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Abstract The collective-mode excitation energy of a population-imbalanced spin–
orbit-coupled atomic Fermi gas loaded in a two-dimensional optical lattice at zero
temperature is calculated within the Gaussian approximation, and from the Bethe–
Salpeter equation in the generalized random-phase approximation assuming the
existence of a Sarma superfluid state. It is found that the Gaussian approximation over-
estimates the speed of sound of the Goldstone mode. More interestingly, the Gaussian
approximation fails to reproduce the roton-like structure of the collective-mode dis-
persion which appears after the linear part of the dispersion in the Bethe–Salpeter
approach. We investigate the speed of sound of a balanced spin–orbit-coupled atomic
Fermi gas near the boundary of the topological phase transition driven by an out-of-
plane Zeeman field. It is shown that the minimum of the speed of sound is located
at the topological phase transition boundary, and this fact can be used to confirm the
existence of a topological phase transition.

Keywords Rashba spin–orbit-coupled atomic Fermi gases · Bethe–Salpeter
equation · Topological phase transition

1 Introduction

Topological superfluidity is an interesting state of matter, partly because it is associ-
ated with quasiparticle excitations which are Majorana fermions. The basic physics
behind the emergence of the Majorana fermion excitations is the existence of s-wave
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superfluidity, nonvanishing spin–orbit coupling (SOC), and Zeeman splitting. In this
context, calculating the dispersion of the collective modes when pseudospin of atoms
can couple with not only the effective Zeeman field, but also with the orbital degrees
of freedom of atoms is an important and interesting problem by itself.

It is widely accepted among the optical lattice community that the attractive Fermi–
Hubbard model captures the s-wave superfluidity of cold fermion atoms in optical
lattices. According to this model, two fermion atoms of opposite pseudospins on the
same site have an attractive interaction energy U , while the probability to tunnel to a
neighboring site is given by the hopping parameter J :

HU = −
∑

<i, j>,σ

Jσ ψ
†
i,σ ψ j,σ −U

∑

i

n̂i,↑n̂i,↓ −
∑

i,σ

μσ n̂i,σ . (1)

Here, Jσ is the tunneling strength of the atoms between nearest-neighbor sites, and
n̂i,σ = ψ

†
i,σ ψi,σ is the density operator on site i . The Fermi operator ψ

†
i,σ (ψi,σ )

creates (destroys) a fermion on the lattice site i with pseudospin projection σ =↑,↓.
The symbol

∑
<i j> means sum over nearest-neighbor sites of the two-dimensional

(2D) lattice.
In this paper we assume the existence of nonvanishing Rashba SOC in the xy

plane and a Zeeman field along the z direction, so the Hamiltonian of the system is
Ĥ = ĤU + ĤSOC + ĤZ . In the case of a 2D optical lattice the SOC part of the
Hamiltonian is given by [1,2]

ĤSOC = −ıλ
∑

<i, j>

(
ψ

†
i,↑, ψ

†
j,↓
) (−→σ × di, j

)
z

(
ψi,↑
ψ j,↓

)
, (2)

where λ is the Rashba SO coupling coefficient, −→σ = (σx , σy, σz), σx,y,z are the Pauli
matrices, and di, j is a unit vector along the line that connects site j to i .

The out-of-plane Zeeman field is described by the term ĤZ :

ĤZ = hz
∑

i

(
ψ

†
i,↑, ψ

†
i,↓
)

σz

(
ψi,↑
ψi,↓

)
. (3)

In what follows, we study the collective-mode dispersion of species of Fermi atoms
with equal, or imbalance, population in two pseudospin states loaded in a 2D optical
lattice in the presence of bothZeemanfield and nonvanishingRashba type of spin–orbit
coupling by applying functional integral technique which requires the representation
of theHubbard interaction in terms of squares of one-body charge and spin operators. It
is possible to resolve the Hubbard interaction into quadratic forms of spin and electron
number operators in an infinite number ofways by applying theHubbard–Stratonovich
transformation. If no approximations were made in evaluating the functional integrals,
it would not matter which of the ways is chosen. When approximations are taken, the
final result depends on a particular form chosen.

One of the most common ways to apply the Hubbard–Stratonovich transformation
is to introduce the energy gap as an order parameter field. This allows us to integrate
out the fermion fields and to arrive at an effective action. The next steps are to consider
the state which corresponds to the saddle point of the effective action, and to write
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the effective action as a series in powers of the fluctuations and their derivatives.
In the Gaussian approximation, the terms up to second order in the fluctuations and
their derivatives are explicitly calculated. To the best of our knowledge, the Gaussian
approximation is the only approximation that has beenused toobtain the speedof sound
in the presence of the SOC and the Zeeman field effects [3–10]. In a diagrammatic
language, the Gaussian approximation can be derived by summation of the infinite
sequences of graphs in the ladder approximation, and by neglecting the exchange
interaction, which is represented by bubble diagrams [11].

The main goal of the present study is to go beyond the Gaussian approximation by
taking into account both, the direct and the exchange interactions. Thiswill be achieved
by deriving the corresponding Bethe–Salpeter (BS) equation for the collective modes,
which takes into account both, the ladder and the bubble diagrams. In particular, we use
the generalized random-phase approximation (GRPA) for the collective excitations, in
which the single-particle excitations are obtained in the mean field approximation (or
by solving the Bogoliubov-deGennes equations in a self-consistent fashion); while the
collective modes are obtained by solving the BS equation in which the single-particle
Green’s functions are calculated in Hartree–Fock approximation, and the BS kernel is
obtained by summing ladder and bubble diagrams.

2 Collective Modes of an Imbalanced Rashba Spin–Orbit-Coupled
Sarma Superfluid in an Optical Lattice

In this Section, we consider pairing between atoms with equal and opposite momenta.
If the system is imbalanced, the corresponding states are known as the Sarma superfluid
states [12]. Since the Sarma states can be unstable, one has to check the stability of the
Sarma mean field solutions using the curvature criterion, which says that the second
derivative of thermodynamic potential with respect to the gap needs to be positive.
It is known that the curvature criterion correctly discards the unstable solutions, but
the metastable solutions may still survive. This may cause only minor quantitative
changes in the first-order phase transition [13].

We shall consider a weak coupling limitU = 2.64J , where the BS equation in the
GRPA provides a good approximation for the collective-mode energies. The strength
of the SOC is λ = 0.1J , and the density of the majority and minority components are
f↑ = 0.275 and f↓ = 0.225, respectively (the polarization is P = ( f↑ − f↓)/( f↑ +
f↓) = 0.1). The corresponding tight-binding form of the electron energy is ξ↑,↓(k) =
2J (1 − cos kx ) + 2J (1 − cos ky) − μ↑,↓, where μ↑,↓ is the chemical potential (the
lattice constant a = 1).

In the mean field approximation the single-particle spectrum is

�(k) = ±
√
S(k) + 1

2

(
ω2+(k) + ω2−(k)

) + 2A(k),

ω(k) = ±
√
S(k) + 1

2

(
ω2+(k) + ω2−(k)

) − 2A(k),

A(k) =
√(

S(k) + η2(k)
) (

χ2(k) + 
2
) − S(k)
2,
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where 
 is the gap, S(k) = 4λ2
(
sin2(ky) + cos2(kx )

)
, χ(k) = (ξ↑(k) + ξ↓(k))/2,

η(k) = (ξ↑(k) − ξ↓(k))/2+ hz , and ω±(k) = √
χ2(k) + 
2 ± η(k). By minimizing

the Helmholtz free energy

F = 
2

U + ∑
k
[
χ(k) − 1

2 (�(k) + ω(k))
]

−T
∑

k
[
ln
(
1 + e−�(k)/T

) + ln
(
1 + e−ω(k)/T

)] + f↑μ↑ + f↓μ↓ (4)

with respect to μ↑, μ↓ and 
, one can obtained the mean field number and gap
equations for the chemical potentials and the gap:

n = f↑ + f↓ = 1 −
∑

k

[
1

2
− f (�(k))

]
χ(k)

�(k)

(
1 + S(k) + η2(k)

A(k)

)

−
∑

k

[
1

2
− f (ω(k))

]
χ(k)

ω(k)

(
1 − S(k) + η2(k)

A(k)

)
, (5)

nP = f↑ − f↓ = −
∑

k

[
1

2
− f (�(k))

]
η(k)

�(k)

(
1 + χ2(k) + 
2

0

A(k)

)

−
∑

k

[
1

2
− f (ω(k))

]
η(k)

ω(k)

(
1 − χ2(k) + 
2

0

A(k)

)
, (6)

1

U
=
∑

k

[
1

2
− f (�(k))

]
1

2�(k)

(
1 + η2(k)

A(k)

)

+
∑

k

[
1

2
− f (ω(k))

]
1

2ω(k)

(
1 − η2(k)

A(k)

)
. (7)

Here, f (ω) is the Fermi–Dirac distribution function.
Inwhat follows, we calculate themean field single-particle spectrum and the disper-

sion of the collective excitations at zero temperature. First, we shall assume that there
is no out-of-plane Zeeman field. When hz = 0, the solutions of the number and the
gap equations at zero temperature provide for the chemical potentials μ↑ = 2.857J ,
μ↓ = 2.186J , and the gap 
 = 0.266J . With these results, we have checked the
stability of the Sarma mean field solutions, and it is found that the Sarma phase is
stable.

It is known, that within the Gaussian approximation the collective-mode dispersion
is defined by the following 2 × 2 secular determinant [8,9]:

Z2×2(ω, Q) =
∣∣∣∣
z11 z12
z21 z22

∣∣∣∣ ,

z11 = 1 + U

2
(K2233(ω, Q) + K1144(ω, Q) − K1234(ω, Q) − K2143(ω, Q)) ,

z12 = U

2
(K1414(ω, Q) + K2323(ω, Q) − K2413(ω, Q) − K1324(ω, Q)) ,
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z21 = U

2
(K1414(ω, Q) + K2323(ω, Q) − K4231(ω, Q) − K3142(ω, Q)) ,

z22 = 1 + U

2
(K3322(ω, Q) + K4411(ω, Q) − K3412(ω, Q) − K4321(ω, Q)) .

The two-particle free propagators Ki jkl(ω, Q) are defined in the Appendix. The
collective-mode dispersion ω(Q) is obtained by the condition that the secular deter-
minant becomes equal to zero.

Instead of integrating out the fermion fields, one can transform the quartic terms
to a quadratic forms by introducing a four-component boson field which mediates the
interaction of fermions [14,15]. This approach is similar to the situation in quantum
electrodynamics, where the photons mediate the interaction of electric charges. This
similarity allows us to apply the powerful functional integral technique to derive the
Dyson equation and the BS equation for the poles of the single-particle and two-
particle Green’s functions, respectively. In the case of vanishing spin–orbit coupling,
this approach provides an 8× 8 secular determinant [16]. As shown in the Appendix,
the existence of the SOC term in the Hamiltonian leads to more complicated 12× 12
secular determinant M12×12(ω, Q).

In Fig. 1, we plot the collective-mode excitation energy ω(Qx ) as a function of the
wave vector Q = (Qx , 0) along the x-axis, calculated by the Gaussian approximation
(triangles) and by theBS approach in theGRPA (circles). The speed of sound, provided
by the Gaussian approximation, is u = 1.66 Ja/h̄, while the speed of sound, calcu-
lated within the BS approach is u = 1.35 Ja/h̄. Thus, the Gaussian approximation
overestimates the speed of sound by about 23 %. More interestingly, the dispersion
curve calculated from the BS equation clearly shows the existence of a roton-like
minimum, while there is no such a minimum within the Gaussian approximation. The
corresponding roton gap is 
r = 0.2025J and the critical flow velocity, obtained
around the roton minimum from the BS equation, is vc = 0.51 Ja/h̄. The two dis-
persion curves are remarkably different around the roton minimum; instead of the
expected roton-like structure, the dispersion curve provided by the Gaussian approx-
imation monotonically increases in this region. At higher wave vectors, Qx > 0.16
π/a, the two dispersion curves have essentially the same behavior.

Our results suggest that the Gaussian approximation overestimates the speed of
sound of the Goldstone mode, and fails to reproduced the roton-like structure of the
collective-mode dispersion which appears after the linear part of the dispersion. The
question naturally arises here, whether the Gaussian approximation still can be used
to estimate the speed of sound if one takes into account not only the SOC, but Zeeman
fields as well. This question will be answered in the next Section, where we investigate
the speed of sound of a balanced superfluid Fermi gas in a two-dimensional square
optical lattice with a Rashba spin–orbit coupling (in the xy plane) and an out-of-plane
Zeeman field.

3 Speed of Sound Near the Transition from the Gapped Superfluid
Phase to the Topological Phase

We consider a balanced system with a filling factor f = 0.5. Since we intend to
calculate the speed of sound near the transition from the gapped superfluid phase to
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Fig. 1 Collective modes dispersion ω(Qx ) of an imbalanced SOC Fermi gas in a 2D square optical lattice
along the (Qx , 0) direction, obtained by the Gaussian approximation (triangles) and the Bethe–Salpeter
equation in the GRPA (circles)

the topological phase in the Gaussian and in the BS approximations, we increase the
attractive interaction to U = 5.2J (the stronger the strength of the interaction, the
greater are the differences between the speed of sound in the Gaussian and in the BS
approximations). The strength of the Rashba spin–orbit coupling is λ = 0.1J , and
there exists an out-of-plane Zeeman field hz . In such a system a phase transition can
be accessed by varying the Zeeman field. The transition from the gapped superfluid
phase to the topological phase is characterized by the quasiparticle excitation gap that
closes at hc = √

μ2 + 
2 and reopens with increasing hz > hc.
In Fig. 2, we present the chemical potential (diamonds) and the gap (squares) for

different Zeeman fields, obtained by solving numerically the number and the gap
equations. The critical field hc marks the phase transition between the topologically
nontrivial (negative side) and the topologically trivial (positive side) superfluid phases.
As can be seen, during this transition, the gap 
 is still finite even though the quasi-
particle excitation gap is closed. This suggests that there is a quantum phase transition
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Fig. 2 The chemical potential
(diamonds) and the gap
(squares) of a balanced
superfluid Fermi gas in a 2D
square optical lattice as a
function of the out-of-plane
Zeeman field. The system
parameters are: filling factor
f = 0.5, the attractive
interaction U = 5.2J , and the
strength of the Rashba
spin–orbit coupling λ = 0.1J

Fig. 3 The speed of sound
along the x direction as a
function of the Zeeman field,
calculated within the Gaussian
approximation (circles) and by
the BS approach (triangles). The
values of the chemical potential
and gap are shown in Fig. 2

separating the parameter regimes hz < hc and hz > hc, even though the system in
both regimes is an s-wave superfluid.

In Fig. 3, we have plotted the speed of sound along x direction (Q = (Qx , 0)) as a
function of the Zeeman field, calculated within the Gaussian approximation and from
the BS equation in the GRPA. As can be seen, close to the phase transition boundary
the speed of sound calculated within the two approaches is essentially the same. The
inset in the figure shows that the minimum of the speed of sound is located at the
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phase transition boundary hc. The same behavior was previously found by applying
the Gaussian approximation in the case of a 2D superfluid atomic Fermi gas with
Rashba type spin-orbit coupling and an out-of-plane Zeeman field [6,8], and in the
case of a 3D FF type of superfluid Fermi gas with Rashba spin-orbit coupling [9] (in
the xy plane) and two Zeeman fields [in-plane (hx) and out-of-plane (hz)].Thus, our
calculations are in agreement with the suggestion made in [9], that by measuring the
minimum of the speed of sound one can unambiguously detect the topological phase
transition boundary.

4 Summary

In summary, we have derived the BS equation in the GRPA for the collective excita-
tion energy of a Fermi gas in a 2D square lattice with an attractive contact interaction,
assuming the existence of a nonvanishing Rashba SOC and an out-of-plane Zeeman
field. We have calculated the collective-mode dispersion within the Gaussian approx-
imation, and from the BS equation assuming the existence of a Sarma superfluid state.
It is found that the Gaussian approximation (i) overestimates the speed of sound of the
Goldstone mode, and (ii) fails to reproduce the roton-like structure of the collective-
mode dispersion which appears in the BS approach.

We also have investigated the speed of sound of a balanced spin–orbit-coupled
atomic Fermi gas near the boundary of the topological phase transition driven by
an out-of-plane Zeeman field. It is shown that the minimum of the speed of sound
is located at the topological phase transition boundary, and this fact can be used to
confirm the existence of a topological phase transition.

Finally, it is worth mentioning that our 12 × 12 secular determinant can be used
to describe collective excitations of superfluid states of Cooper pairs with nonzero
momentum. These states could occur in the population-imbalanced case between a
fermion with momentum k + q and spin ↑ and a fermion with momentum −k + q,
and spin ↓ . As a result, the pair momentum is 2q. A finite pairing momentum implies
a position-dependent phase of the order parameter, which in the Fulde–Ferrell case
varies as a single plane wave 
i1,i2 ≡ 
qeı2q.ri1 δ(ri1 − ri2). The only difference is
in the mean field single-particle Green’s functions used to obtain the two-particle free
propagator Ki jkl(ω, Q). The poles of the mean field single-particle Green’s function
in the present of SOC and the Zeeman field are defined by very long expressions,
and therefore, the numerical solution of the mean field set of two number equations,
the gap equation and the equation for the Fulde–Ferrell vector q is an ambitious task
which will be left as a subject of our future research.

Appendix: Bethe–Salpeter Approach to the Collective Modes of a Spin–
Orbit-Coupled Superfluid Fermi Gas

Westart with introducing a four-component boson field Aα(z) interactingwith fermion

fields ψ̂(y) = �̂†(y)/
√
2 and ψ̂(x) = �̂(x)/

√
2 (α = 1, 2, 3, 4, {x, y} = (ri , u),

z = (ri , v), 0 ≤ u, v ≤ β = (kBT )−1, and kB is the Boltzmann constant),
where
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�̂(x) =

⎛

⎜⎜⎜⎝

ψ↑(x)
ψ↓(x)
ψ

†
↑(x)

ψ
†
↓(x)

⎞

⎟⎟⎟⎠ , �̂†(y) =
(
ψ

†
↑(y)ψ†

↓(y)ψ↑(y)ψ↓(y)
)

.

Thegeneralized single-particleGreen’s function Ĝ(x1; y2)=−〈
T̂u

(
�̂(x1) ⊗ �̂(y2)

)〉

is represented by a 4 × 4 matrix, which includes all possible thermodynamic aver-
ages (the symbol ⊗ means a tensor product between two matrices). As in quantum
electrodynamics, where the photons mediate the interaction of electric charges,
we define an action of the following form S = S(F)

0 + S(B)
0 + S(F−B), where

S(F)
0 = ψ̂(y)Ĝ(0)−1(y; x)ψ̂(x), S(B)

0 = 1
2 Aα(z)D(0)−1

αβ (z, z′)Aβ(z′), S(F−B) =
ψ̂(y)�̂(0)

α (y, x | z)ψ̂(x)Aα(z). The action S(F)
0 describes the fermion part of the

system. The generalized inverse Green’s function of free fermions Ĝ(0)−1(y; x) is
given by the following 4 × 4 matrix:

Ĝ(0)−1(y; x) =
∑

k,ωm

exp
[
ık.(ri − ri ′) − ωm(u − u′)

]
Ĝ(0)−1(k, ıωm),

where the symbol
∑

ωm
is used to denote β−1∑

m (for fermion fields ωm =
(2π/β)(m + 1/2);m = 0,±1,±2, ...). In the case of the population-imbalanced
Fermi gas with a Rashba SO coupling and an out-of-plane Zeeman field, the nonin-
teracting Green’s function is

Ĝ(0)−1(k, ıωm) =
(
g(0)−1
11 0
0 g(0)−1

22

)
,

g(0)−1
11 =

(
ıωm − ξ↑(k) − hz −2λ

(
sin kx + ı sin ky

)

−2λ
(
sin kx − ı sin ky

)
ıωm − ξ↓(k) + hz

)
,

g(0)−1
22 =

(
ıωm + ξ↑(k) + hz −2λ

(
sin kx − ı sin ky

)

−2λ
(
sin kx + ı sin ky

)
ıωm + ξ↓(k) − hz

)
,

The action S(B)
0 describes the boson field which mediates the fermion–fermion

on-site interaction in the Hubbard Hamiltonian. The bare boson propagator in S(B)
0 is

defined as

D̂(0)(z, z′) = δ(v − v′)Uδ j, j ′

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

The Fourier transform of this boson propagator is given by

D̂(0)(z, z′) = 1

N

∑

k

∑

ωp

e

{
ı
[
k.
(

r j−r j ′
)
−ωp(v−v′)

]}

D̂(0)(k),
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where

D̂(0)(k) =

⎛

⎜⎜⎝

0 U 0 0
U 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

The interaction between the fermion and the boson fields is described by the action
S(F−B). The bare vertex �̂

(0)
α (y1; x2 | z) = �̂

(0)
α (i1, u1; i2, u2 | j, v) = δ(u1 −

u2)δ(u1 − v)δi1i2δi1 j �̂
(0)(α) is a 4 × 4 matrix, where

�̂(0)(α) = 1

2
(γ0 + αz)δα1 + 1

2
(γ0 − αz)δα2 + 1

2
(αx + ıαy)δα3 + 1

2
(αx − ıαy)δα4.

TheDirac matrix γ0 and thematrices α̂i are defined as (when a four-dimensional space
is used, the electron spin operators σi has to be replaced by α̂iγ0)

γ0 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ , α̂i =
(

σi 0
0 σyσiσy

)
, i = x, y, z.

The relation between theHubbardmodel and ourmodel systemcanbe demonstrated
by applying the Hubbard–Stratonovich transformation for the fermion operators:

∫
Dμ[A] exp

[
ψ̂(y)�̂(0)

α (y; x |z)ψ̂(x)Aα(z)
]

= exp

[
−1

2
ψ̂(y)�̂(0)

α (y; x |z)ψ̂(x)D(0)
α,β(z, z′)ψ̂(y′)�̂(0)

β (y′; x ′|z′)ψ̂(x ′)
]

.

The functional measure Dμ[A] is chosen to be

Dμ[A] = DAe− 1
2 Aα(z)D(0)−1

α,β (z,z′)Aβ(z′)
,

∫
μ[A] = 1.

By following the standard steps in the functional integral technique, one can derive
the Dyson equation G−1 = G(0)−1 − �, and the BS equation [K−1 − I ]� = 0 for
the poles of the single-particle Green’s function, G, and the poles of the two-particle
Green’s function, respectively. Here, G(0) is the free single-particle propagator, �

is the fermion self-energy, I is the BS kernel, and the two-particle free propagator
K = GG is a product of two fully dressed single-particle Green’s functions. The
kernel of the BS equation is defined as a sum of the direct interaction, Id = δ�F/δG,
and the exchange interaction Iexc = δ�H/δG, where �F and �H are the Fock and
the Hartree parts of the fermion self-energy �. Since the fermion self-energy depends
on the two-particle Green’s function, the positions of both poles must to be obtained
by solving the Dyson and BS equations self-consistently.
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In practice, the GRPA allows us to decouple the Dyson equations from the BS
equation. According to this approximation, one can use the mean field approximation
for the single-particle Green’s function:

Ĝ−1
MF (k, ıωm) =

(
g(0)−1
11 ı
σy

−ı
σy g(0)−1
22

)
.

In the GRPA the direct interaction in the BS kernel is calculated by a linearized
Fock term and exact Hartree term:

�F
0 (i1, u1; i2, u2)n1n2

= −Uδi1,i2δ(u1 − u2)

⎛

⎜⎜⎝

0 G12(1; 2) 0 −G14(1; 2)
G21(1; 2) 0 −G23(1; 2) 0

0 −G32(1; 2) 0 G34(1; 2)
−G41(1; 2) 0 G43(1; 2) 0

⎞

⎟⎟⎠ ,

�̂H (i1, u1; i2, u2)

= U

2
δi1,i2δ(u1 − u2)

⎛

⎜⎜⎝

G22 − G44 0 0 0
0 G11 − G33 0 0
0 0 G44 − G22 0
0 0 0 G33 − G11

⎞

⎟⎟⎠ .

In the GRPA the BS equation for the sixteen BS amplitude �
Q
n2,n1 , {n1, n2} =

1, 2, 3, 4 is

�Q
n2n1 = K

(
n1 n3
n2 n4

|ω(Q)

)[
Id

(
n3 n5
n4 n6

)
+ Iexc

(
n3 n5
n4 n6

)]
�Q

n6,n5 ,

where Id

(
n1 n3
n2 n4

)
= −�

(0)
α (n1, n3)D

(0)
αβ �

(0)
β (n4, n2) and Iexc

(
n1 n3
n2 n4

)
=

1
2�

(0)
α (n1, n2)D

(0)
αβ �

(0)
β (n4, n3) are the direct and the exchange interactions [16], cor-

respondingly. The two-particle free propagator K in the GRPA is defined as follows:

K

(
n1 n3
n2 n4

|ω(Q)

)
=
∫

d�

2π

∫
ddk

(2π)2
GMF

n1n3 (k + Q,� + ω(Q))GMF
n4n2(k,�).

In the mean field approximation, the zero-temperature single-particle Green’s func-
tion is a 4 × 4 matrix which has components are

GMF
n1n2(k, ω) =

An1n2 (k)

ω−�(k)+ı0+ + Bn1n2 (k)

ω+�(k)−ı0+ + Cn1n2 (k)

ω−ω(k)+ı0+ + Dn1n2 (k)

ω+ω(k)−ı0+ .

123
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The corresponding expressions for An1n2(k), Bn1n2(k),Cn1n2(k), and Dn1n2(k) can
be obtained by inverting the Ĝ−1

MF (k, ıωm) matrix.
The above BS equation can be rewritten in matrix form as

(
Î +U M̂

)
�̂ = 0,

where the 16 × 16 matrix Î + U M̂ can be simplify to a 12 × 12 matrix. Thus,
the collective-mode dispersion ω(Q) in the GRPA is obtained by the condition
Det |M12×12(ω, Q)| = 0, where the matrix M12×12 is defined as

M12×12(ω, Q) =
⎛

⎝
M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠ ,

M11 =

⎛

⎜⎜⎝

1 +U/2 (K1221 − K1441) −UK1211 UK1411 −UK1121
U/2 (K2221 − K2441) 1 −UK2211 UK2411 −UK2121
U/2 (K4221 − K4441) −UK4211 1 +UK4411 −UK4121
U/2 (K1222 − K1442) −UK1212 UK1412 1 −UK1122

⎞

⎟⎟⎠ ,

M12 =

⎛

⎜⎜⎝

U/2 (K1111 − K1331) UK1321 UK1231 U/2 (K1441 − K1221)

U/2 (K2111 − K2331) UK2321 UK2231 U/2 (K2441 − K2221)

U/2 (K4111 − K4331) UK4321 UK4231 U/2 (K4441 − K4221)

U/2 (K1112 − K1332) UK1322 UK1232 U/2 (K1442 − K1222)

⎞

⎟⎟⎠ ,

M13 =

⎛

⎜⎜⎝

−UK1431 UK1141 −UK1341 U/2 (K1331 − K1111)

−UK2431 UK2141 −UK2341 U/2 (K2331 − K2111)

−UK4431 UK4141 −UK4341 U/2 (K4331 − K4111)

−UK1432 UK1142 −UK1342 U/2 (K1332 − K1112)

⎞

⎟⎟⎠ ,

M21 =

⎛

⎜⎜⎝

U/2 (K1222 − K1442) −UK2212 UK2412 −UK2122
U/2 (K3222 − K3442) −UK3212 UK3412 −UK3122
U/2 (K2223 − K2443) −UK2213 UK2413 −UK2123
U/2 (K3223 − K3443) UK3213 UK3413 −UK3123

⎞

⎟⎟⎠ ,

M22 =

⎛

⎜⎜⎝

1 +U/2 (K2112 − K2332) UK2322 UK2232 U/2 (K2442 − K2222)

U/2 (K3112 − K3332) 1 +UK3322 UK3232 U/2 (K3442 − K3222)

U/2 (K2113 − K2333) UK2323 1 +UK2233 U/2 (K2443 − K2223)

U/2 (K3113 − K3333) UK3323 UK3233 1 +U/2 (K3443 − K3223)

⎞

⎟⎟⎠ ,

M23 =

⎛

⎜⎜⎝

−UK2432 UK2142 −UK2342 U/2 (K2332 − K2112)

−UK3432 UK3142 −UK3342 U/2 (K3332 − K3112)

−UK2433 UK2143 −UK2343 U/2 (K2333 − K2113)

−UK3433 UK3143 −UK3343 U/2 (K3333 − K3113)

⎞

⎟⎟⎠ ,

M31 =

⎛

⎜⎜⎝

U/2 (K4223 − K4443) −UK4213 UK4413 −UK4123
U/2 (K1224 − K1444) −UK1214 UK1414 −UK1124
U/2 (K3224 − K3444) −UK3214 UK3414 −UK3124
U/2 (K4224 − K4444) −UK4214 UK4414 −UK4124

⎞

⎟⎟⎠ ,

123



J Low Temp Phys (2015) 181:147–159 159

M32 =

⎛

⎜⎜⎝

U/2 (K4113 − K4333) UK4323 UK4233 U/2 (K4443 − K4223)

U/2 (K1114 − K1334) UK1324 UK1234 U/2 (K1444 − K1224)

U/2 (K3114 − K3334) UK3324 UK3234 U/2 (K3444 − K3224)

U/2 (K4114 − K4334) UK4324 UK4234 U/2 (K4444 − K4224)

⎞

⎟⎟⎠ ,

M33 =

⎛

⎜⎜⎝

1 −UK4433 UK4143 −UK4343 U/2 (K4333 − K4113)

−UK1434 1 +UK1144 −UK1344 U/2 (K1334 − K1114)

−UK3434 UK3144 1 −UK3344 U/2 (K3334 − K3114)

−UK4434 UK4144 −UK4344 1 +U/2 (K4334 − K4114)

⎞

⎟⎟⎠ .

Here, we have used a short notation K

(
n1 n3
n2 n4

|ω(Q)

)
≡ Kn1n3n4n2 .
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