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Abstract The temperature effects on the parabolic quantum dot qubit in the electric
field have been studied under the condition of electric-LO-phonon strong coupling
using the variational method of Pekar type. The numerical results lead us to formu-
late the derivative relationships of the oscillation period of the electron in the super-
position state of the ground state and the first-excited state with the electric field,
the electron-LO-phonon coupling constant and the confinement length at different
temperatures, respectively.
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1 Introduction

Size reduction in microelectronics and integrated circuits, with the corresponding
increase of speed, is approaching a physical limit where quantum effects begin to ap-
pear. Since the statement of different quantum algorithms was put forward, it has been
demonstrated that quantum mechanics offers unexpected possibilities in information
transmission and processing, indicating the potential capabilities of quantum comput-
ers for solving intractable problems in a classical computer [1, 2], then the new infor-
mation and communication protocols are developing. A quantum computer’s elemen-
tary unit of quantum information is the qubit and two-level systems with long-lived
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quantum coherence are candidate qubits. A quantum entangled state is considered
as a universal resource for quantum information processing because of its quantum
state superposition principle and quantum nonlocality. Solid-state implementation for
both qubits and entangled states is very promising because of the inherent scalability
for realistic application of quantum computers [1, 2] as well as the relative ease of
integration within current technologies [1–6]. Among such systems, the use of semi-
conductor quantum dots (QDs) [1, 2, 7–9] has received increasing attention due to
the knowledge of their theoretical and experimental properties and the existence of
an industrial base for semiconductor processing. However, there is no unique system
of avoiding the ubiquitous problem of decoherence in real quantum objects during an
effective implementation of quantum algorithms [10]. Quantum decoherence is in-
herent quality which results from the imperfect isolation of the quantum system from
its environment and is essential in understanding how a quantum system becomes
effectively classical [11]. Then how an entangled system undergoes decoherence or
how the entanglement changes as a result of interaction with the environment is an
important issue. The environment decoherence leads to deterioration of the perfor-
mance of quantum logic operations and also strongly influences entanglement be-
tween qubits [12] that is necessary for quantum gate operation. Therefore, the inves-
tigation of decoherence dynamics due to the entanglement of the qubit system with
its surrounding environment has become the central issue in the study of quantum
information processing [13–18].

In practice, the work of the experiment about quantum qubits is performed at finite
temperature. However, quantum systems are very frail and the temperature destroys
the quantum coherence of the stored information [19, 20], a process called decoher-
ence. Therefore, the temperature effects of the quantum dot qubit should be studied.
The two-level quantum system can be employed as a single qubit in a quantum dot.
For this single electron QD qubit, Li et al. presented a kind of parameter-phase di-
agram schemes and defined the parameters region for the use of an InAs/GaAs as a
two-level quantum system [21, 22]. We have studied the temperature dependences of
the parabolic linear bound potential quantum dot qubit in our earlier papers [23, 24].
In Ref. [23], we have investigated the dependences of the probability density of elec-
tron, which is in the parabolic linear bound potential quantum dot qubit, on the tem-
perature. And in Ref. [24], the lows, that the probability density of electron and the
period of oscillation change with the temperature’s changing in the parabolic linear
bound potential and Coulomb bound potential quantum dot qubit, have been dealt
with. In the present paper, we treat the temperature effects on the parabolic quan-
tum dot qubit in the electric field under the condition of electric-LO-phonon strong
coupling using the variational method of Pekar type. The paper is organized as fol-
lows: in Sect. 2 we present the general Hamiltonian of an electron-phonon system
in presence of an electric field F and obtain the relations of the oscillation period of
the electron in the superposition state of the ground state and the first-excited state to
the temperature, the electric field, the electron-LO-phonon coupling constant and the
confinement length. In Sect. 3 we present and discuss the numerical results. Finally,
Sect. 4 presents our conclusions. The parabolic confining potential in our proposed
structure, that is Gauss potential, is the most likely to the real potential of electron in
QD. Consequently our results are more accurate. In the meantime, our results should
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be meaningful for designing the solid-state implementation of quantum computing
both theoretically and experimentally.

2 Theoretical Model

We consider the system where the electrons are bounded by the parabolic potential
and the electric field. The electrons are much more confined in one direction (taken as
the Z direction) than in other two directions. Therefore, we shall only take the effect
of electron and LO-phonon into account assuming that the electrons move on the X–
Y plane. The Hamiltonian of an electron-phonon system in presence of an electric
field F along the x axis is given by

H = −(
�

2/2m∗)∇2
ρ + m∗ω2

0ρ
2/2 +

∑

q

�ωLOb+
q bq +

∑

q

(
Vqeiq·r + h.c

) − e∗Fx,

(1)

where m∗ is the band mass of electron. ρ is the two-dimensional coordinate vector
and ω0 is the confinement constant. m∗ω2

0ρ
2/2 is the parabolic confining potential

in a single QD. b+
q (bq) is the creation (annihilation) operator of bulk LO-phonon

with the wave vector q(q//, q⊥). r = (ρ, z) is the coordinate of the electron. e∗ is the
electron charge, and
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Using the Fourier expansion and the LLP transformation and choosing the polaron
unit (� = 2m∗ = ωLO = 1), we have

H ′ = U−1HU. (4)

We choose the trial wave-functions of the electron-phonon system in the ground
and the first-excited state [25] as
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(−λ2ρ2/2
)
/
√
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〉|0ph〉, (5)
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Then we find the ground state energy and the first-excited state energy of electron as
the following forms

E0 = λ2
0 + 1/λ2

0l
4
0 − αλ0(2π)1/2/2 − F/2

√
πλ0, (7)

E1 = 2λ2
0 + 2/λ2

0l
4
0 − 11αλ0(2π)1/2/32 − F/4λ0. (8)

Where l0 = (�/m∗ω0)
1/2 is the confinement length.

We can obtain λ0 by the variational method. And we can get the eigenlevel and the
eigenwave-function. Thus, we obtain the two-level system needed by a single qubit.

It is well known that the time evolution of the quantum state of the electron in this
system can be written as

ψ01 = [
φ0(ρ) exp(−iE0t/�)

]
/
√

2 + [
φ1(ρ) exp(−iE1t/�)

]
/
√

2. (9)
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Based on (7)–(9), we can present the probability density in the following form

Q(ρ, t) = [∣∣ϕ0(ρ)
∣∣2 + ∣∣ϕ1(ρ)

∣∣2 + ϕ∗
0 (ρ)ϕ1(ρ) exp(iω01t)

+ ϕ0(ρ)ϕ∗
1 (ρ) exp(−iω01t)

]
/2, (10)

where φ0(ρ) and φ1(ρ) of (10) are the ground state and the first excited state, and

ω01 = (E0 − E1)/�, (11)

then the period of oscillation is

T0 = 2π/ω01 = 2π/
[
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4
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(12)

The mean number of optical phonons of the superposition state around the electron
in parabolic quantum dot is

Nq = 〈ψ01|U−1
∑

q

b+
q bqU |ψ01〉 = 27(2π)1/2αλ0/64. (13)

At a finite temperature, the electron-phonon system is no longer in the ground state
entirely. The lattice vibrations excite not only the real phonon but also the electron
in a parabolic potential well. The properties of the polaron are a statistical average of
the electron-phonon system in various states. According to the quantum statistics, the
statistical average number of optical phonons is

N̄q = [
exp(�ωLO/kBT ) − 1

]−1
, (14)

where kB is the Boltzmann constant.
With the consideration mentioned above, the value of λ0 determined by (13) re-

lates to the value of Nq and to the value of N̄q , which should be self-consistent
with (14). Therefore, we can obtain the relation of T0 to Nq,T .

3 Results and Discussions

The effects of the temperature on the period of oscillation, which are extracted from
a numerical evaluation, are shown in Figs. 1–3.

Figure 1(a) shows the period of oscillation as a function of the temperature and the
electric field when the electron is in the superposition state of ψ01 for the electron-
LO-phonon coupling constant α = 6 and the confinement length l0 = 0.5. It is shown
that the period of oscillation increases with the temperature’s increasing. The reason
is that, the increase of temperature makes the speed of thermal motion of the electron
and the phonon rise so that the electron will interact with more phonons. However,
the contribution, which the increment of speed of the electron causes the probabil-
ity of the electron in the superposition state to increase, is relatively strong. And the
contribution, which the electron interacts with more phonons to destroy the superpo-
sition state, is relatively weak. Therefore, the electron lifetime on the superposition
state is prolonged and the period of oscillation increases with the temperature’s in-
creasing. Figure 1(a) also shows that the period of oscillation slowly increases with
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Fig. 1 (a) The period of
oscillation as a function of the
temperature and the electric
field. (b) The period of
oscillation as a function of the
electric field at different
temperatures

the electric field at any temperatures (Fig. 1(b) is clearer). Due to existence of the
electric field, the ground and the first-excited state energies are reduced and the influ-
ence on the first-excited state energy is greater than the ground state energy. For this
reason, the energy spacing between the ground and the first-excited states decreases
and the period of oscillation increases [26]. As is shown in Fig. 1(a), at a finite tem-
perature, the electric field does not impact the dependence of the oscillation period
on the temperature.

Figure 2 depicts the period of oscillation as a function of the temperature and the
electron-LO-phonon coupling constant for the confinement length l0 = 0.5 and dif-
ferent electric fields F = 20, 50. It is shown, when the electric field F is 20 or 50, that
the period of oscillation increases with the temperature’s increasing. The reason is the
same as above discussions. The Fig. 2 also depicts, when the electric field F is 20
or 50, the period of oscillation decreases with the electron-LO-phonon coupling con-
stant’s increasing. This is because that the coupling constant of the electron-phonon
interaction is weaker in the first-excited state than that in the ground state, the en-
ergy spacing increases with the increasing coupling constant. The increase in energy
spacing causes a reduction of the period of oscillation [24, 26]. Furthermore, Fig. 2
reveals that the period of oscillation increases with the electric field’s increasing as in



J Low Temp Phys (2013) 170:60–67 65

Fig. 2 The period of oscillation as a function of the temperature and the electron-LO-phonon coupling
constant for different electric fields

Fig. 3 The period of oscillation as a function of the temperature and the confinement length for different
electric fields

Fig. 1. Besides, Fig. 2 also means that the electric field doesn’t change the relations
of the period of oscillation with the temperature and electron-LO-phonon coupling
constant at finite temperature (compare Fig. 2 with Fig. 2 in Ref. [24]).

Figure 3 describes the period of oscillation as a function of the temperature and the
confinement length for the electron-LO-phonon coupling constant α = 6 and different
electric fields F = 20, 50. As is seen in the Fig. 3, at different electric fields, the
period of oscillation increases with the confinement length’s increasing. For the same
reason as in the Fig. 2, the period of oscillation fluctuates because of the temperature’s
increasing and the period of oscillation increases with the electric field’s increasing
as in Fig. 1. At the same time, Fig. 3 also shows that the electric field doesn’t make
the relations of the period of oscillation with the temperature and the confinement
length change (compare Fig. 3 with Fig. 4 in Ref. [24]).

The above discussions indicate that the period of oscillation increases in superpo-
sition state of electron in a QD with the increment of temperature due to the existence
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the electric field. And our earlier studies show the probability density of electron and
the period of oscillation are all effected by the temperature due to the existence of the
parabolic linear bound potential or the Coulomb bound potential [23, 24]. However,
a qubit cannot be independent of environment and must interact with the heat bath.
As a result, the interaction destroys the superposition state of a qubit, which is deco-
herence [13–18]. The period of oscillation increases, in other words, the lifetime of
a qubit increases. So the process of decoherence is slower. It is very useful to store
information where the QD is made as its elementary unit. This is in agreement with
discussion in Ref. [26].

4 Conclusions

In this paper, we have investigated that the effects of the temperature on the parabolic
quantum dot qubit in the electric field using the Pekar variational method. From a
numerical evaluation, we have shown that the period of oscillation increases with
the electric field’s increasing at any temperature. Meanwhile, at lower electric field
or higher electric field, our results show: (1) the period of oscillation increases with
the increasing temperature; (2) the period of oscillation decreases with the electron-
LO-phonon coupling constant’s increasing when the temperature is lower or higher;
(3) the period of oscillation increases with the confinement length’s increasing when
the temperature is lower or higher. In addition, our work shows the advantage of the
method that we used in this paper is the simplicity of the design of the computation
process.

At present, other theoretical and experimental research of temperature effects on
the quantum dot qubit is very scare besides our works [23, 24]. So a comparison
between our results and experimental observations will be made in the future. But
we still hope that our work anticipates some interesting aspects of the temperature
dependences on quantum dot qubit.
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