent of the evolving pulse); and
(5) The noise on the N samples is distributed as a multivariate Gaussian.

None of these assumptions are strictly true (e.g., see Fig. 1 for violations of #2), yet
optimal filtering is a very successful linear framework for pulse height estimation.

To construct the filter, we require a model of the pulse shape and of the noise. The
optimal filter is the linear weighting of the N data samples that gives the minimum
expected variance at a fixed normalization. Noise can be characterized either by its
power spectral density or by its autocorrelation function. In the first case, we would
construct the filter using discrete Fourier transforms (DFTs) [5]. In the second, we
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Fig. 1 Representative TES current pulses and important nonlinear effects. Left Records of N = 390
samples (5 ms) for pulses at a range of fluorescence energies. The trigger decision is made on the four
samples indicated by the circles (the first three circles overlap). Center The difference between the average
pulses at a few selected energies, divided by their energy difference. Nonlinearity of the sensors renders
these different from one another and from the pulse shape. Right The average difference at 5.9 keV between
the means of the earliest-arriving and latest-arriving pulses, relative to the trigger time. This shape is similar
(but not identical) to the successive-differences of the average pulse (Color figure online)

would use only the noise autocorrelation function [6]. We never use the DFT approach
in spite of its computational advantage, as there is a small signal-to-noise cost for the
DFT’s implicit and incorrect assumption that signal and noise are periodic of period
N [7].

Filters can be constructed subject to one or more linear constraints, to ensure that
the estimated pulse height is strictly insensitive to the addition of one or more terms.
Nuisance terms might include a constant baseline offset, or a decaying exponential
representing residual energy left from previous pulses. Alpert et al. [8] derive the con-
strained optimal filter by minimizing the expected variance subject to Nc constraints,
while Fowler et al. [2] derive the same result from a maximum-likelihood fit for a
linear model with 1 + Nc components. We quote the result here.

In our standard pulse analysis, we employ a two-component model, consisting
of a single-pulse shape (having zero baseline level) plus a constant. The resulting
estimation of pulse amplitude is the first component of vector p̂ in

p̂ = [(MTR−1M)−1MTR−1]d, (1)

where M is the N × 2 matrix with the first column containing the pulse model and
the second containing all ones; R is the noise autocorrelation matrix, an N × N
symmetric Toeplitz matrix whose first row is the noise autocorrelation estimate; and
d is the column vector of length N containing the measured data. Once the modeling
and noise characterization are complete, the 2× N matrix in brackets is fixed and can
be pre-computed; we call its first row the “optimal filter.” Filtering (or fitting) the data
means performing one inner-product operation on each data record to compute pulse
heights ( p̂1).
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3 Systematic Errors

Given the assumptions of the previous section, the optimal filter promises the best
possible estimate of pulse heights, in the sense of a minimum-variance unbiased esti-
mator. In this section, we consider the two most prominent systematic errors that arise
from failures of the linear model.

3.1 Gain Drift and Spectral Entropy as a Tool for Error Correction

The gain of our TES spectrometers varies over time. Although it falls typically
by only one part per thousand over many hours, this change can still degrade the
achievable energy resolution. One very helpful fact—empirically observed if not fully
understood—is that the reduced gain correlates strongly with a slight increase in the
baseline level. Amultiplicative correction is routinely applied to all data; the correction
is linear in the baseline level:

p′
j = p j [1 + α(Bj − B0)]. (2)

Here p j and p′
j are the plain and corrected optimal filtered pulse-height estimates for

pulse j ; Bj is the baseline level for that pulse (estimated as the mean of all pretrigger
samples); B0 is the median baseline estimate for all clean pulses from that TES; and
the one free parameter (per sensor) is the “gain slope” α, typically of order 10−4. This
simple correction is usually needed in observations lasting at least one hour, and it is
adequate even for observations of ten or more hours.

We choose the gain slope α in Eq. 2 considering the entire energy spectrum, rather
than a single line. The training data can be either the entire data set from one sensor or a
large subset of it, provided the subset spans the observed range of baseline levels.1 We
are guided by the principle that the “right” value ofα can be recognized because it leads
to the sharpest possible spectrum, with high contrast between any narrow lines and the
continuum.2 This sharp-spectrum notion can be quantified by the Shannon entropy of
the observed energy distribution: a low-entropy spectrum has sharper features than a
high-entropy spectrum. If the training data are binned into a normalized pulse-height
histogram with Nb bins,3 where bin i contains a fraction fi of all pulses, then the
spectral entropy is estimated as follows:

H = −
Nb∑

i=1

fi log2 fi (3)

in units of bits per pulse.We select the correction α that minimizes the spectral entropy
H(α), a simple scalar minimization problem. Fig. 2 shows the scale of the problem
and the results of an entropy minimization for a single TES sensor.

1 104 or 105 pulses should easily suffice for selecting α.
2 Naturally, this principle is easier to use when some or all data appear in a few narrow lines.
3 The bin size should be somewhat smaller than the resolution.
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Fig. 2 The gain drift and its correction. Left Filtered pulse heights for the fluorescence of a sample
containing five transitionmetals.Center The anti-correlation between filtered pulse height and the pretrigger
mean (baseline) level at the two-peaked cobalt (top) and manganese (bottom) Kα lines. Right The Kα line
shapes before (green/gray) and after (black) application of the entropy-minimizing correction for slow
drifts in the gain (Eq. 2). After the correction, the FWHMGaussian resolution is 4.4–4.0 eV at 6.9–5.9 keV
(Color figure online)

3.2 Arrival Time

The pulse heights produced by optimal filtering are subject to a large and unwelcome
dependence on the exact arrival time of a photon at the microcalorimeter, relative to
the regular sampling clock (typically 5–10µs in our measurements). If the arrival time
merely caused a shift in the sampling times of a smooth underlying model curve, then
the effect could be large yet conceptually simple. Unfortunately, the limited dynamic
range of our active-feedback SQUID readout system can lead to large nonlinearities in
the first several samples of a pulse’s rising edge and to complicated biases. These biases
can degrade the energy resolution in measurements whenever the current through
the TES changes during one sample period by an amount that exceeds the SQUID
amplifier’s linear range. This effect should not be unique to time-divisionmultiplexing,
but should occur whenever a readout system has nonlinear response on the pulse
leading edge.

This arrival-time (AT) bias (Fig. 3) indicates a failure of the simple linear model
on which optimal filtering is premised. The failure is most pronounced at high fre-
quencies, so one way to reduce the bias is by smoothing the optimal filter of Eq. 1.
Such smoothing, of course, produces sub-optimal filtering and comes with a cost in
signal-to-noise. We have found that smoothing by a 1-pole filter with 3dB point of
3kHz to 10kHz can be effective in reducing the AT bias level with no appreciable loss
in energy resolution. Like nearly all the approaches we have tried for mitigating the
AT bias, the process of smoothing the optimal filter has two undesirable properties:
(1) it contains a free parameter which we have no principled way to select, and (2) it
works very well in some measurements but hardly at all in others. Overall, though, it
is a useful tool.

Some other promising ideas that fail to be universally beneficial include the fol-
lowing:

123



J Low Temp Phys (2016) 184:374–381 379

Fig. 3 The arrival-time systematic effect. Left The primary cause is that pulses exceed the linear dynamic
range of the SQUID readout system, at least for the first few samples on the pulse rising edge. Here, five
samples near the trigger time (#80–#84) are shown for 300 Co Kα pulses, as a function of their exact
trigger-minus-arrival time (a larger trigger time T indicates a pulse that triggered later, relative to its arrival
time). The structure seen at small scales violates the assumptions of optimal filtering. Center The filtered
pulse heights for Co Kα photons depend so strongly on T that the systematic error of 5–10 eV dominates
the statistical resolution. Right The same pulses after a global correction chosen to align features across all
T and all energies, achieving a 4.3 eV FWHM resolution (Color figure online)

(1) A 5-lag correlation By constructing the filter (Eq. 1) with a model M four
samples shorter than our triggered pulse records, we can correlate the data with
the filter at five different lags. Fitting a parabola to the values, we can find the lag
at which it peaks (a very good estimate of the pulse-arrival time) and the peak
level. The latter can be somewhat less biased than the basic correlation value at
lag-0, though this is not always so.

(2) First-order time shift We can expand the pulse model to linear order in the
arrival time shift T ; the leading term in T is the time-derivative of the pulse
model. Estimating this term from finite differences in the average pulse model,
we can add this as a new column in the pulse model matrix M and render the
filtered pulse-height insensitive [2] to the first-order effect of variations in T .

(3) Ignore the first samples in a pulse The first few samples are responsible for
much of the AT bias. We can de-weight these samples by scaling down the
corresponding columns and rows in R−1, but this never fully removes the bias
unless taken to the extreme such that it also fully removes the signal. This de-
weighting also requires numerous parameters to be chosen without guidance.

(4) Implement a more perfect trigger Most pulses satisfy the triggering condition
in the sample immediately after a photon is absorbed in the sensor, but some will
trigger only on the second. This latter group can be identified readily and shifted
in time by 1 sample, effectively reducing the trigger threshold to zero. While this
step tends to remove a malign “kink” from the AT bias curves (see Fig. 3 near
T = 0.9), it does not altogether eliminate the bias.

(5) Sort pulses into M arrival-time groups and filter separately Pulses can be
ordered from early to late arrival times, and these can be partitioned into M ∼ 10
groups, with separate pulse models and optimal filters made for each group. This
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can work well, but the net result of the poorly known relative normalization of
the M filters is precisely to introduce a new form of AT bias.

Almost all of these approaches work well at a single energy, and rather less well if
we must apply them over a range of energies, a range that can often be 1000 times as
large as the sensor resolution.

In careful studies at 4–8 keV, over a variety of TES designs and configurations, we
have found no single combination of mitigation steps that universally eliminates the
AT bias to the point of preserving the full intrinsic TES resolution. Our usual practice
in the past has been to smooth the optimal filter with a 1-pole low-pass filter having
its 3dB point near 4kHz and to take the pulse height as the peak of the parabola
fit to a 5-lag correlation function (item #1). The survey suggests that a simpler and
equally effective plan is to use the zero-threshold trigger (#4) and filters insensitive to
the leading-order arrival time expansion term (or terms, #2), and to take a single-lag
correlation (thus, omit #1).

So long as we push the sensor count to the highest numbers supported by the
SQUID readout system, some amount of arrival-time bias appears inevitable. For the
most sensitive work, an arrival-time correction akin to the one that reduces gain drift
by sharpening up the output spectrum (Sect. 3.1) is necessary. Because the AT bias
depends also on pulse energy, however, the correction cannot be as simple as the single
number α that characterizes the gain drift. We are still developing best practices for
sharpening spectra by correcting the AT bias with a method similar to the minimum-
entropy method across a range of energies.

4 Future Directions and Conclusion

The analysis of photon pulses described here works at one photon energy or over a
range of energies, though the latter case is made quite challenging because we adopt
the wrong assumption that pulses (and their arrival-time systematics) are the same
shape at all energies. We are actively pursuing methods that drop the single-shape
assumption in favor of less restrictive pulse models. For example, we can project each
pulse into a low-dimensional linear subspace based on the leading singular vectors in a
training sample. If the data are first treatedwith a linear noise-whitening transformation
[2], then this projection preserves the noise-weighting advantages of optimal filtering.
Projection into a linear subspace naturally accommodates both nonlinearity in energy
and arrival-time effects, but it presents a serious new challenge: energy calibration
(without AT bias) of any point in the multi-dimensional manifold that the pulses span.

We are also exploring ways to perform as much analysis as possible in real time, as
data are acquired, without requiring human intervention to select and analyze training
data (e.g., to make cuts or to find the optimal filter or a calibration curve). How best
to do this is an open question, but it is becoming an important one as experiments are
operated more hours per year with ever larger sensor arrays.

The analysis of X-raymicrocalorimeter data to achievemaximum energy resolution
and accuracy, while making efficient use of both computational and human resources,
is a challenge with many faces. We have described here the basic analysis steps that
we find to be important in nearly all spectrometer measurements and consider to be
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our current standard technique, along with some of the steps that we have analyzed
and found lacking. We have not addressed the problem of the nonlinear conversion of
pulse heights to energies, which is the subject of a future paper now in preparation.
Although the state of the art continues to evolve, we hope that this description of our
standard approach can be useful to others who operate spectrometers based on TES
or similar microcalorimeters.
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