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Abstract A review of various exactly solvable models on the determination of the
energy spectra E(k) of 3D-velocity field, induced by chaotic vortex lines is pro-
posed. This problem is closely related to the sacramental question whether a chaotic
set of vortex filaments can mimic the real hydrodynamic turbulence. The quantity
〈v(k)v(−k)〉 can be exactly calculated, provided that we know the probability dis-
tribution functional P({s(ξ, t)}) of vortex loops configurations. The knowledge of
P({s(ξ, t)}) is identical to the full solution of the problem of quantum turbulence
and, in general, P is unknown. In the paper we discuss several models allowing to
evaluate spectra in the explicit form. This cases include standard vortex configura-
tions such as a straight line, vortex array and ring. Independent chaotic loops of vari-
ous fractal dimension as well as interacting loops in the thermodynamic equilibrium
also permit an analytical solution. We also describe the method of an obtaining the
3D velocity spectrum induced by the straight line perturbed with chaotic 1D Kelvin
waves on it.

Keywords Superfluidity · Vortices · Quantum turbulence

1 Introduction

One of the exciting applications of quantum turbulence is the solution (or rather,
the attempt at a solution) of the tantalizing problem of classical turbulence. For this
reason, the problem of the spectrum of the 3D velocity field induced by a chaotic
vortex filament becomes one of the central questions. The formal relation, allowing
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of calculating E(k) = 1
2ρs〈vkv−k〉 via the vortex line configuration {s(ξ)}, can be

found from formula for energy in k space (see [1])

E =
∫

k
d3k

〈
ρsκ

2

16π3k2

∑
i,j

∮ ∮
s′
j (ξi) · s′

j (ξj )dξidξj eik(si (ξi ) − sj (ξj ))

〉
. (1)

Here s(ξ) describes the vortex line position parameterized by the arclength ξ , running
from 0 to the length of line L, s′(ξ) denotes the derivative with respect to arclength
along the line (the tangent vector). Clearly, the relation of inside 〈〉 is the spectral
density E(k). This relation is just mathematical identity, and the physics is hidden
behind the 〈〉 operation. To calculate this average, we need to know the probability
distribution functional P({s(ξ)}, t), which is the probability that the system has the
configuration {s(ξ)} of the set of the vortex loops. Knowing P({s(ξ)}, t) is identical
to the full solution of the problem of quantum turbulence. Therefore, the problem
of the determination of the 3D energy spectrum is not resolved, although there are a
series of theoretical approaches and numerical simulations. We consider here several
exactly solvable cases, the study of them is quite instructive.

In isotropic case, the spectral density depends on the absolute value of the wave
number k. Integration over solid angle leads to formula (see [2]):

E(k) =
〈

ρsκ
2

(2π)2

∮ ∮
s′(ξ1) · s′(ξ2)dξ1dξ2

sin(k|s(ξ1) − s(ξ2)|)
k|s(ξ1) − s(ξ2)|

〉
. (2)

For anisotropic situations, formula (2) is understood as an angle average. Further we
will apply these formulas to study some particular situation.

2 Regular Structures (Straight Line, Vortex Array, Ring)

The angle averaged spectrum created by straight vortex line is directly evaluated from
(2) to give result Estraight(k) = (ρsκ

2/4π)k−1 (per unit length). This spectrum is
discussed early (see, e.g., [3, 4]), Vinen [5] proposed the k−1 spectrum on the basis of
dimensional consideration. This result is important, since it states that for any vortex
system the high wave numbers larger than inverse curvature, E(k) should scale as
k−1.

Let us take a set of straight vortex filaments forming the square lattice
⋃

si(ξ) =⋃
(xi, yi, z). Points xi, yi are coordinates for vortices on the xy-plane, index i

runs from 1 to N . The neighboring lines are separated by distance b, i.e., xi+1 −
xi = b. Then the general relation (2) leads to the following formula (Hanninen (pri-
vate communication), Nowak et al. ([6]):

E(k)

ρsκ2L
= 1

4πk

N∑
i=1

N∑
j=1

J0(kdij ), (3)

where dij =
√

(xi − xj )2 + (yi − yj )2 distances between vortices on the xy-plane.
Thus, determination of the spectrum on the basis (3) should be done with the use
of the quadruple summation (over (xi, xj , yi, yj )), which requires large computing
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resources. Clear, however, that for very small k, which corresponds to very large
distance, the whole array can be considered as large single vortex with the circula-
tion N2κ . Accordingly, the spectrum (per unit height) should be (ρsN

4κ2/4π)k−1.
For large k, which corresponds to very small distance from each line, the spectrum
(per unit height) should be (ρsκ

2/4π)k−1. In the intermediate region kb � 1, and
Nkb � 1 (this condition implies that inverse wave number k−1 is larger intervor-
tex space between neighboring lines, but smaller then the size of the whole array
Nb), we can replace the quadruple summation by the quadruple integration with
infinite limits. This procedure corresponds that we exclude the fine-scale motion
near each of vortex, and are interested in the only large-scale, coarse-grained mo-
tion. After obvious change of variables xi → kxi, yi → kyi etc. we get that the
whole integral should scale as 1/k4, and accordingly E(k) ∝ 1/k5. This implies that
E(k) = dE/d2k should behave as 1/k−6. It follows, for example, from that in the 2D
case d2k = 2πkdk (isotropic is assumed). Since, further, E(k) = v(k)v(−k), we see
that v(k) scales as 1/k−3. The latter means (see, e.g., [7], Eqs. (4.60), (4.61)) that the
velocity v(r) scales as r1. Thus, the uniform vortex array creates the course-grained
motion, which is rotation, as it should be. Moreover, the coefficient is equal to κ/2b2,
which coincides with the Feynman rule.

Now we will consider a vortex ring with radius R lying in the x–y plane. The line
s(ξ) can be parameterized as s(x) = (R cosϕ,R sinϕ,0) with ϕ ∈ [0,2π]. Applying
it to Eq. (2) we get (see also [6])

Ering = ρsκ
2R

(2π)2

∫ 2π

0

∫ 2π

0
dϕ1dϕ2

cos(ϕ1 − ϕ2) sin(2kR sin((ϕ1 − ϕ2)/2))

2k sin((ϕ1 − ϕ2)/2)
. (4)

Evaluating the integral numerically shows that the spectrum Ering(k) scales like
Ering(k) ∼ k2 for kR � 1. Frequently, the k2 is referred to as a proof for the thermo-
dynamical equilibrium state. We would like to stress, however, that this distribution
of the energy (valid far from the ring) has nothing to do with the equipartition law.
It is a consequence of the fact that closed vortex loops induce a far field flow scaling
as 1/r3. That, in turn, generates a spectrum E(k) ∝ k2. This fact was established for
classical turbulence (see, e.g., [8]). For quantum turbulence this result was discussed
by Stalp, Skrbek and Donnelly [9]. For the large k, namely for kR � 1, spectrum
Ering(k) scales like ∼ k−1 as for straight line.

3 Gaussian Loops of Various Fractal Dimension

One of the approaches, allowing exact solution, based on the viewing of the VT as a
set of loops having the random structure with the various fractal dimension [10]. This
theory is based on the Gaussian model (see [1]). The probability PGauss({s(ξ, t)}) of
finding a particular configuration {s(ξ, t)} is expressed by the probability distribution
functional (for details, see the paper by author [1])

PGauss

({
s(ξ, t)

}) = N exp

(
−

∮ ∮
s′α(ξ1, t)Λαβ(ξ1 − ξ2)s′β(ξ2, t)dξ1dξ2

)
. (5)

Here N is a normalizing factor and L is the length of curve. The typical form of
function Λαβ(ξ − ξ ′) is a smoothed δ function, having a Mexican hat shape with
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width equal to ξ0. Behavior of Λαβ(ξ1 − ξ2) on large scales determines the second
order correlation function between tangent vectors 〈s′

α(ξ1)s′
α(ξ2)〉, which, in turn,

determines the fractal dimension of line. Assuming that 〈s′
α(ξ1)s′

α(ξ2)〉 is a power-
law function ∝ (ξ1 − ξ2)

λ we get that the squared 3D size of the vortex loop (of
length ξJ ) D2 = ∫ ξJ

0

∫ ξJ

0 dξ1dξ2〈s′
α(ξ1)s′

α(ξ2)〉 scales as ξλ+2
J . That implies that the

length L of the curve increases with its 3D size D as L ∝ D2/(λ+2), which implies
that the average loop is a fractal object having the Hausdorf dimension (HD) equal
to HD = 2/(λ + 2). There are estimation of HD obtained in numerical simulations
[11],[12]; they HD ≈ 1.4 ÷ 1.6 (dependently on the temperature) close to the Flory
exponent (5/3), which describes the so called self-avoid line. Referring the reader
to the original article [10] for the details we briefly state the main results. In the
region k � 1/L1/HD , the spectrum behaves as E(k) ∝ k2. We again stress that this
dependence is related to the far field flow 1/r3 from the restricted domain of vorticity
(but not to the thermodynamical equilibrium). Note, that L1/HD is nothing but the real
3D size of the loop. In the case of large k we get

E(k) ∝ k−2+HD . (6)

This result had been obtained earlier from qualitative considerations and is discussed
in Frisch [7]. Figure 1 (left) depicts (in logarithmic scale) three curves, the spectral
densities E(k) for a pure fractal vortex filament of length L = 100 (all units are
arbitrary) and three different values of HD = 1,5/3,2 correspondingly. It can be
seen how E(k) ∝ k2 is changed to a dependence E(k) ∝ k−2+HD in the region of
large k ∼ 1/100−1/HD .

Vortex loops in superfluid turbulent quantum fluids are “semifractal” objects,
which are smooth at small (ξ ′ − ξ ′′) along the curve, and are fully uncorrelated
for the remote parts. A good approximation for 〈s′

α(ξ1)s′
α(ξ2)〉 is a function of the

type 1/(1 + (�ξ/ξ0)
2).

Figure 1 (right) shows (in logarithmic scale) the spectral densities E(k) for
a “semifractal” vortex loop of length L = 100 with ξ0 = 0.05 and ξ0 = 0.2. It
is seen that the curves (ξ0 = 0.05) have three regions with bends at the points
kl = 1/

√
Lξ0 ≈ 0.4, and kr = 1/ξ0 = 20. In these three different regions we have

E(k) ∝ k2, E(k) ∝ k0 and E(k) ∝ k−1, correspondingly (see straight-line segments).
This is in good agreement with the qualitative considerations. Please pay attention,

Fig. 1 Energy spectra of a pure fractal line (left), and a more realistic semi-fractal vortex loop (right)
(Color figure online)
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that loop with smaller ξ0 has smaller energy. More kinked structure produces screen-
ing effect, when the close elements of line have large (negative) interaction energy
(since E ∝ s′(ξ1) · s′(ξ2)/|s(ξ1) − s(ξ2)|).

4 Thermodynamically Equilibrium Vortex Tangle

In the previous section, we considered the model of free (noninteracting) vortex
loops. Let us now discuss another solvable case, that of interacting loops in ther-
modynamical equilibrium. This can be accomplished by introducing the Boltzmann
factor exp(−βH {s}) into the Gaussian model (5) (see [13, 14]). Then the partition
function can be written (we will take here the purely Wiener distribution with Λ

being the δ function and with an elementary step equal to ξ0)

Z =
∫

Ds(ξ} exp

[
− 3

2ξ0

∮ (
s′(ξ)

)2
dξ

− β
ρsκ

2

8π

∮ ∮
dξ1dξ2

s′(ξ1) · s′(ξ2)

|s(ξ1) − s(ξ2)|3 dξ1dξ2

]
. (7)

Here β = 1/kBT is the inverse temperature. A considerable simplification in the
evaluation of the partition function can be reached with the use of the Edwards trick
(see for details [15–18]), namely, exp(−βH {s}) can be written as a the Gaussian path
integral over an auxiliary vector field A(r). After all the transformations, the partition
function acquires the form of a Gaussian path integral over the 3D auxiliary vector
field A(r) and E = d lnZ/dβ is (see [18]):

E = 3

4π2
ξ0Lρsκ

2
∫

dk
k2

(k2 + M2)
(8)

with M2 = βξ0Lρsκ
2/2V (V is the volume). For small k, the energy spectrum

E(k) ∝ (kBT )k2, which is nothing but the Rayleigh equipartition law dE/d3k =
const. For large wave numbers E(k) is just about constant. The reason is that for
large k, the interaction energy in the partition function (7) is smaller and the main
contribution appears from the configuration term (s′(ξ))2, which is related to the
connectivity of the line. Hence, we have the same spectrum as for a pure random
walk with HD = 2, discussed in previous section.

5 1D Kelvin Waves Spectrum and 3D Velocity Spectrum

In the literature there is discussed the idea of obtaining the 3D velocity spectrum just
by putting it equal to the spectrum of 1D Kelvin waves. For instance, as stated in
[19]: “We notice that, because the fluctuations of the velocity field are induced by the
Kelvin wave fluctuations on the filaments, it is reasonable to expect that

E(k) ∼ EKW(k). (9)

The same idea was used in papers by L’vov et al.(see e.g., [20]). Details of this activity
can be read in a series of papers by L’vov, Nazarenko and coauthors [20–23].
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Let us consider this problem on the basis of general formula (1) (see [18]). We take
s(ξ, t) = (x(z, t), y(z, t), z) and denote the two-dimensional vector (x(z, t), y(z, t))

as aρ(z, t) (where the dimensionless amplitude a � 1). Substituting it into (2) and
expanding in powers of a, we get,

EKW(k) = Estraight(k)

+ a2 ρsκ
2

(2π)2

∫ L

0

∫ L

0
dz1dz2

{
cos(k|z2 − z1|)(ρ(z2) − ρ(z1))

2

2|z2 − z1|2

− sin(k|z2 − z1|)(ρ(z2) − ρ(z1))
2

2k|z2 − z1|3 + (ρ′(z1) · ρ′(z2) sin(k|z2 − z1|)
k|z2 − z1|

}
.

(10)

To move further we have to find the correlation characteristics for the fluctuating
vector of displacement ρ(z2). We accept that the ensemble of Kelvin waves has a
following power-like spectrum:〈

ρ(p) · ρ(−p)
〉 = Ap−s . (11)

We take here the notation p for the one-dimensional vector, conjugated to z, reserving
the notation k for the absolute value of the wave vector of the 3D field. The formula
(11) implies that (see, e.g., [7], Eqs. (4.60),(4.61)) the squared increment for the vec-
tor of displacement scales as, 〈(ρ(z2) − ρ(z1))

2〉 ∝ (z2 − z1)
s−1. Then the second

order correlator 〈(ρ′(z2)ρ
′(z1))〉 scales as 〈(ρ′(z2)ρ

′(z1))〉 ∝ (z2 − z1)
s−3. Substitut-

ing it into (10) and counting the powers of quantity k, we conclude that the correction
δE(k) to the spectrum E(k), due to the ensemble of Kelvin waves has a form:

δE(k) ∝ a2k−s+2. (12)

It is remarkable fact that this quantity coincides formally with the one-dimensional
spectrum of KW δE(p) ∝ a2p−s+2 however this contribution is small, by virtue the
smallness of the wave amplitudes a, and disappears with the KW.

6 Conclusions

Summarizing, it can be concluded that the 3D energy spectrum E(k) consists of sev-
eral parts. At small k, associated with the large scales, on the order of the size of
the system, or on the scale of the stirring forcing (grids, propellers, vibrating objects,
etc.), the spectrum behaves as E(k) ∝ k2. We recall again that this is the conse-
quence of the asymptotic behavior (r → ∞) of the velocity field, not of thermo-
dynamical equilibrium. For large wave numbers, exceeding the inverse intervortex
space k > 2π/δ, the energy spectrum E(k) should be close to k−1, again regardless
of the specific model. The region of intermediate k is the most intriguing and excit-
ing, it depends on fractal properties of lines. Unfortunately, so far there is no theory,
predicting the Kolmogorov like spectrum E(k) ∝ k−5/3.
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