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Abstract Amesoscopic model of superfluid helium-4, that describes the dynamics of
individual topological defects of the ground state (superfluid vortices) and their (self-
consistent) interactions with its quasi-particle excitations (normal-fluid), is solved
numerically in order to analyse the physics of decaying homogeneous, isotropic turbu-
lence. The calculations predict several temporal decay regimes not present in classical
turbulence decay, the corresponding superfluid and normal-fluid energy spectra, and
the experimentally observed t−1.5 scaling for the superfluid vortex line density at
large times. The results demonstrate that the origin of this scaling is the energy spent
by the superfluid in order to sustain a fluctuating low Reynolds number flow in the
normal-fluid, and not the locking of turbulent superfluid and normal-fluid vorticities.

Keywords Superfluid turbulence decay · Energy spectra · Vortex line density
scalings

1 Prologue

The spontaneous breaking of global U(1) symmetry in He4 (Bose–Einstein Condensa-
tion, in short BEC) results in a ground (vacuum) state with nonzero field expectation
value that can be treated as a Schrodinger coherent state [1]. The hydrodynamic,
Nambu–Goldstone mode [2] that results from the spontaneous symmetry breaking of
the ground state is the phase of the mean field, and the corresponding, conserved,
Noether current of the U(1) symmetry of the purely low-energy physics (Goldstone
mode) Lagrangian is the superfluid momentum (phase-field gradients). Similar ideas
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apply also to classical fluids (e.g. breaking of rotational symmetry in nematic liquid
crystals [3]), but BEC He is special, since the Goldstone mode is an inviscid fluid,
distinct from the normal-fluid of Bogoliubov quasi-particle excitations of the ground
state. Under suitable excitation, the superfluid can develop a complicated tangle of
topological defects (vortices) of universal circulation (superfluid turbulence). Hence,
in finite temperature BEC He4 flows, two very different kinds of turbulence (classical
and superfluid) can coexist in constant interaction with each other.

This intriguing interplay between two highly nonlinear phenomena has been the
topic of many experimental and theoretical investigations [4–10] that indicated the
fecund spatial spectral structure of turbulence in superfluid He4. Indeed, Kivotides
has computed directly from a mesoscopic, self-consistent model of superfluid hydro-
dynamics the spectral structure of forced superfluid turbulence [9,10]. There are three
scaling regimes in both the normal-fluid and superfluid. In the normal-fluid [10], there
is a low k Kolmogorov k−5/3 regime, a high k, k−2.2 regime that corresponds to the
creeping flow sustained via energy input from the superfluid vortices, and an interme-
diate k−6 transition regime. In the superfluid, there is a low k, k−5/3 regime that is due
to the large-scale organization of the superfluid tangle by the normal-fluid turbulence
eddies, an intermediate k−3 scaling that corresponds to the growth phase of superfluid
vorticity due to its interaction with intense vorticity structures in the normal-fluid [9],
and a high k, k−1 regime that corresponds to the probing of individual line vortices.
The Kelvin waves cascade appears to be damped [10] even at the relatively small
temperature of T = 1.3 K [13]. Here, I focus instead on the temporal aspects of
decaying turbulence, by analysing the pioneering, homogeneous, isotropic turbulence
experiment of [5]. In agreement with the experiment, mesoscopic theory predicts the
t−1.5 scaling [5] for the superfluid vortex line density at large times, indicating further
a sequence of temporal decay regimes which are not present in classical turbulence
and correspond to different modes of interaction between normal-fluid and superfluid
turbulence. A key finding of the present study is that the energetics of superfluid
turbulence decay have not been understood correctly in the past. Indeed, a terminal
t−1.5 scaling regime in the decay of vortex line density was interpreted as a turbulent
scaling (attributed to the locking of inertial range normal-fluid and superfluid vortic-
ities), when it actually corresponds to a low Reynolds number fluctuating flow in the
normal-fluid that is sustained by continuous energy transfer from the superfluid (at the
expense of superfluid vortex length).

2 Mesoscopic Theory of Finite Temperature Superfluids

This work employs the mesoscopic model of superfluid physics developed in [10].
As the term “mesoscopic” implies, this model is valid in the range of scales between
the microscopic and macroscopic regimes. By miscroscopic, I mean here the range of
scales described by atomic quantumfield theory [11].Within this theory, the superfluid
vortex core structure is fully resolved at nanoscale distances, and the quasi-particle
excitations of the vacuum state are described directly at an individual particle level. The
macroscopic description is obtained by fully coarse graining the microscopic degrees
of freedom. In this way, both superfluid vorticity and quasi-particle excitations appear
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as a continuum. This is the conceptual framework of the statistical closures of theHall–
Vinen and Gorter–Mellink type, and the vortex dynamical reformulation of the former
by Schwarz [12]. The key point here is that writing statistical closures for superfluid
vorticity (and the normal-fluid/superfluid coupling) is not an easier task than the anal-
ogous (unsolved) problem of classical turbulence, hence, the usefulness of the existing
macroscopic equations as purely predictive theories of superfluid physics is a delicate
matter (as is also in classical turbulence). It is for this reason that themesoscopicmodel
is proposed: it refers to an intermediate range of scales, where the quasi-particle exci-
tations form a continuum fluid, but the superfluid vortices remain discrete, hence their
dynamics are explicitly described, and no coarse-grained modelling is required. A key
advantage of themesoscopic description is the explicit capturing of topological change
via reconnections and its dynamical impact. Moreover, crucial experimental informa-
tion such as superfluid line vortex densities can only be obtained via a mesoscopic
approach and is not available inmacroscopic formulations. Notably, the superfluid vor-
tex dynamics are partially coarse grained in this description, hence there is no vortex
core resolution, and reconnections appear as jump processes. Finally, it is important to
note that the present formulation is not a full-blown mesoscopic description; it applies
only in the limit of incompressible and isothermal flow processes.

In BEC quantum fluids [10], a tangle of superfluid vortices L interacts with a
normal-fluid of velocity Vn . The motion of a vortex point Xv(t) is described by

μvẌv + ρsκX′
v × (Vs − Ẋv) + ρnκX′

v × (Vn − Ẋv)

+ D0X′
v × [X′

v × (Vn − Ẋv)] − gẆ

−
∫ +∞

−∞
dt ′

[∫
L−Vε (Xv)

d|XL|μvN̈Rδ(|Xv − XL|)
]

δ(t − t ′) = 0.

Here, μv is the vortex mass per unit length, X′
v the unit tangent to the tangle, ρs

the superfluid mass density, κ the quantum of circulation, ρn the normal-fluid mass
density, D0 the Hall–Vinen drag coefficient, Vs the Biot–Savart velocity Vs(Xv) =
κ
4π

∫
L

(x−Xv)×dx
|x−Xv |3 , gẆ a white noise process [10,14] (the derivative of the Wiener

process W) and NR a deterministic jump process that models the transition from
one smooth superfluid tangle configuration to another. If V−

ε (X) is the neighbour-
hood of radius ε → 0 of point X along vortex tangle L in the direction of smaller
arc-length values (against the vorticity direction), and similarly for V+

ε (X), then NR

describes the topological jump (V−
ε (Xv) ∪ V+

ε (Xv)) ⊕ (V−
ε (XL) ∪ V+

ε (XL)) →
(V−

ε (Xv) ∪ V+
ε (XL)) ⊕ (V−

ε (XL) ∪ V+
ε (Xv))). The requirement of smooth post-

jump configuration entails the dissipative nature of vortex reconnections in superfluids
[10]. The other forces in the equation are (from start to end) vortex inertia, Magnus,
Iordanskii lift, Hall–Vinen (mutual-friction) drag and thermal fluctuation forces. The
components fF ≡ gẆ of the thermal fluctuations force at any location on the vor-
tex tangle are Gaussian stochastic variables with mean value zero and time correlator
〈 fF (t1) fF (t2)〉 = 2D0(kBT/�F )δ(t1 − t2), where �F could be taken to be the length
scale of the numerical discretization along the vortices. The normal-fluid obeys the
standard Navier–Stokes dynamics, i.e. the mass equation ∇ ·Vn = 0, and the momen-
tum equation
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∂Vn(x, t)
∂t

+ ∇
(

p

ρn + ρs
+ Vn · Vn

2

)
− Vn × (∇ × Vn)

− μ

ρn
∇2Vn − κ

∫
L
d|XL| [X′

L × (Vn − ẊL)]δ3(x − XL)

− D0

ρn

∫
L
d|XL|{X′

L × [X′
L × (Vn − ẊL)]}δ3(x − XL) = 0.

Here, p is the pressure field and μ the normal-fluid viscosity. From start to end, we
have the inertia, potential (“Bernoulli-group”), vortex, viscous, lift and drag (mutual-
friction) forces [10]. The last two forces signify the coupling of normal-fluid with
superfluid vortices and will be collectively called “vortex couplings”. Notably, there
are two energy sinks in the system: (a) vortex reconnections for superfluid kinetic
energy and (b) viscous dissipation for normal-fluid kinetic energy. The numerical
methodology and the corresponding computational algorithms are discussed in refer-
ence [10], which also includes information regarding the numerical implementation
of the “reconnection-force”, and normal-fluid, grid mesh-size requirements for well-
resolved turbulence calculations. In the present results, thermal fluctuation effects on
the vortices are neglected, and the employed numerical scheme does not resolve vortex
inertial relaxation processes, since, due to very small vortex mass densities, the latter
are too fast to be of relevance in the time scales of interest [10]. For the vortices, I renor-
malize the self-interaction velocity divergence in the Biot–Savart law by employing
the velocity of a ring with radius the local radius of curvature and apply the method of
Winckelmans and Leonard for evaluating velocity contributions because of all other
points [15]. For the latter, an effective vortex core radius equal to	ξ is employed [15].

3 Computational Modelling

In the experiment of [5], a homogeneous, isotropic turbulent flow was created at
T = 1.5 K, by towing a grid through a stationary sample of superfluid He4. Following
the passage of the grid, the vortex line density � = L/V , where L is the superfluid
vortex length and V the system volume, with actual experimental value V = (1 cm)3,
wasmeasured. The κ� results showed amonotonic� decrease, obeying a t−1.5 scaling
law for long decay times.

In order to model these computationally, I have chosen T = 1.3 K and a (peri-
odic) computational box of volume V = (0.1 cm)3. For this temperature, the various
constants have the following values: ρs = 0.13860 g cm−3, ρn = 0.00652 g cm−3,
D0/ρn = 0.905 × 10−3 cm2 s−1 and ν = 2.330 × 10−3 cm2 s−1. Notably, since
κ = 0.997 × 10−3 cm2 s−1, all three basic parameters, i.e. D0/ρn , ν and κ have
similar values. Experimental grid towing and the creation of homogeneous, isotropic
turbulence in both fluids is modelled as follows: (a) I start with an initial, Gaussian,
small Reynolds number, normal-fluid velocity field in the classical (no vortex cou-
plings) Navier–Stokes equation, (b) I apply a Lundgren (so-called linear) forcing [10],
and evolve the pure normal-fluid to a turbulent steady-state characterized by Taylor
Reynolds number Reλ ≈ 55, and Kolmogorov’s k−5/3 energy scaling over approxi-
mately a decade in wavenumber space (Fig. 1, left, top curve); notably, the somewhat
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Fig. 1 Left Normal-fluid energy spectra. From top to bottom the times are t = 0, t = 0.021 s, t = 0.061 s,
t = 0.25 s and t = 2.021 s. The top dotted straight line signifies the k−5/3 scaling, and the bottom one
the k−2.2 scaling. The small extension of the k−5/3 regime in the initial data is due to the relatively small
Reλ value. In agreement with the spatial spectra of [10], the initial Kolmogorov regime is eliminated due to
energy losses, and replaced by a low Reynolds number, viscosity-dominated k−2.2 regime. Right Superfluid
energy spectra. From top to bottom, the times are t = 0.021 s, t = 0.061 s, t = 0.25 s and t = 2.021 s.
The two dotted straight lines signify the k−5/3 and k−3 scalings. In agreement with the spatial spectra of
[10], a fully developed vortex tangle is characterized by a low wavenumber k−5/3 scaling regime and an
adjacent k−3 range. The scalings disappear later on, when κ� becomes very small (bottom curve)

small k−range exhibiting the inertial scaling, is due to the, computational complexity
constrained, not too large Reλ value, (c) I add to the above-prepared, pure normal-fluid
turbulence, a set of 40 randomly oriented/positioned, seed, superfluid vortex rings with
randomly distributed radii between rmax = 0.25lb and rmin = 0.75rmax = 0.1875lb
(where lb is the computational box size), so that κ� ≈ 5s−1, and I employ the com-
bined flow system as initial conditions in the present, fully coupled calculation (t = 0
in the graphs), (d) as a theoretical analog of experimental grid towing, I continue forc-
ing the normal-fluid during the initial phase of the fully coupled calculation, in order to
(also) generate a homogeneous, isotropic turbulence state in the superfluid. The latter
is achieved via the combined action of energy transfer to the vortex tangle from the
normal-fluid (via drag and lift forces, i.e. vortex couplings), and the reconnection-force,
i.e. the jump process NR that creates “chaotic” vortex configurations via topological
changes, and the accompanying Kelvin wave excitations. Discontinuation of linear
forcing, that models the end of grid towing in the experiment, occurs after the initial
transient of turbulence build-up in the superfluid, at t = 0.021 s. At this time, due
to energy losses to the superfluid, the Taylor Reynolds number in the normal-fluid
has dropped to Reλ ≈ 50, whilst Kolmogorov’s k−5/3 scaling is still discernible over
approximately a decade in wavenumber space (Fig. 1, left), and κ� has increased from
its seed value to κ� ≈ 51s−1 (Fig. 2, left). Subsequently, the unforced turbulence in
the BEC quantum fluid (i.e. superfluid plus normal-fluid) is allowed to decay due to the
combined action of superfluid vortex reconnection and viscous dissipation processes.

4 Physics of Finite Temperature Superfluid Turbulence Decay

Next, I discuss the stages of quantum-fluid turbulence decay that themesoscopicmodel
predicts. Starting from the normal-fluid, there are five temporal decay regimes, exem-
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Fig. 2 Left κ� versus time. The four dotted vertical lines are indicative of (1) the end of the initial forcing
period (t = 0.021 s), (2) the ceasing of important inertial effects in the normal-fluid (Reλ = 10 when
t = 0.0296 s), (3) the end of an approximate plateau in vortex line density at t = 0.1 s and (4) the end of
an intermediate regime of � decay between the above-mentioned plateau and the start of the final scaling
regime (t = 0.58 s). The straight line indicates the experimentally measured κ� ∝ t−1.5 scaling law that
themesoscopic model predicts. I have also indicated (a–e) the five decay regimes discussed in the text.Right
Reλ versus time. The four dotted vertical lines (at same times as in κ� graph) are indicative of (1) the end of
the initial forcing period, (2) the bulk of normal-fluid turbulence decay (which is the analogous process here
to classical turbulence decay), (3) the end of the Reλ decay range that corresponds to the approximate κ�

plateau, (4) the end of a slower Reλ reduction rate period, and the beginning of a (fluctuating) equilibrium
regime, where the normal-fluid acts like a low Reynolds number “bath” of quasi-particle excitations. The
equilibrium is sustained via energy transfer from the superfluid to the normal-fluid that compensates viscous
dissipation

plified here by following the evolution of Reλ = u′λ/ν (where the Taylor microscale
λ = 15ν(u′)2/ε, and ε is the viscous energy dissipation rate) versus time (Fig. 2,
right): (a) an initial, forced turbulence regime (ending at t = 0.021 s), where Reλ

decreases very slowly, because viscous losses are fully compensated by the linear
forcing (analog of grid towing), and normal-fluid kinetic energy losses are solely due
to vortex couplings with the superfluid, which, as demonstrated in [10], are much
weaker than viscous effects, (b) an (unforced) stage of strong viscous dissipation
of turbulence emergy, and weaker energy transfer to the vortex tangle, that ends at
t = 0.0296 s, when inertial effects in the normal-fluid have drastically subsided (here,
by convention, this is taken to imply Reλ < 10); indeed, as shown in Fig. 1, left, and in
agreement with [10], during this period, the inertial range is replaced by the dissipative
k−2.2 scaling that prevails thereafter, (c) a period of (relatively) fast, Reλ ∝ t−1.4, low
Reynolds number, normal-fluid flow decay (ending at t = 0.1 s), (d) a stage of slower,
Reλ ∝ t−1, low Reynolds number, normal-fluid flow decay (ending at t = 0.58 s) and
(e) a final period, where the normal-fluid energy has reached an equilibrium (albeit
fluctuating) level, that is sustained via energy input from the superfluid. The latter is
necessarily the case, since if the transfer of energy had the inverse direction, there
would have been two energy sinks in the normal-fluid, hence a monotonic energy
decrease. Notably, it is not obvious which is the direction of energy transfer during
periods (c) and (d). Thus, I have computed directly the average rate of work performed
by vortex couplings. The results are better understood in conjunction with κ� dynam-
ics (Fig. 2, left): period (c) corresponds to an approximate plateau of κ�; starting
from the peak of this plateau, the energy transfer to the superfluid starts diminishing,

123



74 J Low Temp Phys (2015) 181:68–76

and towards the end of regime (c) (t ≈ 0.08 s), it reverses direction. Thus, the milder
Reλ decay rate during phase (d) is due to the fact that in opposition to phase (c), the
normal-fluid is forced by the superfluid during this period.

Correspondingly, there are five temporal evolution regimes for the superfluid, exem-
plified here by following the change of κ� versus time: (a) an initial κ� build-up
regimewhere vortex couplings transfer energy from the forced normal-fluid turbulence
to the tangle; as shown in Fig. 1 (right), and in agreement with [10], the superfluid
energy spectrumpresents evidence of a lowwavenumber k−5/3 scaling range, followed
by a steeper k−3 scaling range at higher wavenumbers, (b) a subsequent, short-lived
stage corresponding to the diminishing of inertial effects in the normal-fluid (hence,
also, of its potential for energy transfer to the superfluid); during this period, super-
fluid kinetic energy keeps growing, because vortex-coupling effects, that act as energy
sources, overpower vortex reconnection effects that act as energy sinks, (c) a time
period corresponding to the (relatively) fast decay of a low-Reynolds number normal-
fluid; here, κ� presents a plateau and remains approximately constant, as a gradual
reversal of the energy transfer direction from the superfluid to the normal-fluid takes
place in the system, (d) a stage corresponding to the slower decay of a low-Reynolds
number normal-fluid, during which κ� decays faster in comparison with phase (c),
since, as discussed above, during this period, the superfluid is characterized by two
energy sinks: both vortex reconnections and vortex couplings, (e) a κ� ∝ t−1.5 scaling
regime that is observed in the experiments; during this stage, results for the rate ofwork
performed by vortex couplings indicate that energy keeps flowing from the superfluid
to the normal-fluid. The difference with range (d) is that, here, viscous dissipation
is not as strong (after all, the normal-fluid energy is very small), hence vortex cou-
plings can, at times, overpower viscous effects, and increase the normal-fluid energy;
the higher levels of the latter, in turn, result in higher energy dissipation rates that
overpower vortex-coupling induced energy transfer to the normal-fluid, and the cycle
repeats itself. Remarkably, as shown in Fig. 1 (right), by this time, the spectral scaling
structure of superfluid energy is lost, as the tangle becomes a very dilute system of
vortices, that cannot be properly characterized as “turbulent”. Notably, the mechanism
of Kondaurova and Nemirovskii [16] of vortex line decay due to evaporation (or diffu-
sion) of vortex loops from the bulk is not active here. This is because this mechanism
is properly valid for T → 0 K temperatures and relies on Kelvin waves generating
many small loops in the system. However, for the finite temperature T = 1.3 K here,
the Kelvin waves cascade is damped, and small ring production is negligible.

It is important to note that [5] have erroneously associated regime (e) with a “lock-
ing” of (inertial-range) normal-fluid and superfluid vorticities. This is not supported
by the calculation, since during the t−1.5 scaling, there are no inertial effects in the
normal-fluid (Fig.1, left), and, instead, there exists a fluctuating, creeping flow that,
by default, does not posses any concentrated vorticity. A close comparison of the the-
oretical and experimental results indicates that (1) the reported experimental data do
not include the superfluid vorticity build-up (i.e. periods (a) and (b) above), and (2) the
experimental runs corresponding to the smallest grid velocities, i.e. 5 and 10 cm/s, are
remarkably similar to the theoretical results. Indeed for these cases, there is excellent
quantitative agreement between the peak κ� values, as well as the actual times over
which the t−1.5 scaling is observed. Notably, in both theory and experiment, the t−1.5
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Fig. 3 Left Normal-fluid energy En versus time t . Right Viscous energy dissipation rate ε versus time t .
The four vertical lines correspond to the same times as in Fig. 2. Both En and ε dynamics show similarities
with Reλ evolution. This appears reasonable, since the latter scales with the third power of the turbulence

intensity (i.e. with E3/2
n ), and ε depends on the derivatives of the velocity field, which decreases during

decay following the loss of flow inertia

Fig. 4 Number of tangle
reconnections nR versus time t .
The four vertical lines
correspond to the same times as
in Fig. 2. Notably, the
κ� ∝ t−1.5 scaling (regime e)
corresponds to the decay of a
very dilute vortex tangle, with
negligible reconnection induced
dynamical effects, that sustains a
very low energy bath of
quasi-particle excitations

scaling involves the final decay times, hence this scaling cannot involve normal-fluid
turbulence. Indeed, in the latter case, one would anticipate a transition of this scaling
towards a laminar (low Reynolds number) one, but both theory and experiment agree
that the t−1.5 scaling is a terminal scaling, a fact consistent with the low Reynolds
number flow in the normal-fluid predicted by the mesoscopic theory. Notably, the
theoretical results for both fluids refer only to turbulent fluctuations. Indeed, by con-
struction, themean flow in the normal-fluid is identically zero, and the initial superfluid
rings have a random orientation. Any mean-flow effects in the experiment must also
be small during the time period of the scaling law, because the superfluid vorticity
is decaying. In the absence of vortex locking, the creeping normal-fluid flow during
the t−3/2 scaling indicates that the latter is a purely superfluid turbulence scaling,
with a small superfluid energy loss due to the couplings with (an otherwise unimpor-
tant) normal-fluid. Hence, it is crucial to understand the spectral signature of these
couplings (i.e. their strength and distribution across scales) before proceeding further
with a scaling theory of the underlying turbulence physics.

Figure 3 presents the evolutions of normal-fluid energy En and viscous energy
dissipation rate ε, whilst tangle reconnections nR are shown in Fig. 4. Evidently, the
experimentally observed κ� ∝ t−1.5 scaling corresponds to the decay of a very dilute
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tangle without any significant reconnection effects. Not only are the latter very few, at
most, one at a time, but also, due to strong Kelvin wave damping [10], their dynamical
effects are too weak.

5 Epilogue

The present calculation provides a detailed picture of the decay of (relatively) low
Reλ, BEC quantum-fluid turbulence. It is expected that the results for stages (c) to (e)
would be universally valid for all (initial) Reλ. This is because the flowphenomenology
during these phases does not depend on the initial level of forcing, since the normal-
fluid has very small inertia, hence no memory of its initial, energetic turbulent state.
Indeed, this is another way of explaining the universality of late-time decay observed
in the experiments. However, depending on the ratio of the (turbulence) time scales
of normal-fluid energy decay and superfluid vorticity build-up, potentially interesting
new physics could, perhaps, emerge in stages (a) and (b) for much higher Reλ. Some
of them are hinted by the complex-fluid viewpoint of superfluids (as developed in
[10]). Moreover, the good agreement between theory and experiment obtained here,
builds confidence in the usefulness of the mesoscopic approach, on top of its accurate
prediction [17] of particle velocities in the counterflow suspension experiments of
[18].

This computation is a first step towards more advanced studies of fine statistical
aspects of superfluid turbulence. Key issues such as interscale energy transfer, inter-
mittency and coherent structures are important physics to be examined in the future.
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