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Abstract In the spin-excitation-mediated pairing mechanism for superconductivity,
the geometric frustration effects not only the spin configuration but also the super-
conducting (SC)-state properties. Within the framework of the kinetic-energy-driven
SC mechanism, the doping and temperature dependences of the Meissner effect in
triangular-lattice superconductors are investigated. It is shown that the magnetic-field-
penetration depth exhibits an exponential temperature dependence due to the absence
of the d-wave gap nodes at the Fermi surface. However, in analogy to the dome-like
shape of the doping dependence of the SC transition temperature, the superfluid den-
sity increases with the increasing doping in the lower-doped regime, and reaches a
maximum around the critical doping, then decreases in the higher-doped regime.
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1 Introduction

Investigation of oxide compounds has uncovered many unusual properties character-
ized by the strong electron correlation, which include unconventional superconductiv-
ity and anomalous properties in the normal state [1,2]. Superconductivity in cuprate
superconductors results from some special microscopic conditions [1–3]: (a) the one-
half spin Cu ions situated in a square-planar arrangement and bridged by oxygen ions;
(b) the weak coupling between neighboring layers; and (c) the charge-carrier doping in
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such away that the Fermi level lies near themiddle of the Cu–O σ ∗ bond. One common
feature of cuprate superconductors is the square-planar Cu arrangement [1–3]. How-
ever, some oxide materials with a two-dimensional spin arrangements on non-square
lattices have been synthesized [2,4,5]. In particular, it has been reported [6–10] that
there is a class of cobaltate superconductors NaxCoO2 · yH2O, which have a lamellar
structure consisting of the two-dimensional CoO2 layers separated by a thick insu-
lating layer of Na+ ions and H2O molecules, where the one-half spin Co4+ ion sites
sit not on a square-planar, but on a triangular-planar lattice, therefore allowing a test
of the effect of the geometric frustration on superconductivity [2,4–10]. Moreover,
NaxCoO2 · yH2O is viewed as an electron-doped Mott insulator, where supercon-
ductivity appears with electron doping [6–10]. Furthermore, it has been found that
the antiferromagnetic (AF) spin correlation [11–15] is present in NaxCoO2 · yH2O,
although being much weaker than those in square-lattice cuprate superconductors. In
this case, a question that arises is whether the unusual features observed on square-
lattice superconductors exist also in triangular-lattice superconductors or not. The
finding of superconductivity in triangular-lattice cobaltate superconductors has raised
the hope that it may help solve the unusual physics in square-lattice cuprate super-
conductors. On the other hand, the doped Mott insulator on a triangular lattice is also
of interest in its own right with many unanswered fascinating questions [2,16], where
the geometric frustration is expected to destroy the AF long-range order (AFLRO)
and leads to a quantum spin–liquid state.

Superconductivity is characterized by exactly zero electrical resistance and expul-
sion of magnetic fields occurring in superconductors when cooled below Tc. The later
phenomenon is the so-calledMeissner effect [17], i.e., when a superconductor is placed
in an external magnetic field B smaller than the upper critical field Bc, the magnetic
field B penetrates only to a penetration depth λ and is excluded from the main body
of the system. This magnetic-field-penetration depth is a fundamental parameter of
superconductors, and provides a rather direct measurement of the superfluid density
ρs (ρs ≡ λ−2) [17], which is proportional to the squared amplitude of the macroscopic
wave function. In particular, the variation of the magnetic-field-penetration depth as
a function of doping and temperature gives the information about the nature of qua-
siparticle excitations and their dynamics. Moreover, the magnetic-field-penetration
depth can be also used as a probe of the pairing symmetry, since it can distinguish
between a fully gapped and a nodal quasiparticle excitation spectrum [17–19]. The
former results in the thermally activated (exponential) temperature dependence of
the magnetic-field-penetration depth, whereas the latter one implies a power law
behavior. For square-lattice superconductors, the Meissner effect has been studied
experimentally [20–26] as well as theoretically [27–33]. In particular, the electromag-
netic response in square-lattice superconductors has been discussed [32,33] based on
the kinetic-energy-driven superconducting (SC)mechanism [34–36], and the obtained
results of the doping and temperature dependences of the magnetic-field-penetration
depth and superfluid density are well consistent with the experimental data observed
on square-lattice superconductors [20–26]. In triangular-lattice cobaltate superconduc-
tors, on the other hand, although the Meissner effect has been investigated by virtue of
systematic studies using the muon-spin-rotation measurement technique [37,38], the
electromagnetic response has not been clarified starting from amicroscopic SC theory,
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and no explicit calculations of the evolution of the superfluid density with doping and
temperature have been done so far. In this paper, we try to study this issue within the
framework of the kinetic-energy-driven SC mechanism. We show that the magnetic-
field-penetration depth of triangular-lattice superconductors exhibits an exponential
temperature dependence due to the absence of the d-wave gap nodes. However, in anal-
ogy to the case of square-lattice superconductors, the superfluid density in triangular-
lattice superconductors also has a dome-like shape of the doping dependence.

The rest of this paper is organized as follows. The basic formalism is presented
in Sect. 2, where we generalize the response kernel function obtained within the
framework of the kinetic-energy-driven SC mechanism from the case in the previ-
ous square-lattice superconductors [32,33] to the present case for triangular-lattice
superconductors, and then employ this response kernel function to obtain explicitly
the doping dependence of the Meissner effect in triangular-lattice superconductors for
all the temperature T ≤ Tc. Based on this theoretical framework of the electromagnetic
response, we then discuss the basic behavior of triangular-lattice superconductors in
a weak electromagnetic field in Sect. 3. Finally, we give a summary in Sect. 4.

2 Theoretical Framework

In triangular-lattice cobaltate superconductors, the common feature is the presence
of the CoO2 plane [6–10], and then it is thus believed that the nonconventional SC
mechanism in triangular-lattice cobaltate superconductors and the related anomalous
properties in the normal state are dominated by this plane. In this case, many authors
have argued that the essential physics of the CoO2 plane is contained in the t–J model
on a triangular lattice [39–41]. To study the electromagnetic response in triangular-
lattice cobaltate superconductors, the t–J model can be generalized by including the
exponential Peierls factors as

H = t
∑

lη̂σ

e−i(e/h̄)A(l)·η̂PC†
lσCl+η̂σ P

†−μ
∑

lσ

PC†
lσClσ P

†+J
∑

lη̂

Sl · Sl+η̂, (1)

where the electron hopping integral t < 0, the summation is over all sites l, and for each
l, over its nearest neighbor η̂, C†

lσ , and Clσ are operators that, respectively, create and
annihilate electronswith spinσ ,Sl = (Sxl , Syl , Szl ) are spin operators,μ is the chemical
potential, and the projection operator P removes zero occupancy in the case of the
electron doping, i.e.,

∑
σ C†

lσClσ ≥ 1, while the exponential Peierls factor accounts
for the coupling of electron charge to the weak external magnetic field in terms of the
vector potential A(l). This t–J model (1) is the strong coupling limit of the Hubbard
model, and the crucial difficulty of its solution lies in enforcing the local constraint
of no zero electron occupancy. In the case of hole doping, an intuitively appealing
approach to implement the local constraint of no double-electron occupancy and the
charge–spin separation scheme is the slave-particle formalism [42,43]; however, the
local constraint of no double-electron occupancy is explicitly replaced by a global
constraint in the actual calculations. Following the charge–spin separation scheme,
a fermion-spin theory has been developed [36,44,45], where the local constraint of
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no-double electron occupancy can be treated properly in the actual calculations. To
apply the fermion-spin theory to the case of the electron doping, the t–J model (1)
can be rewritten in terms of a particle–hole transformation Clσ → f †l−σ as [46],

H = −t
∑

lη̂σ

e−i(e/h̄)A(l)·η̂ f †lσ fl+η̂σ + μ
∑

lσ

f †lσ flσ + J
∑

lη̂

Sl · Sl+η̂, (2)

where f †lσ ( flσ ) is the hole creation (annihilation) operator. This t–J model (2) in the
hole representation is subject to the local constraint that double occupancy of a site
by two fermions of opposite spins is not allowed, i.e.,

∑
σ f †lσ flσ ≤ 1. The physics of

the no double-electron occupancy in the fermion-spin theory is taken into account by
representing the fermion operator flσ as a composite object created by [36,44,45],

fl↑ = a†l↑S
−
l , fl↓ = a†l↓S

+
l , (3)

where the spinful fermion operator alσ = e−i�lσ al describes the charge degree of
freedom of the hole together with some effects of spin configuration rearrangements
due to the presence of the doped electron itself (charge carrier), while the spin oper-
ator Sl represents the spin degree of freedom of the hole, then the local constraint
of no double occupancy is satisfied in the actual calculations. In this fermion-spin
representation (3), the t–J model (2) can be expressed as [46],

H = t
∑

lη̂

e−i(e/h̄)A(l)·η̂(a†l+η̂↑al↑S
+
l S−

l+η̂
+ a†l+η̂↓al↓S

−
l S+

l+η̂
)

−μ
∑

lσ

a†lσalσ + Jeff
∑

lη̂

Sl · Sl+η̂, (4)

where Jeff = (1 − δ)2 J , and δ = 〈a†lσalσ 〉 = 〈a†l al〉 is the charge-carrier doping
concentration.At half-filling, the t–J model (4) is reduced to theAFHeisenbergmodel
on a triangular lattice. In the early days of the spin liquid, it was proposed that the
strong geometry frustration in the triangular-lattice Heisenbergmodel may completely
destroy AFLRO [47,48]. Later, a series of studies with spin-wave calculations [49,50]
and numerical simulations [51–53] indicate that the triangular-lattice AF Heisenberg
model appears to have better state with three sublattice magnetic order. However, for
the case in the square lattice, it has been shown that AFLRO is destroyed by charge-
carrier doping with δ ∼ 0.05–0.07 for t/J ∼ 2.5–5 [54,55]. It is thus possible that the
spin–liquid state is attained in the triangular-lattice system for sufficiently low doping,
such as δ ∼ 0.05, due to the strong geometry frustration, and then there is no AFLRO
in the doped regime where superconductivity appears.

Much of the interest in oxide superconductors is due to the fact that these materials
represent novel SC mechanism for superconductivity. Based on the t–J model in the
fermion-spin representation, we have developed a kinetic-energy-driven SC mecha-
nism [34–36] in the case without AFLRO for a microscopic description of the SC state
of square-lattice cuprate superconductors. This kinetic-energy-driven superconductiv-
ity is purely electronic without phonons, where the charge-carrier pairing interaction
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arises directly from the kinetic energy by the exchange of spin excitations in the higher
powers of the doping concentration. In particular, the kinetic-energy-driven SC state
is controlled by both the SC gap and quasiparticle coherence, then the maximal SC
transition temperature Tc occurs around the optimal doping, and decreases in both
the underdoped and overdoped regimes. On the other hand, since the strong electron
correlation is common for both these materials [1–16], these two oxide systems may
have similar underlying SC mechanism, i.e., it is possible that superconductivity in
triangular-lattice cobaltate superconductors is also driven by the kinetic energy. In this
case, superconductivity in triangular-lattice superconductors has been discussed based
on the kinetic-energy-driven SC mechanism [46], where although the effect from the
charge-carrier quasiparticle coherence has been dropped, the obtained doping depen-
dence of Tc is in qualitative agreement with experimental data [7–10] of NaxCoO2
·yH2O. In this paper, we generalize the formalism of the kinetic-energy-driven SC
mechanism developed in Ref. [46] by considering the effect from the charge-carrier
quasiparticle coherence, and then apply this new form to study the electromagnetic
response in triangular-lattice superconductors. Following the previous discussions
[34–36,46], the self-consistent equations that are satisfied by the full charge-carrier
diagonal and off-diagonal Green’s functions of the triangular-lattice t–J model (4) in
the SC state at zero magnetic field can be obtained explicitly as

g(k, ω) = g(0)(k, ω) + g(0)(k, ω)[	(a)
1 (k, ω)g(k, ω) − 	

(a)∗
2 (k, ω)
†(k, ω)],

(5a)


†(k, ω) = g(0)(−k,−ω)[	(a)
1 (−k,−ω)
†(k, ω) + 	

(a)
2 (k, ω)g(k, ω)], (5b)

respectively, where g(0)−1(k, ω) = ω − ξk is the mean-field (MF) charge-carrier
Green’s function, ξk = Ztχγk − μ is the MF charge-carrier excitation spectrum,
Z is the number of the nearest neighbor sites, γk = (1/Z)

∑
η̂ e

ik·η̂ = [cos kx +
2 cos(kx/2) cos(

√
3ky/2)]/3, and the spin correlation function χ is defined as χ =

〈S+
l S−

l+η̂
〉, while the charge-carrier self-energies have been obtained as

	
(a)
1 (k, iωn) = (Zt)2

1

N 2

∑

p,p′
γ 2
p+p′+k

1

β

∑

i pm

g(p + k, i pm + iωn)�(p,p′, i pm),

(6a)

	
(a)
2 (k, iωn) = (Zt)2

1

N 2

∑

p,p′
γ 2
p+p′+k

1

β

∑

i pm


†(p + k, i pm + iωn)�(p,p′, i pm),

(6b)
with the spin bubble,

�(p,p′, i pm) = 1

β

∑

i p′
m

D(0)(p′, i p′
m)D(0)(p′ + p, i p′

m + i pm), (7)

where D(0)(l − l ′, t − t ′) = 〈〈S+
l (t); S−

l ′ (t
′)〉〉 is the MF spin Green’s function, and

has been evaluated as
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D(0)(p, ω) = Bp

2ωp

(
1

ω − ωp
− 1

ω + ωp

)
, (8)

with the function Bp = λ[2χz(εγp − 1) + χ(γp − ε)], while the MF spin excitation
spectrum ωp is given by

ω2
p = λ2

[
1

2
ε

(
A1 − 1

3
αχz − αχγk

)
(ε − γk)

+
(
A2 − 1

2Z
αεχ − αεχzγk

)
(1 − εγk)

]
, (9)

with A1 = αC + (1 − α)/(2Z), A2 = αCz + (1 − α)/(4Z), λ = 2Z Jeff , ε =
1 + 2tφ/Jeff , the charge-carrier’s particle-hole parameter φ = 〈a†lσal+η̂σ 〉, and the
spin correlation functions χz = 〈Szl Szl+η̂

〉, C = (1/Z2)
∑

η̂,η̂′ 〈S+
l+η̂

S−
l+η̂′ 〉, and Cz =

(1/Z2)
∑

η̂,η̂′ 〈Szl+η̂
Sz
l+η̂′ 〉. Since the quantum spin operators obey the Pauli algebra, it

needs to apply the decoupling approximation [56,57] to the higher-order spin Green’s
function for obtaining the MF spin Green’s function D(0)(p, ω). In particular, in order
to satisfy the sum rule of the correlation function 〈S+

l S−
l 〉 = 1/2 in the case without

AFLRO, an important decoupling parameter α has been introduced in the decoupling
approximation for the higher-order spin Green’s function, which can be regarded as
the vertex correction, and is determined self-consistently [36,57].

In obtaining Eqs. (5) and (6), the facts 	
(a)
2 (−k,−ω) = 	

(a)
2 (k, ω) and


†(−k,−ω) = 
†(k, ω) have been used, which indicates that the charge-carrier pair
gap �̄

(a)
k (ω) = 	

(a)
2 (k, ω) is an even function of ω. However, the other charge-carrier

self-energy 	
(a)
1 (k, ω) is not. It is convenient to break it into its symmetric and anti-

symmetric parts as 	
(a)
1 (k, ω) = 	

(a)
1e (k, ω) + ω	

(a)
1o (k, ω), and then 	

(a)
1e (k, ω) and

	
(a)
1o (k, ω) are both even functions ofω. The antisymmetric part	(a)

1o (k, ω) of the self-

energy	
(a)
1 (k, ω) renormalizes theMF charge-carrier spectrum, and is directly related

to the charge-carrier quasiparticle coherent weight as Z−1
aF (k, ω) = 1− Re	(a)

1o (k, ω),

while the symmetric part 	
(a)
1e (k, ω) of the self-energy 	

(a)
1 (k, ω) just renormalizes

the chemical potential. In this paper, we mainly focus on the low-energy behav-
ior, and in this case, the charge-carrier pair gap and quasiparticle coherent weight
can be generally discussed in the static limit, i.e., �̄

(a)
k = 	

(a)
2 (k, ω) |ω=0, and

Z−1
aF (k) = 1− Re	(a)

1o (k, ω) |ω=0. Although ZaF(k) still is a function of momentum,
as a qualitative discussion, however, the wave vector k in ZaF(k) can be chosen in the
high symmetry point of the Brillouin zone:

1

ZaF
= 1 − Re	(a)

1o (k, ω = 0) |k0 , (10)

with k0 = [π/3,
√
3π/3]. In triangular-lattice superconductors, a central issue is

whether the charge-carrier pair gap has nodes at the Fermi surface or not. Experimen-
tally, it is far from reaching a consensus on the pairing symmetry. From early NMR
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and NQR measurements, the contradictory results were obtained, since some experi-
mental data are consistent with the case of the existence of a coherence peak indicating
a complete gap over the Fermi surface [10,11], while other experimental results sug-
gest no coherence peak [12,15]. In particular, although the recent experimental results
[58,59] obtained from the specific-heat measurements do not give unambiguous evi-
dence for either the presence or the absence of the nodes in the energy gap, the
experimental data of the specific heat [58,59] are consistent with these fitted results
obtained from phenomenological Bardeen–Cooper–Schrieffer (BCS) formalism with
the d-wave (d1 + id2 pairing) symmetry without gap nodes. On the theoretical hand,
according to the irreducible representations of the triangular-lattice system, it has
been pointed out that there are three possible basis functions of even parity [60], i.e.,
one s-like function sk = coskx + cos[(kx − √

3ky)/2] + cos[(kx + √
3ky)/2], and

two d-like functions, d1k = 2coskx − cos[(kx − √
3ky)/2] − cos[(kx + √

3ky)/2]
and d2k = √

3cos[(kx + √
3ky)/2] − √

3cos[(kx − √
3ky)/2]. However, with the

different linear combinations of these basis functions, one finds [60] based on the
variational Monte Carlo simulation of the resonating-valence-bond wave function
that the lowest energy state of the AF triangular-lattice Heisenberg model is the d-
wave (d1k + id2k) state with the energy gap �k ∝ �(d1k + id2k). Furthermore, it
has been shown based on the numerical simulations that this d-wave state also is the
lowest state around the electron-doped regime where superconductivity appears in
triangular-lattice superconductors [61–63]. In particular, the recent theoretical studies
based on a phenomenological analysis [64] and a combined cluster calculation and
renormalization group approach [65] show that this d-wave state naturally explains
some SC-state properties as indicated by experiments. In this case, we only consider
the case with the d-wave pairing symmetry:

�̄
(a)
k = �̄(a)(d1k + id2k), (11)

and then the full charge-carrier diagonal and off-diagonal Green’s functions in Eq. (5)
can be obtained explicitly as

g(k, ω) = ZaF

(
U 2
ak

ω − Eak
+ V 2

ak

ω + Eak

)
, (12a)


†(k, ω) = −ZaF
�̄

(a)
Zk

2Eak

(
1

ω − Eak
− 1

ω + Eak

)
, (12b)

with the charge-carrier quasiparticle energy spectrum Eak =
√

ξ̄2k+ | �̄
(a)
Zk |2, the

renormalized charge-carrier excitation spectrum ξ̄k = ZaFξk, and the renormalized
charge-carrier pair gap �̄

(a)
Zk = ZaF�̄

(a)
k , while the charge-carrier quasiparticle coher-

ence factors,

U 2
ak = 1

2

(
1 + ξ̄k

Eak

)
, (13a)
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V 2
ak = 1

2

(
1 − ξ̄k

Eak

)
, (13b)

satisfy the constraint U 2
hk + V 2

hk = 1 for any wave vector k. In spite of the pairing
mechanism driven by the kinetic energy by the exchange of spin excitations, the
result in Eq. (12) is a standard BCS expression for a charge-carrier d-wave pair state.
It should be emphasized that in triangular-lattice superconductors, there is a large
charge-carrier Fermi surface around the 
 point in the Brillouin zone as well as six
small hole pockets near the K points as shown in Fig. 1a. In particular, the nodes of
the charge-carrier d-wave pair gap (11) exist only on the six hole pockets and not
on the large charge-carrier Fermi surface as shown in Fig. 1b. However, these nodes
around the six hole pockets are far from the large charge-carrier Fermi surface, and
therefore, there are no gapless charge-carrier quasiparticle excitations. In this case, the
effect from these charge-carrier quasiparticles around the nodes is unimportant, since
everything happens at the charge-carrier Fermi surface. It is thus expected that the basic
behavior of the evolution of the magnetic-field-penetration depth (then the superfluid
density) with temperature in triangular-lattice superconductors is much different from
that in square-lattice superconductors.

According to the full charge-carrier Green’s functions in Eq. (12) and spin Green’s
function in Eq. (8), now the charge-carrier self-energies 	

(a)
1 (k, ω) and 	

(a)
2 (k, ω)

can be evaluated explicitly as

	
(a)
1 (k, ω) = 1

N 2

∑

pp′n
(−1)n+1�

(a)
pp′k

×
⎡

⎣U 2
ap+k

⎛

⎝
F (n)

1app′k
ω + ωnpp′ − Eap+k

+ F (n)

2app′k
ω − ωnpp′ − Eap+k

⎞

⎠

+ V 2
ap+k

⎛

⎝
F (n)

1app′k
ω − ωnpp′ + Eap+k

+ F (n)

2app′k
ω + ωnpp′ + Eap+k

⎞

⎠

⎤

⎦ , (14a)

	
(a)
2 (k, ω) = 1

N 2

∑

pp′n
(−1)n�(a)

pp′k
�̄

(a)
Zp+k

2Eap+k

×
⎡

⎣

⎛

⎝
F (n)

1app′k
ω + ωnpp′ − Eap+k

+ F (n)

2app′k
ω − ωnpp′ − Eap+k

⎞

⎠

−
⎛

⎝
F (n)

1app′k
ω − ωnpp′ + Eap+k

+ F (n)

2app′k
ω + ωnpp′ + Eap+k

⎞

⎠

⎤

⎦ , (14b)

respectively, with n = 1, 2, �
(a)
pp′k = ZaF(Ztγp+p′+k)

2Bp′ Bp+p′/(4ωp′ωp+p′),
ωnpp′ = ωp+p′ − (−1)nωp′ , and the functions:

F (n)

1app′k = nF(Eap+k)
{
1 + nB(ωp′+p) + nB[(−1)n+1ωp′ ]

}

123



120 J Low Temp Phys (2015) 181:112–133

Fig. 1 a The spectral intensity
maps at the charge-carrier Fermi
energy in δ = 0.20 with
T = 0.001J for t/J = −2.5. b
The d-wave gap maps in the
Brillouin zone (Color figure
online)

(a)

(b)

+ nB(ωp′+p)nB[(−1)n+1ωp′ ], (15a)

F (n)

2app′k = [1 − nF(Eap+k)]
{
1 + nB(ωp′+p) + nB[(−1)n+1ωp′ ]

}

+ nB(ωp′+p)nB[(−1)n+1ωp′ ], (15b)

where nB(ω) and nF(ω) are the boson and fermion distribution functions, respectively.
In this case, the charge-carrier quasiparticle coherent weight ZaF in Eq. (10) and
charge-carrier pair gap parameter �̄(a) in Eq. (11) satisfy the following two self-
consistent equations:

1

ZaF
= 1 + 1

N 2

∑

pp′n
(−1)n+1�

(a)
pp′k0

⎛

⎝
F (n)

1app′k0
(ωnpp′ − Eap+k0)

2 + F (n)

2app′k0
(ωnpp′ + Eap+k0)

2

⎞

⎠ ,

(16a)

1 = 6

N 3

∑

pp′kn
(−1)n ZaF�

(a)
pp′k

�
(d)∗
k �

(d)
p+k

Eap−k

⎛

⎝
F (n)

1app′k
ωnpp′ − Eap+k

− F (n)

2app′k
ωnpp′ + Eap+k

⎞

⎠ , (16b)
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respectively, with �
(d)
k = d1k + id2k. These two Eqs. (16a) and (16b) must be solved

simultaneously with the following self-consistent equations:

φ = 1

2N

∑

k

γkZaF

(
1 − ξ̄k

Eak
tanh

[
1

2
βEak

])
, (17a)

δ = 1

2N

∑

k

ZaF

(
1 − ξ̄k

Eak
tanh

[
1

2
βEak

])
, (17b)

χ = 1

N

∑

k

γk
Bk

2ωk
coth

[
1

2
βωk

]
, (17c)

C = 1

N

∑

k

γ 2
k

Bk

2ωk
coth

[
1

2
βωk

]
, (17d)

1

2
= 1

N

∑

k

Bk

2ωk
coth

[
1

2
βωk

]
, (17e)

χz = 1

N

∑

k

γk
Bzk

2ωzk
coth

[
1

2
βωzk

]
, (17f)

Cz = 1

N

∑

k

γ 2
k

Bzk

2ωzk
coth

[
1

2
βωzk

]
, (17g)

and then all the order parameters, the decoupling parameter α, and the chemical
potential μ are determined self-consistently without using any adjustable parameters.

These equations in Eqs. (16) and (17) have been calculated self-consistently, and
the result of the charge-carrier pair gap parameter �̄(a) as a function of doping for
parameter t/J = −2.5 with temperature T = 0.001J is shown in Fig. 2. It is shown
clearly that the charge-carrier pair gap parameter �̄(a) takes a dome-like shapewith the
underdoped and overdoped regimes on each side of the optimal doping δoptimal ≈ 0.19,

Fig. 2 The charge-carrier pair gap parameter as a function of doping with T = 0.001J for t/J = −2.5
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Fig. 3 Tc as a function of doping for t/J = −2.5. Inset the corresponding experimental result of NaxCoO2
·yH2O taken from Ref. [7]

where �̄(a) reaches its maximum. Moreover, we have made a series of calculations
for �̄(a) at different temperatures, and the result shows that the charge-carrier pair gap
parameter �̄(a) follows qualitatively a BCS-type temperature dependence.

Tc, on the other hand, can be obtained self-consistently from the self-consistent
equations (16) and (17) by the condition �̄(a) = 0, and the result of Tc as a function
of doping for t/J = −2.5 is plotted in Fig. 3 in comparison with the corresponding
experimental result [7] of NaxCoO2 ·yH2O (inset). Obviously, the experimental result
[7–10] of the doping dependence of Tc in the triangular-lattice cobaltate superconduc-
tor NaxCoO2 ·yH2O is qualitatively reproduced. The optimal Tc occurs in a narrow
range of doping, and then decreases for both underdoped and overdoped regimes, in
dramatic analogy to the phase diagram of square-lattice cuprate superconductors [66].
However, in comparison with the result of Tc obtained from square-lattice cuprate
superconductors, the present result also shows that the geometric frustration, accom-
panied by large fluctuations, suppresses Tc to low temperatures.

Within the above framework of the kinetic-energy-driven superconductivity, we
now turn to discuss the doping and temperature dependence of the electromagnetic
responses in triangular-lattice superconductors. For discussions of the Meissner effect
in a superconductor, one usually starts from the general relation between the current
and the vector potential [17,67,68],

Jμ(q, ω) = −
∑

ν

Kμν(q, ω)Aν(q, ω), (18)

where the Greek indices label the axes of the Cartesian coordinate system, while the
nonlocal kernel of the response function Kμν(q, ω) can be expressed as Kμν(q, ω) =
K (d)

μν (q, ω) + K (p)
μν (q, ω), with K (d)

μν (q, ω) and K (p)
μν (q, ω) as the corresponding dia-

magnetic and paramagnetic parts.
In the fermion-spin representation (3), the vector potential A has been coupled to

the electron charge which are now represented by fl↑ = a†l↑S
−
l and fl↓ = a†l↓S

+
l . In
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this case, the electron polarization operator is expressed as P = e
∑

lσ RlC
†
lσClσ =

e
∑

l Rla
†
l al , and then the corresponding electron current operator is obtained by

evaluating the time derivative of this polarization operator j = ∂P/∂t = i[H,P]/h̄
[32,33]. In the linear response approximation with respect to Aν(l), this electron
current operator is reduced as j = j(d) + j(p), with the corresponding diamagnetic (d)
and paramagnetic (p) components of the electron current operator are given by

j(d) = −e2t

h̄2
∑

lη̂

η̂A(l) · η̂
(
a†l+η̂↑al↑S

+
l S−

l+η̂
+ a†l+η̂↓al↓S

−
l S+

l+η̂

)
, (19a)

j(p) = − iet

h̄

∑

lη̂

η̂
(
a†l+η̂↑al↑S

+
l S−

l+η̂
+ a†l+η̂↓al↓S

−
l S+

l+η̂

)
, (19b)

respectively. The diamagnetic component of the electron current operator in Eq.
(19a) is proportional to the vector potential, and therefore the diamagnetic part of
the response kernel can be obtained directly as

K (d)
μν (q, ω) = −6e2

h̄2
χφtδμν = 1

λ2L
δμν, (20)

with the London penetration depth λ−2
L = −6e2χφt/h̄2.

The paramagnetic part of the response kernel, on the other hand, is directly
related to the electron current–current correlation function Pμν(q, τ ) = −〈Tτ { j (p)μ

(q, τ ) j (p)ν (−q, 0)}〉, and can be expressed as K (p)
μν (q, ω) = Pμν(q, ω). In the fermion-

spin approach, the paramagnetic component of the electron current operator in Eq.
(19b) can be decoupled as

j(p) = − ieχ t

h̄

∑

lη̂σ

η̂a†l+η̂σ
alσ − ieφt

h̄

∑

lη̂

η̂(S+
l S−

l+η̂
+ S−

l S+
l+η̂

). (21)

As in the case of square-lattice superconductors [32,33], the second term in the right-
hand side refers to the contribution from the electron spin, and can be shown that∑
lη̂

η̂(S+
l S−

l+η̂
+ S−

l S+
l+η̂

) ≡ 0, i.e., there is no direct contribution for the electron

current–current correlation function Pμν(q, τ ) from the electron spin, and then the
majority contribution for Pμν(q, τ ) comes from the electron charge; however, the
strong interplay between charge carriers and spins has been considered through the
spin’s order parameters entering in the charge-carrier part of the contribution to the
current–current correlation Pμν(q, τ ).

The density operator is summed over the position of all particles, i.e, ρ(l) =
−e[1/N ]∑lσ C†

lσClσ = −e[1/(2N )]∑lσ a†lσalσ , and then its Fourier transform can

be expressed as ρ(q) = −e/(2N )
∑

kσ a†kσak+qσ . For a convenience in the following
discussions, the paramagnetic component of the electron current operator in Eq. (19b)
and density operator can be rewritten into the four-current operator in the Nambu
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representation in terms of the charge-carrier Nambu operators, �†
k = (a†k↑, a−k↓) and

�k+q = (ak+q↑, a†−k−q↓)T, as

j (p)μ (q) = 1

N

∑

k

�
†
kγμ(k,k + q)�k+q, (22)

with the bare current vertex,

γμ(k,k+q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2eχ t
h̄ e

1
4 iqx

{
cos 1

4qx sin
(
kx + 1

2qx
)+ cos

√
3
4 qy sin

( 1
2kx + 1

4qx
)

× cos
(√

3
2 ky +

√
3
4 qy

)
+ i

[
sin 1

4qx sin
(
kx + 1

2qx
)

+ sin
√
3
4 qy cos

( 1
2kx + 1

4qx
)
sin

(√
3
2 ky +

√
3
4 qy

)]}
for μ = x

−√
32eχ t

h̄ ei
√
3
4 qy

[
cos 1

4qx cos
( 1
2kx + 1

4qx
)
sin

(√
3
2 ky +

√
3
4 qy

)

+i sin 1
4qx sin

( 1
2kx + 1

4qx
)
cos

(√
3
2 ky +

√
3
4 qy

)]
for μ = y

− 1
2eτ3 for μ = 0 (23)

In this case, the current–current correlation function is obtained as

Pμν(q, iωn) = 1

N

∑

k

γμ(k + q,k)γ ∗
ν (k + q,k)

× 1

β

∑

iνm

Tr[g̃(k + q, iωn + iνm)g̃(k, iνm)], (24)

where the full charge-carrier Green’s function g̃(k, ω) in the Nambu representation
can be expressed in terms of the full charge-carrier Green’s function (12) as

g̃(k, ω) = ZaF
ωτ0 + ξ̄kτ3 − �̄

(a)
Z (d1kτ1 + d2kτ2)

ω2 − E2
ak

. (25)

Substituting this charge-carrier Green’s function (25) into Eq. (24), the paramagnetic
part of the response kernel in the static limit (ω ∼ 0) is evaluated as

K (p)
μν (q, 0) = 1

N

∑

k

γμ(k + q,k)γ ∗
ν (k + q,k)[L(a)

1 (k,q) + L(a)
2 (k,q)]

= K (p)
μμ(q, 0)δμν, (26)

with the functions L(a)
1 (k,q) and L(a)

2 (k,q) given by

L(a)
1 (k,q) = Z2

aF

⎛

⎝1 + ξ̄kξ̄k+q + 1
2 �̄

(a)
Zk�̄

(a)∗
Zk+q + 1

2 �̄
(a)∗
Zk �̄

(a)
Zk+q

EakEak+q

⎞

⎠

×nF(Eak) − nF(Eak+q)

Eak − Eak+q
, (27a)
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L(a)
2 (k,q) = Z2

aF

⎛

⎝1 − ξ̄kξ̄k+q + 1
2 �̄

(a)
Zk�̄

(a)∗
Zk+q + 1

2 �̄
(a)∗
Zk �̄

(a)
Zk+q

EakEak+q

⎞

⎠

×nF(Eak) + nF(Eak+q) − 1

Eak + Eak+q
, (27b)

respectively. In this case, the kernel of the response function in Eq. (18) is nowobtained
from Eqs. (20) and (26) as

Kμν(q, 0) =
[

1

λ2L
+ K (p)

μμ(q, 0)

]
δμν. (28)

In the long-wavelength limit, i.e., |q| → 0, the function L(a)
2 (k,q → 0) vanishes,

then the paramagnetic part of the response kernel in Eq. (26) is reduced as

K (p)
yy (q → 0, 0) = Z2

aF
24e2

h̄2
1

N

∑

k

χ2t2 cos2
(
1

2
kx

)
sin2

(√
3

2
ky

)

× lim
q→0

nF(Eak) − nF(Eak+q)

Eak − Eak+q
. (29)

However, at zero temperature (T = 0), K (p)
yy (q → 0, 0)|T=0 = 0, and then the

long-wavelength electromagnetic response is determined by diamagnetic part of the
response kernel K (d)

yy only. On the other hand, at T = Tc, the charge-carrier gap
parameter �̄(a)|T=Tc = 0, and in this case, the paramagnetic part of the response
kernel in the long-wavelength limit can be evaluated as

K (p)
yy (q → 0, 0) = Z2

aF
24e2

h̄2
1

N

∑

k

χ2t2 cos2
(
1

2
kx

)
sin2

(√
3

2
ky

)

lim
q→0

nF(ξ̄k) − nF(ξ̄k+q)

ξ̄k − ξ̄k+q
= − 1

λ2L
, (30)

which exactly cancels the diamagnetic part of the response kernel in Eq. (20), and then
the Meissner effect in triangular-lattice superconductors disappears for all tempera-
tures T ≥ Tc. These results also reflect that theMeissner effect is strongly temperature
dependent. To show this point clearly, we introduce an effective superfluid density
ns(T ) at temperature T , which is defined in terms of the paramagnetic part of the
response kernel as

K (p)
μν (q → 0, 0) = − 1

λ2L

[
1 − ns(T )

ns(0)

]
δμν, (31)

where the ratio ns(T )/ns(0) of the effective superfluid densities at temperature T and
zero temperature is obtained directly from the paramagnetic part of the response kernel
(29) as
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Fig. 4 The effective superfluid density as a function of temperature at δ = 0.15 for t/J = −2.5

ns(T )

ns(0)
= 1 − λ2LZ

2
aF
24e2

h̄2
1

N

∑

k

[
χ t cos

(
1

2
kx

)
sin

(√
3

2
ky

)]2
βeβEak

(eβEak + 1)2
.

(32)

In this case, the kernel of the response function in Eq. (28) can be expressed explicitly
in terms of the effective superfluid density as

Kμν(q → 0, 0) = 1

λ2L

ns(T )

ns(0)
δμν. (33)

In Fig. 4, we plot this effective superfluid density ns(T )/ns(0) as a function of temper-
ature at δ = 0.15 for t/J = −2.5, where ns(T )/ns(0) decreases with the increasing
temperatures, and vanishes at Tc, and then all the charge carriers are in the normal fluid
for temperatures T ≥ Tc. To sum up, within the kinetic-energy-driven SCmechanism,
we find that (a) theMeissner effect in triangular-lattice superconductors is obtained for
all temperatures T ≤ Tc throughout the SC dome; (b) the electromagnetic response
kernel goes to the London form in the long-wavelength limit [see, e.g., Eq. (33)]; (c)
although the electromagnetic response kernel (28) is not manifestly gauge invariant
within the bare current vertex (23); however, we can keep the gauge invariance within
the dressed current vertex as it has been done in the case for square-lattice supercon-
ductors [69]; (d) in spite of the pairing mechanism driven by the kinetic energy by the
exchange of spin excitations, the kinetic-energy-driven SC state in triangular-lattice
superconductors still is conventional BCS-like with the d-wave symmetry without
gap nodes at the charge-carrier Fermi surface, which leads to a fact that the superfluid
density, therefore follows essentially a BCS-type temperature dependence as in the
case of conventional superconductors [17].
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3 Doping Dependence of Electromagnetic Response

In the above discussions, it is shown that once the response kernel Kμν is known,
the effect of a weak electromagnetic field on a superconductor can be quantitatively
characterized by experimentally measurable quantities such as the magnetic-field-
penetration depth and superfluid density. However, the result of the effective superfluid
density in Eq. (32) obtained from the response kernel in Eq. (33) cannot be used for
a direct comparison with the corresponding experimental data of triangular-lattice
superconductors because the kernel function derived within the linear response theory
describes the response of an infinite system [32,33,69], whereas, in the actual problem
of the penetration of the field, the system has a surface, i.e., it occupies a half space x >

0. In this case, we need to impose boundary conditions for charge carriers, which can
be done within the simplest specular reflection model [70,71] with a two-dimensional
geometry of the SC plane. Following our previous discussions of the electromagnetic
response in square-lattice superconductors [32,33,69], the local magnetic field profile
of triangular-lattice superconductors can be evaluated explicitly as

hz(x) = B

π

∫ ∞

−∞
dqx

qx sin(qx x)

μ0Kyy(qx , 0, 0) + q2x
, (34)

and then the magnetic-field-penetration depth is obtained from this local magnetic
field profile as

λ(T ) = 1

B

∫ ∞

0
hz(x)dx = 2

π

∫ ∞

0

dqx
μ0Kyy(qx , 0, 0) + q2x

. (35)

For a convenience in the following discussions, we introduce a characteristic length
scale a0 =

√
h̄2a/μ0e2 J . Using the lattice parameter a ≈ 0.282 nm for NaxCoO2 ·

yH2O, this characteristic length is obtained as a0 ≈ 83.9 nm.
We are now ready to discuss the electromagnetic response in triangular-lattice

superconductors. At zero temperature, the obtained magnetic-field-penetration depths
from Eq. (35) are λ(0) ≈ 362.96 nm, λ(0) ≈ 316.38 nm, and λ(0) ≈ 294.36 nm for
δ = 0.15, δ = 0.17, and δ = 0.19, respectively. However, at T = Tc, since the kernel
of the response function Kμν(q → 0, 0)|T=Tc = 0, the magnetic-field-penetration
depth is found as λ(Tc) = ∞, i.e., the external magnetic field can penetrate through
all the main body of the system for T ≥ Tc, and then the Meissner effect does not
exist in the normal state. On the other hand, λ(T ) is sensitive to low-lying excitations.
To show this point clearly, λ(T )/λ(0) as a function of temperature at δ = 0.15 for
t/J = −2.5 is plotted in Fig. 5. It is seen that below temperatures T < 0.25Tc,
λ(T ) is practically independent temperature, which is a reflection of the absence
of the d-wave gap nodes at the large charge-carrier Fermi surface. However, above
temperatures T > 0.25Tc, λ(T ) increases rapidly with the increasing temperature. In
particular,wehavefittedour present theoretical result of themagnetic-field-penetration
depth difference �λ(T ) = λ(T ) − λ(0), and the fitted result is shown in the inset of
Fig. 5. We thus find that �λ(T ) varies exponentially as a function of temperature
(�λ(T ) = A exp[−B�̄(a)(T )/T ] with A ∼ 2789.62 and B ∼ 0.59), which is the
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Fig. 5 The magnetic-field-penetration as a function of temperature at δ = 0.15 for t/J = −2.5.
Inset the magnetic-field-penetration difference �λ(T ) = λ(T ) − λ(0) (solid line) as a function of
temperature at δ = 0.15 for t/J = −2.5, while the dashed line is obtained from a numerical fit
�λ(T ) = A exp[−B�̄(a)(T )/T ] with A ∼ 2789.62 and B ∼ 0.59

expected result in the case without the d-wave gap nodes at the large charge-carrier
Fermi surface.

An external magnetic field acts on the SC state of triangular-lattice superconductors
as a perturbation. In the linear response form (18), the nonlocal relation between the
supercurrent and the vector potential in the coordinate space holds due to the finite
size of charge-carrier pairs. In particular, the size of charge-carrier pairs is of the
order of the coherence length ζ(k) = h̄vF/(π�̄

(a)
k ), where vF = h̄−1∂ξk/∂k|kF is the

charge-carrier velocity at the large charge-carrier Fermi surface, which shows that the
size of the charge-carrier pairs is momentum dependent. In general case, although the
external magnetic field decays on the scale of the magnetic-field-penetration length
λ(T ), any nonlocal contributions to measurable quantities are of the order of κ−2,
where the Ginzburg–Landau parameter κ is the ratio of the magnetic-field-penetration
depth λ and the coherence length ζ . However, for the charge-carrier d-wave pair gap
(11), there are no gap nodes at the large charge-carrier Fermi surface. In this case, the
momentum-dependent coherence length ζ(k) can be replaced approximately by the
isotropic one ζ0 = h̄vF/(π�̄(a)), and then the condition for the local limit is satisfied.
As a consequence, triangular-lattice superconductors are type-II superconductors due
to the existence of the anisotropic energy gap over the large charge-carrier Fermi
surface, where nonlocal effects are negligible, and then the electrodynamics is purely
local, and the magnetic field decays exponentially over a length of the order of a
few hundreds of nanometers. In this local limit, the pure d-wave pairing state in the
kinetic-energy-driven SCmechanismgives a temperature dependence of themagnetic-
field-penetration depth as �λ(T ) ∝ exp[−�̄(a)(T )/T ]. This is much different from
the case in square-lattice cuprate superconductors, where the characteristic feature of
the d-wave charge-carrier pair gap is the existence of the four nodes at the charge-
carrier Fermi surface, and then the quasiparticle excitations are gapless and affect
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particularly the physical properties at the extremely low temperatures. These gapless
quasiparticle excitations in square-lattice cuprate superconductors lead to a divergence
of the coherence length ζ(k) around the gap nodes, and then the behavior of the
temperature dependence of the magnetic-field-penetration depth depends sensitively
on the quasiparticle scattering. At the extremely low temperatures, the quasiparticles
selectively locate around the gap nodal region, and then the major contribution to
the measurable quantities comes from these quasiparticles. In this case, the Ginzburg–
Landau ratio κ(k) around the gap nodal region is no longer large enough for the system
to belong to the class of type-II superconductors, and the condition of the local limit
is not satisfied [32,33,36], which leads to the system in the extreme nonlocal limit,
and therefore the nonlinear behavior in the temperature dependence of the magnetic-
field-penetration depth is observed experimentally [21–26].On the other hand,with the
increasing temperatures, the quasiparticles around the gapnodal regionbecomeexcited
out of the condensate, and then the nonlocal effect fades away, which leads to the
crossover of themagnetic-field-penetration depth to the linear temperature dependence
[21–26]. However, the present result of the temperature dependence of the magnetic-
field-penetration depth in triangular-lattice superconductors is very similar to the case
in conventional superconductors [17], where the characteristic feature is the existence
of the isotropic energy gap at the Fermi surface, and then the temperature dependence
of the magnetic-field-penetration depth exhibits an exponential behavior.

Now we turn to discuss the doping dependence of the superfluid density ρs(T ),
which is a measure of the phase stiffness, and is defined in terms of the magnetic-field-
penetration depth λ(T ) as ρs(T ) ≡ 1/λ2(T ). In this case, we have performed firstly
a calculation for the doping dependence of ρs in triangular-lattice superconductors
for all levels of doping throughout the SC dome, and the result is plotted in Fig. 6.
In analogy to the dome-like shape of the doping dependence of Tc shown in Fig. 3,
ρs also displays a dome-like shape of the doping dependence, i.e., it increases with
the increasing doping in the lower-doped regime, and reaches a maximum (a peak)
around the critical doping δcritical ≈ 0.21, then decreases in the higher-doped regime.
Moreover, ρs of triangular-lattice superconductors in the underdoped regime vanishes
more or less linearly with decrease of the charge-carrier doping concentration δ. In
square-lattice cuprate superconductors, one of the most unconventional natures is that
Tc scales with ρs following the so-called Uemura relation as Tc ∝ const × ρs in the
underdoped regime [20]. It is interesting to know if triangular-lattice superconductors
also obey this relation. In this case, we have fitted the relation between Tc and ρs in the
underdoped regime, and the result shows that triangular-lattice superconductors satisfy
the similar Uemura relation in the underdoped regime [37,38]. Incorporating the result
obtained from square-lattice cuprate superconductors [32,33], it thus implies that the
Uemura relation may be a universal relation in strongly correlated superconductors
despite whether the gap nodes at the charge-carrier Fermi surface exist or not.

The essential physics of the dome-like shape of the doping dependence of ρs in
triangular-lattice superconductors is the same as in the case of square-lattice super-
conductors [32,33,36], and also can be attributed to the dome-like shape of the doping
dependence of �̄(a). This follows a fact that ρs(T ) in triangular-lattice superconduc-
tors is intriguingly related to the current–current correlation function, and therefore
the variation of the superfluid density with doping is coupled to the doping depen-
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Fig. 6 The superfluid density as a function of doping with T = 0.001J for t/J = −2.5

Fig. 7 The superfluid density as a function of temperature at δ = 0.15 for t/J = −2.5. The experimental
result of NaxCoO2 · yH2O (solid squares) taken from Ref. [38]

dence of the charge-carrier pair gap parameter �̄(a). In particular, the charge-carrier
pair gap parameter �̄(a) measures the strength of the binding of two charge carriers
into a charge-carrier pair. On the other hand, the superfluid density ρs is a measure of
the phase stiffness, and is proportional to the squared amplitude of the charge-carrier
pair macroscopic wave functions. In this case, both ρs and �̄(a) describe the different
aspects of the same charge-carrier quasiparticles, and then the dome-like shape of the
doping dependence of ρs in Fig. 6 is a natural consequence of the dome-like shape of
the doping dependence of �̄(a) shown in Fig. 2.

The superfluid density shown inFig. 6 also is strongly temperature dependent.When
the temperature T = Tc, the kernel of the response function Kμν(q → 0, 0)|T=Tc = 0,
and then λ(Tc) = ∞ as mentioned above, which leads to ρs(Tc) = 0, and is consistent
with the result of the effective superfluid density obtained from Eq. (32). For a better
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understanding of the basic behavior of ρs(T ) as a function of temperature, we have
made a series of calculations for ρs(T ) at different temperatures, and the result of
ρs(T ) as a function of temperature at δ = 0.15 for −t/J = 2.5 is plotted in Fig. 7 in
comparisonwith the corresponding experimental result [38] ofNaxCoO2 ·yH2O (solid
square). Our present calculations thus qualitatively reproduce the overall evolution of
the superfluid density with temperature in NaxCoO2 · yH2O [38]. In correspondence
with the result of the temperature dependence of the magnetic-field-penetration depth
shown in Fig. 5, ρs(T ) is also independent of the temperature below temperatures
T < 0.25Tc, and then decreases dramatically with the increasing temperature for
temperatures T > 0.25Tc, eventually vanishing together with superconductivity at Tc.
The calculation based on the kinetic-energy-driven SC mechanism with the d-wave
charge-carrier pair gap (11) thus gives a good agreement with the observed superfluid
density data of NaxCoO2 · yH2O.

4 Conclusions

Within the framework of the kinetic-energy-driven superconductivity, we have per-
formed a calculation of the doping and temperature dependence of the Meissner effect
in triangular-lattice superconductors for all temperatures T ≤ Tc throughout the SC
dome. Our results indicate that the magnetic-field-penetration depth shows an expo-
nential temperature dependence due to the absence of the d-wave gap nodes at the large
charge-carrier Fermi surface. In particular, the experimental result of the temperature
dependence of the superfluid density in cobaltate superconductors can be qualitatively
described in terms of the d-wave pairing state. However, as a natural consequence of
the dome-like shape of the doping dependence of the charge-carrier pair gap parameter
and Tc, the superfluid density increases with the increasing doping in the lower-doped
regime, and reaches a highest value (a peak) around the critical doping, then decreases
in the higher-doped regime.
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