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Abstract The traditional method of applying a digital optimal filter to measure X-ray
pulses from transition-edge sensor (TES) devices does not achieve the best energy
resolution when the signals have a highly non-linear response to energy, or the noise is
non-stationary during the pulse. We present an implementation of a method to analyze
X-ray data from TESs, which is based upon principal component analysis (PCA). Our
method separates the X-ray signal pulse into orthogonal components that have the
largest variance. We typically recover pulse height, arrival time, differences in pulse
shape, and the variation of pulse height with detector temperature. These components
can then be combined to form a representation of pulse energy. An added value of this
method is that by reporting information on more descriptive parameters (as opposed
to a single number representing energy), we generate a much more complete picture
of the pulse received. Here we report on progress in developing this technique for
future implementation on X-ray telescopes. We used an 55Fe source to characterize
Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution
that is better by a factor of two than achievable with digital optimal filters.
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Fig. 1 This plot shows a
correlation between optimally
filtered pulse height and baseline
level. The results are from a TES
with X-rays originating from an
55Fe source. The line is a linear
fit to the data. Such correlations
motivate us to consider that
other properties of pulses are
changing (Color figure online)

1 Introduction

A standard approach for measuring the energy of an X-ray photon is to apply a digital
optimal filter [1]. Optimal filtering provides the most accurate estimate of photon
energy only if the noise does not change during the pulse (stationary noise), and if the
signals from different energies have the same pulse shape (linear response). In certain
cases for our TESs, these conditions may not be met [2] and the energy resolution
can thus be significantly degraded. We present an implementation of an approach
discussed in previous work [3–5], based on principal component analysis (PCA). The
goal of this is to improve energy resolution in the non-linear, non-stationary regime.

For our type of detector, PCA uses the eigenvectors of a pulse-pulse covariance
matrix, where the eigenvectors are the principal components of the information in
the signal. It enables the weighting of different parts of the signal within a pulse at
different times, according to the ratio of signal-to-noise of the different components
during different times. For the case of stationary noise and a linear response with
energy, it should be equivalent to the conventional optimal filter. This provides a more
robust estimate of the photon energy under non-linear, non-stationary conditions. The
successful implementation of such an algorithmwill enable use of TES detectors with,
for example, low heat capacity, with improved energy resolution over a large range of
energies. This approach also extracts information about (and may enable correction
for) event-to-event variations in the pulse shape that may arise due to trigger-jitter,
position-dependence of the X-ray absorption producing a rise-time variation, or gain
drift due to changing environment conditions such as temperature or magnetic field.
An example of the pulse height changing with baseline level is shown in Fig. 1.

2 Principal Component Analysis

For our experiment, we measure an ensemble of pulses from an 55Fe source. We select
out single-pulse records (not piles-up pulses) around the MnKa line for the following
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Fig. 2 Top Covariance matrix
that is formed from the ensemble
of pulses. The units of the
color-coded legend in amperes2.
Bottom An example of current
pulse from a TES. The abscissa
represents time (sampling rate is
1 Ms/s). The vertical axis
measures current through the
TES (Color figure online)

Fig. 3 The spectrum of the
largest 50 eigenvalues of our
covariance matrix (Color figure
online)

analysis, with no separate noise traces included. The fraction of piled-up pulses was
small, less than 5%.We create a variance–covariance matrix of each pulse, essentially
creating the matrix from the product of each point in a trace with each other point. For
a set of X-ray events, we define a matrix x; the matrix elements are xi j where each
element represents the jth pulse at the ith time in that pulse.We then create amean pulse
(1/M)� j xi j =< xi >, where M is the number of pulses. The mean pulse is used to
createD, the matrix of the residuals of each pulse from the mean:Di j = xi j− < xi >.
We then calculate the covariance of the residual matrix cov(D) = DDT. An example
of the covariant matrix is depicted in Fig. 2, and the eigenvalues from this matrix is
shown in Fig. 3.

We now want to transform the data to a basis where the covariance matrix is diag-
onal. We, therefore, determine the eigenvectors of the covariance matrix cov(D) =
Q�Q−1, where � is the diagonal matrix of eigenvalues sorted from highest to low-
est eigenvalues, and Q is the matrix of eigenvectors. We then rotate each pulse into
the basis of eigenvectors R = QTD. The fundamental task at hand is to determine
which eigenvectors of the average covariance matrix are responsible for the prop-
erties of the pulse with the greatest photon energy information. We identify these as
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Fig. 4 Left column shows normalized eigenvectors plotted against time. The distribution in this panel helps
us to identify what aspect of the pulse each vector is associated with. Right column shows the projection of
all pulses onto the corresponding (left) eigenvector (Color figure online)

those eigenvectors with the largest eigenvalues in the covariancematrix. The logarithm
of the eigenvalue is a measure of the information in the pulse of the corresponding
eigenvector.

In Fig. 4, we show an example of this procedure. The third and fourth eigenvectors
(left column) have a shape that is reminiscent of the pulse shape. The components of
each pulse in our dataset, projected onto these eigenvectors (right column of Fig. 4),
show a distribution similar to the pulse height distribution we expect from the Mn Kα

1 and 2 lines. The value of eigenvector 3 is completely negative, and conversely, eigen-
vector 4 has points both positive and negative. These features indicate that eigenvector
4 is likely more sensitive to the pulse height, and eigenvector 3 is more sensitive to the
baseline, analogous to that shown in Fig. 1. In the first and second eigenvectors, most
of the information is coincident with the pulse arrival. Also we find non-Gaussian dis-
tributions of the rotated projections, as is clearly evident in the right panels of vectors
1 and 2 in Fig. 4. Structures like this are indicative of arrival time variations. The fact
that the leading eigenvector does not look like a pulse is not problematic. This purely
implies that for this dataset, most of the information available is related to arrival time.
Our PCA method independently determines corrections that we typically use in our
standard optimal filtering processing method, but without a priori knowledge of these
variations, or being limited to those assumptions.

In Fig. 3, we show the spectrumof eigenvalues. It is clear that the vastmajority of the
magnitude in the covariance matrix is coming from the first three or four eigenvectors.
We therefore designate these as our principal components. Thus, for this example, it
has been determined that each X-ray can now be described by four numbers, which
are the first four points in the eigenvector basis. With the knowledge of these principal
components of the pulse, the next step is understanding how these components or their
combination correlate with energy. This allows us to determine more accurately how
the information from the covariancematrix can be used to improve the characterization
of photon energy.

Figure 5 shows projection 3 versus projection 4, that is to say we take the data
from the right panel of eigenvector 3 (in Fig. 4) and plot it against the data from the
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Fig. 5 The projection of each
pulse onto eigenvector 3 is
plotted against the projection of
each pulse onto eigenvector 4.
The arrows indicate, as labeled,
the constant energy and the
perpendicular delta E vector. We
also label the two Mn Kα lines
(Color figure online)

right panel of eigenvector 4. From observation of the correlations in this plot, we
determine that the two over-densities of points trace diagonal lines which lie in the
vector direction of constant energy. This indicates that they are consistent with the
two Mn Kα lines. We can therefore optimize the energy resolution of our system by
determining what combination of these eigenvectors gives the maximum separation
in the Mahalanobis [6] coordinate space, a space that provides a relative measure of a
data point’s distance from a common point. When the eigenvectors are the basis set,
as is the case here, then the Mahalanobis distance is simply the Euclidian distance.
We illustrate this maximization of the separation with two arrows. The constant E
vector represents the direction of constant energy, and the delta E vector represents
the perpendicular direction. Since we know the energy difference between these two
lines, we can use this information to calibrate our gain scale. When a broad spectrum
of energies needs to be measured, including regions of continuum, it is necessary to
calibrate the pulse response as a function of energy in separate measurements, such
that the increments are small enough that pulse-shape variations can be accurately
approximated by interpolation. A study of the response of a detector as a function
of energy, such as from the 3 eV separations that can occur when absorbing pulsed
photons from a laser diode [7], could be ideal for this. This type of calibration allows
us to know the direction of increasing energy, and the surfaces of constant energy. In
general, this analytic approach rigorously optimizes the energy resolution from the
study of one projection if the variation in pulse data is purely due to energy deposited
in the detector. When there are other contributions to the pulse variation, such as in
the dataset here, then it is more complicated to determine the optimal combination of
projections, and a rigorous generalized procedure will require further research.

3 PCA Method Improves Measured Resolution

Here we compare the results of PCA analysis with the basic optimal filtering on
one particular dataset [2]. This device demonstrated a full-width at half maximum
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Fig. 6 (left) Al Kα spectrum determined using a standard optimal filter. (right) For the same device, Mn
Kα spectrum processed using a standard optimal filter. The red lines indicate data, the center indicates the
number of counts, and the length of the line indicates the statistical error. The light blue line represents the
intrinsic line shape, and dark blue line represents a fit to the data and is the convolution of the intrinsic line
shape with a Gaussian of the FWHM stated above each panel. Bottom panels show residuals from the fit
(Color figure online)

Fig. 7 (left) Pulse shapes for Al Kα and Mn Kα, illustrating a saturated response for the higher energy.
(right) Mn Kα spectrum processed using the PCA technique, showing dramatic improvement in FWHM.
This spectrum uses the same data as is shown in Fig. 6 (right) (Color figure online)

(FWHM) of 0.9 eV at 1.5 keV, using optimal filter for the processing (Fig. 6 left). For
the same device and processing technique, but constructing the filter based upon the
6 keV pulse shape and assuming a linear response, we achieve a FWHM of 3.2 eV at
6 keV (Fig. 6 right). Figure 7 left shows the two pulse shapes for the different energies,
illustrating a saturated response for the higher energy. Figure 7 right uses the same
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6 keV data but processing with PCA. In this example, the PCA method demonstrates
a factor of two times improvement over optimal filter techniques, yielding a FWHM
of 1.6 eV. We note that this result is the best case that we have measured. The level of
improvement that is observed will depend upon howmuch the assumptions of optimal
filter techniques are violated. Because one does not know a priori if the assumptions
required for optimal filter methods are violated, methods, such as ours, that provide
greater flexibility seem to be necessary to recover the best energy resolution. For
example, reprocessing the 1.5 keV data with the PCA method did not improve the
measured resolution.

4 Conclusion

We have demonstrated that the use of a PCAmethod to analyze data fromX-ray pulses
on TESs has the capacity to significantly improve the energy resolution. We outlined
how this procedure can be implemented. To make this procedure broadly useful, it
will be necessary to develop prescriptions for selecting an appropriate number of
principal components, and for weighting the components to provide the best possible
energy estimator. Future efforts will be put into determining how to automate these
methods, and thus facilitate implementation in real instruments, and how it would
be implemented in a real-time processing situation. This general approach has great
potential for yielding improved spectroscopy in the future.
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