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Abstract We present a detailed analysis on the effect of using different algorithms
to model the reconnection of vortices in quantum turbulence, using the thin-filament
approach. We examine differences between four main algorithms for the case of tur-
bulence driven by a counterflow. In calculating the velocity field we use both the local
induction approximation (LIA) and the Biot-Savart integral. We show that results of
Biot-Savart simulations are not sensitive to the particular reconnection method used,
but LIA results are.
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1 Introduction

Turbulence in the quantum, low temperature phase of liquid helium (*He), also
known as quantum turbulence [1-3], consists of reconnecting quantized vortex fil-
aments, arranged in a random, disordered tangle. Due to quantum mechanical con-
straints, each vortex carries the same fixed circulation & /m, where h is Planck’s con-
stant and m is the mass of one atom. This quantity is called the quantum of circulation
k. A number of experimental methods have been used to create this form of turbu-
lence, for example agitating superfluid liquid helium with propellers [4, 5], forks[6],
or grids [7]; these techniques are also used to create turbulence in ordinary fluids.

At finite temperatures superfluid helium is a two fluid system: a viscous normal
fluid component coexisting with an inviscid superfluid component. The superfluid
vortices interact with the thermal excitations which make up the normal fluid, thus
introducing a mutual friction force between the two fluid components. This means
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that turbulence in the quantum fluid can be driven by the flow of the normal fluid
or vice-versa. One particular example is superfluid turbulence driven by a heat flow
[8—13]. Note that this form of turbulence has no classical analogy.

Recently new flow visualization techniques, such as tracer particles [14, 15], An-
dreev scattering [16] and laser-induced fluorescence [17], have added substantially to
our knowledge of the nature of quantum turbulence. Even with these advances in flow
visualization numerical simulations will continue to play a crucial role in furthering
our knowledge. Indeed, building on the pioneering work of Schwarz [18], numerical
simulations have always been important in the field [19-29], and the recent exper-
imental progress has highlighted their importance in interpreting experimental data
[30, 31]. This article is concerned with verifying that the vortex reconnection proce-
dure used in the popular vortex filament method (VFM) is robust. Before we discuss
the modelling of reconnections in the VFM, we shall give a brief outline of the VFM
method.

In superfluid helium, the vortex core radius (ap ~ 10-8 cm) is many orders of
magnitude smaller than the average separation between vortex lines (typically from
1072 to 10™* cm) or any other relevant length scale in the flow. Starting from this
key observation, Schwarz [18] modelled vortex lines as spaces curves s = s(§, t) of
infinitesimal thickness, where ¢ is the time and & is arc length, using the classical
theory of vortex filaments [32]. In the VFM these space curves are numerically dis-
cretized by a large, variable number of points s; (i =1, ..., N), which hereafter we
refer to as vortex points. In all implementations of the VFM to superfluids the number
of vortex points varies in time, as it is desirable to maintain a relatively constant reso-
lution along the filaments by adding or removing points as the length of the filaments
changes. In a recent paper [28] we have discussed the various numerical details at
length, here it is suffice to say that the resolution along the filaments lies between an
upper, 4, and lower, §/2, bound.

The motion of a vortex filament is determined by the normal fluid, through mutual
friction, and by the induced velocity of the other vortices. The governing equation of
motion of the superfluid vortex lines, at point s is given by the Schwarz equation [18]

ds / I /

Ezvx—i—as X (Vg = Vs) —a's" x [s" x (v4 — vy)], (1)
where «, o’ are temperature dependent friction coefficients [33, 34], v, is the normal
fluid’s velocity, and v; is the superfluid’s velocity field. The prime denotes derivative
with respect to arclength, e.g. s’ = ds/d&. Note that, strictly speaking, one should
also model the back reaction of the superfluid on the normal component; v, should
be the solution of the Navier-Stokes equation modified by mutual friction. However,
for the sake of simplicity, here we shall simply prescribe the normal flow.

In our system the quantised vortices define the vorticity field; we recover the ve-
locity field vg by numerically solving the Biot-Savart (BS) integral,

K (s—r)

Vvy(s) = — x dr, 2)

4z Jo|s—rf?

where the line integral extends over the entire vortex configuration £. We de-
singularize the integral in a standard way [18].
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Schwarz [18] proposed the use of the Local Induction Approximation (LIA)
[35, 36] as an alternative to the Biot-Savart method, which is computationally very
expensive. The LIA ignores the non-local contribution to the motion of a section of
the vortex filament. Instead a vortex line at the point s; moves along the binormal to
s;, with the following equation of motion

ds; « cR
d_tl = ln<%)s; x s, (3)

where c is a constant of order unity and R is the local radius of curvature |s§’|_1 of
the vortex filament. We shall test various reconnection algorithms using both the BS
law, and the LIA in a series of numerical experiments. Again, for further details about
spatial derivatives and methods to time-step the vortices, we refer the reader to [28].

We know from experiments [37] and from more microscopic models [38—41] that
superfluid vortex lines can reconnect with each other when they come sufficiently
close, as envisaged by Feynman [42]. Superfluid vortex reconnections do not violate
Kelvin’s theorem as near the axis of the vortex core, where density and pressure
vanish and velocity diverges, the governing Gross-Pitaevski equation (GPE) differs
from the classical Euler equation.

Whilst vortex reconnections are natural solutions of the GPE, within the VFM
reconnections must be modelled by supplementing (2) with an algorithmical recon-
nection procedure. This was originally proposed by Schwarz [18], and since then a
number of alternative algorithms have been proposed. Until now no detailed test of
the effects of varying this procedure has been performed. Whilst a number of studies
have shown good agreement between results using the VFM and experimental re-
sults [29, 43, 44], a detailed study of the reconnection algorithm is timely; that is the
purpose of this study.

2 Reconnection Algorithms

In his pioneering paper [18], Schwarz’s suggested that vortex lines reconnect when-
ever the distance between a pair of vortices is less than A = 2R /[cIn(R/ag)], where
R is the radius of curvature at the reconnection point, and c is a constant of order
unity. However, this approach can lead to non-physical reconnections. Consider, for
example, two almost straight vortices; under Schwarz’s criterion these vortices must
reconnect even if they are very far apart, as a large radius of curvature R, results
in a large value for A. In this work we therefore avoid the use of this reconnection
criterion, instead focusing on methods which have been used in more recent studies.

Most recent studies have related the reconnection distance to the space resolu-
tion along the filaments [45, 46]. We consider three differing reconnection algorithms
which take the critical reconnection distance to be related to the maximum spatial res-
olution, A = §/2. We define the first reconnection algorithm as Type 1. In a Type 1
reconnection vortices are simply reconnected if their separation if less than A. Mo-
tivated by the fact that a reconnection is dissipative event, leading to phonon emis-
sion [47], we consider an improved algorithm denoted Type II. As vortex line length
is a proxy for the kinetic energy, for a Type II reconnection not only must the distance
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Fig. 1 Schematic reconnection

procedure for Type I and IT 6 3 6
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Fig. 2 Schematic reconnection
procedure for Type III 1 4 \.\_/./
reconnection algorithm 1 4
described in Sect. 2. The
segments (1 — 2 — 3) and
(4 — 5 — 6) evolve into 2 5
(6 — 3) and (1 — 4). Points 2
and 5 are eliminated

3 6

3 6 e

between the reconnecting filament be less that §/2, but also the line length must be
reduced by the change of topology. A schematic for the Type I and II algorithms can
be seen in Fig. 1. The third reconnection model, Type III, can be considered an ‘ultra’
dissipative algorithm. Type III differs from Type I because the points which triggered
the reconnection are eliminated leading to a greater loss of line length, and hence
energy. A schematic of this algorithm is displayed in Fig. 2.

In a recent work Kondaurova and Nemirovskii [24] introduced a new model (Type
IV) of reconnections within the VFM, which tests whether line segments will meet
during the time-step. Candidate pairs of vortex points (i & j), points which are close
enough to reconnect, are identified. The Type IV algorithm then assumes that the line
segments between each of the pair will move with a constant velocity (v(s;) & v(s;))
during the time-step. Under this assumption a set of simultaneous equations can be
constructed,

Xi F e (SHA + (Xig1 —x)V =xj + 0 (S)A + (Xj41 — X))

Vi +vy(S)A+ Qi1 — yD)¥ =yj +vy($))A + (¥j+1 — yj)d

Zi Tz (8DA + (Zig1 — 2DV =2 +v(8)A + (2j+1 — 2j)@
0<¢<1, 0<y<1, O0<A<A

such that if a solution for ¢, 1 and A can be found, then the filaments will collide
during the time-step. Here s; = (x;, ¥i, 2i), Si+1 = (Xi41, Yi+1,Zi+1) Sj = (Xj, ¥j, 2j)
and s;y1 = (xj41,Yj4+1,2j+1) are the coordinates of the pair of points and their
neighbours along the filament, and At is the numerical time-step. If the line segments
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Fig. 3 (Color online)
Schematic representation of the
motion of vortex filaments under
the Type IV algorithm. If the
segments will collide (as shown)
then the reconnection is
performed as in Fig. 1

will meet, then the filaments are reconnected in the same manner as in Fig. 1. We de-
fine candidate points (i & j) as vortex points within distance A = §. A schematic
diagram of the Type IV algorithm is shown in Fig. 3.

Before performing any reconnection we test the distance from a point i to all other
points, which are not the nearest neighbours along the filament. We then begin the test
for a reconnection based on the closest reconnection point, assuming the distance is
smaller than A. This means self-reconnections (which can arise if a vortex filament
has twisted by a large amount) are treated in the same manner as reconnections be-
tween different filaments. Finally as reconnections must preserve the orientation of
the vorticity, we check that the two reconnecting filaments are not parallel. To do
this we form local (unit) tangent vectors, for example if the reconnecting points are
i and j we can readily calculate §; and §’j We then test that §; - §’j < 0.965, which
ensures that the minimum angle between reconnecting filaments is approximately 15
degrees. We have tested that altering this threshold to smaller angles does not lead to
any discernible difference in the results, hence for brevity all results here are subject
to this criterion.

3 Numerical Simulations

We now detail the numerical simulations used to test the various reconnection algo-
rithms described in the previous section. As a benchmark we choose counterflow tur-
bulence, the relative motion of the normal fluid and superfluid components sustained
by an applied heat flow in the direction of v,,. The superfluid flows in the opposite di-
rection so that p, v, + py vy = 0, where p,, and py are respectively the normal fluid and
superfluid densities. We choose this form of turbulence as there has been a wealth of
experimental studies [8—11, 13, 48], as well as some recent detailed numerical simu-
lations [43, 49]. Counterflow turbulence was also used in a recent numerical study by
Kondaurova and Nemirovskii [50], where they reported that the use of a reconnec-
tion method, similar to the Type IV algorithm, gave a steady state solution for LIA
simulations. We shall also test these claims in this study.

Our calculations are performed in a periodic cube with sides of length D = 0.1 cm.
Superfluid and normal fluid velocities v,, and v, are imposed in the positive and nega-
tive x directions respectively, where v, = |v,, — Vs| is proportional to the applied heat
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Fig. 4 The initial conditions
used in every simulation; a set of
random loops with radius
0.0095 cm

flux. Simulations are performed with two different numerical resolutions (in order to
examine its effect) § = 1.6 x 1073 cm and § = 2.5 x 1073 cm. In all simulations
the time-step is fixed at A7 = 10™* s. The initial condition consists of a set of vortex
loops set at random locations, which are displayed in Fig. 4.

During the evolution we monitor the vortex line density calculated as,

L= v 4)
where V = D3 is the volume of the computational domain, £ is the entire vortex
configuration and A = |, r dé& is the total vortex line length. We also monitor the
number of reconnections per unit time (the reconnection rate), .

We run simulations, with the different reconnection algorithms, using both the
LIA and the BS law with v,s = 0.55 cm/s and temperature 7 = 1.6 K (¢ = 0.098,
a’ =0.016). We then run further simulations, using only the BS law, for three further
values of vy,s. This allows us to test the theoretically predicted [8—11] and experimen-
tally and numerically [43] verified law for the steady state line length,

L=y*? 5

ns?

where y is a temperature-dependent parameter. Our aim is to determine whether the
different reconnection algorithms yield different values of y. We stress that y is a
macroscopic quantity which is known from experiments. Finally we perform sim-
ulations with mutual friction coefficients corresponding to very low temperatures,
a =0.01, a’ = 0, probing the effect of the reconnection algorithm in the zero tem-
perature limit.

4 Results

The results for the initial simulations using both the LIA and the BS law are presented
in Figs. 5-9. We display the results from the high resolution (8 = 1.6 x 1073 cm)
simulations in Fig. 5, and those from the lower resolution (§ = 2.5 x 1073 cm) sim-
ulations in Fig. 6. Both show the vortex line (L) density plotted as a function of
time for the LIA (left) and the BS (right) simulations, using the various reconnection
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Fig. 5 (Color online) The vortex line density L (cm*2) plotted as a function of time ¢ (s) for simula-
tions with the LIA (left) and the BS law (right) with different reconnection algorithms, v,y = 0.55 cm/s,
T=16Kand§=16x 1073 cm. The symbols are as follows: (blue) pentagons: Type I reconnection;
(black) circles: Type 11, (red) triangles: Type I1I; (green) squares: Type IV
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Fig. 6 (Color online) The vortex line density L (cm_2) plotted as a function of time ¢ (s) for simulations
with the LIA (left) and the BS law (right), for the lower resolution simulations. v,s = 0.55cm/s, T = 1.6 K
and § =2.5x 1073 cm, plotting symbols and colors are as in Fig. 5

algorithms. The results for the Biot-Savart law are very encouraging showing little
difference between the simulations with the different reconnection algorithms. In all
simulations there is an initial rapid growth in the vortex line density, followed by a
more gradual increase until eventual saturation to a fluctuating steady state.

As we discussed earlier, the reconnection method is the one ad-hoc aspect of the
VEM, and it seems that, at least for quantum turbulence driven by counterflow (for
the moderate values of v,; used here), the results are very robust. Note infact that all
calculations performed with the BS law, Figs. 5 and 6 (right), converge to approxi-
mately the same value of L. We believe this is a very useful result as this means that
one can confidently draw conclusions from simulations which use the BS method.
We note, however, that one should probably always err on the side of caution with
VEM simulations and check the effect of different reconnection algorithms with a
different numerical experiment.
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Fig. 7 (Color online) The reconnection rate, { (s™1), scaled by the vortex line length, A (cm), plotted as

a function of time, ¢ (s), for the LIA (left) and BS (right) simulations; plotting symbols and colors are as
in Fig. 5. vy =0.55cm/s, T =1.6 Kand § = 1.6 x 10~3 cm

Fig. 8 Probability density 4
functions (PDF) of the time
between reconnections (7; (s)),
at the ith vortex point

(i=1,...,N), for simulations E
using the Type I (solid line) and =
Type 11 (dashed line). The E

distributions are calculated from
the time series plotted in Fig. 5
(right) using the BS law

Figure 7 (right) shows the number of reconnections per unit time per unit length,
¢/A, for the BS simulations, and the picture is similar. For each of the different
algorithms the reconnection rate per unit line length is approximately the same.

As we may expect the reconnection rate for the Type IV reconnection is the small-
est, due to the additional constraints required to perform a reconnection under this
model. We also note that the use of the Type I reconnection algorithm leads to an
increased reconnection rate. In order to understand what leads to this difference we
monitor the time difference between reconnection events at each of the discretization
points. Our aim is to investigate whether this higher reconnection rate is caused by
multiple reconnections before vortices separate. Formally we define the time differ-
ence between reconnection events the ith discretization point experiences as t;. This
statistic is sampled at all i =1, ..., N(¢) points in the system for the duration of
each simulation. We note that this method of analysis does not take into account local
remeshing of the filament, or the fact that multiple reconnections may not occur with
exactly the same points. Hence these results should be taken as an upper-bound for
the time interval between a point taking place in reconnection events.

Figure 8 displays the probability density function (PDF) of 7; for the simulations
presented in Fig. 5 (right) using the Type I and Type III reconnection algorithms.
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Fig. 9 Snapshots of the vortex filaments in the plane perpendicular to the counterflow for BS simulations,
from Fig. 5 (right), each at t = 20 s. The left panel is for the simulation with the Type II reconnection algo-
rithm, Type III (middle) and Type IV (right). All figures are taken from the higher resolution simulations,
§=1.6x10"3cm

In the simulation with the Type I algorithm the bulk of the density is concentrated
around 7 = 0. In the same figure we also display the PDF of t for the Type III al-
gorithm, which is representative of the PDFs for the Type II and IV algorithms. We
note that here the density is not as strongly concentrated at T = 0, this is reflected in
the means of the distributions, T = 0.59 s in the simulation with the Type III algo-
rithm, in contrast to T = 0.17 s when using the Type I algorithm. Therefore, we can
reasonably conclude that the increased reconnection rate is due to multiple, perhaps
spurious, reconnection events before the reconnecting vortices separate.

Importantly, despite the small differences in the reconnection rate between the
simulations, there is no discernible impact on the evolution of the vortex line density.
Snapshots of the system at the end of simulations are plotted in Fig. 9. We shall return
to discuss the further simulations using the BS method later in this section.

The picture for the LIA simulations is very different. We find that even with the
same initial conditions, slight differences in the reconnection algorithms lead to large
changes in the overall evolution of the system. Kondaurova and Nemirovskii [50]
found that using a reconnection scheme similar to the Type IV algorithm used here
they reached a steady state. We find that only one simulation reaches a steady state,
visible in Fig. 6, for the lower resolution simulations using the Type II algorithm.
However here the steady states we find is degenerate, the system evolves to a set of
very straight vortices, arranged in planes parallel to the counterflow direction, visible
in Fig. 10. These planes are then simply advected in the direction of the counterflow
with a negligible change in vortex line density. In this configuration the reconnection
rate drops to zero.

In the other simulations no consistent steady state is not found and large fluctu-
ations in the line density are seen. It is particularly noticeable, at both resolutions,
that the simulations using the Type IV algorithm approach much higher vortex line
densities, in comparison to the simulations using the alternative algorithms. We re-
emphasise that this is not the case in the simulations using the BS law. We find the
same bundles of vortex lines, stratified in layers, observed by Schwarz [18] and re-
cently reproduced by Adachi [43]. Schwarz recognised that this is a spurious effect
and introduced his artificial mixing procedure to avoid it [18], see Fig. 11 (right). The
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Fig. 10 The degenerate vortex
configuration for the simulation
using the LIA with
§=25x10"3 cm using the
Type II reconnection algorithm,
plotted at r =80 s

Fig. 11 Snapshots of the vortex filaments from the simulations using the LIA, as plotted in Fig. 5 (left).
The left panel shows the state of the system at t & 8 (s) using the type IV reconnection algorithm, the
middle panel shows the corresponding figure for the simulation with Type II reconnection algorithm, note
the difference in vortex line densities. The right panel shows a plot in the plane perpendicular to the coun-
terflow for the simulation with the Type IV algorithm at # = 60 s: this layered vortex structure was recog-
nised by Schwgirz [18] and Adachi et al. [43]. All figures are taken from the higher resolution simulations,
§=1.6x10"7 cm

reconnection rate per unit line length, Fig. 7 (left), also show that LIA simulations
are highly sensitive to the reconnection algorithm used. We thus agree with other au-
thors that, due to the absence of the non-local component of the velocity field, LIA is
unsuitable for simulations of turbulence [43].

We now return to the BS simulations, focusing on the affect of varying the coun-
terflow velocity v,;. We are interested in the relationship between the steady state
line density and the counterflow velocity. As above, the temperature is fixed at
1.6 K, here we shall only discuss the results of the higher resolution simulations
(8 = 1.6 x 1073 cm). Figure 5 (right) is very representative of the time series for
the vortex line density, at different temperatures, hence we do not reproduce further
plots for each of the different values of v,;. Instead in Fig. 12 we display the linear
relationship between VL and Upns, according to (5). Again, we find that the result is
not sensitive to which reconnection algorithm is used.
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Fig. 12 (Color online) A plot 80
of the root of the vortex line

density, L (cm™2), and the 7ot *
magnitude of the counterflow
velocity, v,s (cm/s). The linear
relationship between +/L and @ 60r i
vps for each of the reconnection
schemes is apparent, plotting 50 z
symbols and colors are as in {‘
Fig. 5. Error-bars display the a0t

uncertainty in the vortex line %
density due to fluctuations about

the steady state
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Table 1 A table of values of y
for the different reconnection
algorithms in simulations using
the Biot-Savart law at Type I 116.9
T=16K§=16x10"cm  Typeqy 114.35

Type 11T 105.7
Type IV 112.3

Reconnection algorithm y

It is instructive to compare the effect of the reconnection algorithm used on the
scaling parameter, y, and compare with experimental results. Our aim here is not
to claim that the algorithm which yields the value closest to that experimental value
should be used in the VFM. Instead we wish to add further weight to our claims that
results from the VFM can be informative, so long as a physically justifiable reconnec-
tion algorithm is used. Table 1 shows the values of y for the different reconnection
algorithms. The experimental value of y at this temperature is 93 [13, 48]; Adachi et
al. [43] gave numerical results of y = 109.6.

Finally we present the results of the low temperature simulations (o = 0.01,
a’ = 0), focusing only on the results using the BS law. In Fig. 13 we display both
the vortex line density (left) and the reconnection rate (right) for the various recon-
nection algorithms, for the simulations with § = 1.6 x 1073 cm. Again it is reassur-
ing to see that both the steady-state vortex line density and scaled reconnection rate
are independent of the reconnection algorithm used. Indeed at lower temperatures
one may expect the nature of the reconnection algorithm to have a larger effect on
vortex evolution. This is as Kelvin waves, damped at higher temperatures, lead to
the creation of small scale structures [25] and possible energy dissipation via self-
reconnections [51]. We note lower resolution (8§ = 2.5 x 1073 cm) simulations show
the same behaviour.

5 Conclusions
In conclusion we have shown that the vortex filament method is very robust to the

reconnection algorithm used, provided one uses the Biot-Savart integral to determine
the velocity field. In contrast results from simulations using the local induction ap-
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Fig. 13 (Color online) (Left) The vortex line density L (cm_z) plotted as a function of time ¢ (s) for
simulations with the BS law. (Right) Time series of the reconnection rate, ¢ (s*1 ), scaled by the vortex
line length, A (cm). Here v,s = 0.55 cm/s, « = 0.01, o =0 and § = 1.6 x 10~3 ¢cm. The symbols are as
follows: (blue) pentagons: Type I reconnection; (black) circles: Type II; (red) triangles: Type 1II; (green)
squares: Type IV

proximation are highly dependent on the algorithm used, lending further weight to
the criticism of this method.
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