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Abstract We present transport measurements of electrons on the surface of liquid
helium in a microchannel device in which a constriction may be formed by a split-
gate electrode. The surface electron current passing through the microchannel first
decreases and is then completely suppressed as the split-gate voltage is swept neg-
ative. The current decreases in a steplike manner, due to changes in the number of
electrons able to pass simultaneously through the constriction. We investigate the de-
pendence of the electron transport on the AC driving voltage and the DC potentials
applied to the sample electrodes, in order to understand the electrostatic potential pro-
file of the constriction region. Our results are in good agreement with a finite element
modeling analysis of the device. We demonstrate that the threshold of current flow
depends not only on the applied potentials but also on the surface electron density.
The detailed understanding of the characteristics of such a device is an important
step in the development of mesoscopic experiments with surface electrons on liquid
helium.
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1 Introduction

An electron close to the free surface of liquid helium is subjected to an attractive force
due to a weak image charge formed in the liquid [1, 2]. In the presence of an applied
electric field Ez, the potential in the direction perpendicular to the helium surface
may be written as V (z) = −�e2/z + eEzz where � = (ε − 1)/4(ε + 1), ε is the
dielectric constant of the liquid, e is the absolute value of the electronic charge and z

is the distance from the helium surface. The electron is prevented from entering the
liquid due to a ∼1 eV potential barrier at the surface and so remains localized above
the liquid. The potential V (z) gives rise to a series of bound states for perpendicular
motion; in the ground state, the expectation value of z is ∼11 nm [3]. The lifetime of
these bound states is predicted to be long, leading to the proposal that electrons on
the surface of liquid helium may be good candidates for quantum bits [4].

For a two-dimensional system of charges on a liquid helium surface, the electron
surface density ns may be varied over a wide range, up to a theoretical limit given
by the hydrodynamic instability of the bulk liquid surface of ∼2.2×109 cm−2 [5–7].
By varying temperature the scattering processes which determine the electron mobil-
ity in the plane parallel to the helium surface may be controlled. Below ∼0.8 K the
density of gas atoms above the liquid surface becomes effectively zero and scattering
occurs only with excitations of the liquid surface, ripplons, leading to high mobilities
in excess of 108 cm2/V·s [8]. As the Coulomb interaction between electrons is es-
sentially unscreened, and the electron separation is much larger than the thermal elec-
tron wavelength, SSE have been used to study classical effects in strongly-interacting
electron systems, such as the transition from an electron liquid to a 2D Wigner solid
as the temperature of the electron system is decreased [9].

Quasi-one dimensional SSE systems [10] have been investigated using samples
in which liquid helium was confined in grooves on a dielectric substrate [11]. The
width of the grooves was as low as 1.25 µm. In such experiments, the temperature
dependence of the electron mobility [12] was found to be in good agreement with
that predicted by theoretical calculations where transitions between quantized energy
levels for the lateral motion of the electrons were taken into account [13]. However,
for such dielectric substrates the mobility was also dependent on substrate defects in
regions where the helium film was thin.

Recent experiments have made use of microchannel devices fabricated by litho-
graphic techniques in order to study the properties of SSE in confined geometries.
A schematic representation of a set of such microchannels is shown in Fig. 1. Placed
a distance h above the bulk surface of superfluid helium, the channel will fill by cap-
illary action; the helium surface may then be charged. The radius of curvature R of
the liquid is given by R = α/ρgh+n2

s e
2/2εε0 where α and ρ are the surface tension

coefficient and density of liquid 4He respectively, g is the acceleration due to gravity
and ε0 is the dielectric constant of vacuum [14]. The transport of electrons in such
devices was first demonstrated for a channel of width 30 µm and depth 1 µm [15].
The non-linear transport of the Wigner solid on helium surfaces in microchannels of
width 8–20 µm was studied in three-terminal devices comprising of source, drain and
gate electrodes submerged beneath the helium surface [16, 17]. The ultra-efficient
transfer of a small number of electrons along parallel microchannels of width 10 µm,
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Fig. 1 Schematic picture of a set of microchannels. The microchannels are filled by the capillary action
of superfluid 4He, the surface of which is then charged with electrons

again using a series of gate electrodes beneath the helium surface, has also been
demonstrated [18]. In still more advanced devices, small ensembles of electrons, in-
cluding a single electron, trapped in a microfabricated circular pool of radius 10 µm,
have been studied using a charge-sensitive superconducting Single Electron Transis-
tor (SET) positioned beneath the helium surface [19]. A Field Effect Transistor (FET)
for electrons on a thin helium film, where the electron density may exceed the hydro-
dynamic limit, has also been demonstrated [20]. There the separation between the
split-gate electrodes was 200 µm.

Such experiments demonstrate a progression towards the sensitive control and
measurement of small numbers of SSE on helium, raising the possibility of studying
novel phenomena associated with classically interacting charge systems in confined
geometries. Many theoretical studies have been conducted on the behavior of such
systems. In quasi-one dimensional systems, at sufficiently low temperatures, parti-
cles are predicted to form a series of rows, the number of which changes with the
particle density or confinement strength, leading to structural phase transitions and
re-entrant melting processes [21, 22]. Similar phenomena have also been predicted
in circularly symmetric parabolic confinements [23]. The pinning and depinning dy-
namics of charged particles at potential constrictions have also been investigated us-
ing Monte Carlo calculations [24–26]. However, experimental difficulties have re-
stricted progress towards investigating these phenomena. SET charge measurements,
whilst extremely sensitive, may be plagued by intrinsic two-level fluctuator charge
noise [27, 28]. Also, the electrostatic potential profile in microchannel devices may
be distorted by contact potentials and surface charging effects which can be difficult
to quantify [29].

As a step towards overcoming these experimental difficulties, we have performed
transport measurements of SSE on superfluid 4He in a microfabricated device. In
this sample, two microchannel SSE reservoirs are separated by a split-gate electrode
which, at appropriate bias, forms a constriction. As the split-gate voltage Vgt is swept
negative the current I flowing through the constriction is reduced and then reaches
zero at a threshold voltage V th

gt . The appearance of step-like decreases in current in
this device, where each step corresponds to a change in the number of electrons able
to pass simultaneously through the constriction, has already been reported [30]. Here
we present further transport measurements, investigating in particular the response
of the system to increasing AC driving voltage, which causes significant non-linear
transport effects to emerge. These results are discussed in relation to an electrostatic
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Fig. 2 Point-contact device for electrons on helium. (a) Two arrays of microchannels form the left and
right electron reservoirs. (b) A split-gate electrode is positioned at the base of the small central channel
which links the two reservoirs. (c) Diagram showing the dimensions of the electrodes in the central channel

model of the sample which shows that offsets in electrode potentials, arising for rea-
sons which are not yet clear, are important in determining the potential profile of the
device.

2 Experimental

The sample used in this experiment was prepared using multilayer optical and
electron-beam lithography on a Si wafer, the surface of which was oxidized. Two
arrays of microchannels, defined by a guard electrode, act as electron reservoirs be-
tween which electrons may be exchanged. These left and right reservoirs consist of
25 microchannels of width w = 20 µm arranged in parallel and connected together at
one end (Fig. 2(a)). The two reservoirs are separated by a smaller channel of width
10 µm and length 20 µm. Electrodes were fabricated beneath the reservoir microchan-
nels and are denoted as the left and right reservoir electrodes respectively. A split-gate
electrode was fabricated at the base of the small central channel (Fig. 2(b)). The ge-
ometry of the central channel is shown in Fig. 2(c); the split gate was 1 µm long and
separated by a gap of 2.8 µm. Due to the limitations of our lithographic techniques,
a 400 nm gap existed between the left and right reservoir electrodes. At this gap the
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Fig. 3 (Color online) Finite element modeling results. (a) Contour plot of the calculated electrostatic
potential in the central channel for Vgu = Vgt = 0 V and Vr = +1.0 V. The darker areas correspond to
regions of lower potential energy for electrons. (b) Electrostatic potential in the x direction along the
channel (y = 0 µm) and the y direction across the channel (x = 0 µm), for Vgu = 0 V, Vr = 0.3 V and
Vgt = +1.3 V (red), +0.3 V (blue), −0.7 V (green), −2.3 V (dark yellow)

insulating silicon wafer on which the device was fabricated was exposed, leaving an
area which could have become charged. Therefore, in order to avoid the distortion of
the potential profile of the constriction region, this gap was placed 10 µm to the right
of the split gate. A 1.5 µm thick layer of hard baked photoresist, which defined the
microchannel depth d , separated the lower electrodes from the guard electrode. All
metal layers were made of gold (65 nm thick) on top of a thin (15 nm) titanium layer
which was deposited in order to promote adhesion.

The sample was placed in an experimental cell approximately 0.5 mm above the
bulk surface of superfluid 4He at 1.25 K. No special attention was paid to the lev-
eling of the device as, for the capillary condensed channels, we estimate that a 1◦
offset from horizontal would lead to a difference in the helium depth from one end
of the device to the other of less than 1%. The potentials Vgu, Vr and Vgt were ap-
plied to the guard, reservoir and split-gate electrodes, respectively. Under the bias
conditions Vgu = 0 V, Vr = Vgt = +1.0 V, the surface of the helium was charged by
thermionic emission from a small tungsten filament placed a few mm above the sam-
ple. A small AC voltage Vin of frequency 200 kHz was superimposed on the right
reservoir electrode in order to drive electrons between the two reservoirs, through the
central channel. The current I and conductance of the electron system G were deter-
mined by making a phase-sensitive measurement of the voltage capacitively induced
on the left reservoir electrode, in reference to the standard lumped-circuit model [31].

To aid the understanding of the electrostatic potential profile of the device, a finite
element model of the central channel was developed [32]. The results of the mod-
eling are shown in Fig. 3(a) for Vgu = Vgt = 0 V, Vr = +0.3 V. When Vgt is more
negative than Vr , a saddle-point potential is formed on the helium surface at the point
(x = 0, y = 0), with a maximum in potential for electrons in the x direction along the
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channel and a minimum in the lateral y direction. Figure 3(b) shows how the poten-
tial profile develops as Vgt is changed. For Vgt = −2.3 V the potential at the center of
the saddle-point is more negative than the guard electrode potential. We assume that
the electrostatic potential energy of the electron system may not exceed Vgu, as this
would lead to electrons escaping from the reservoirs, onto the thin helium film cover-
ing the guard electrode. Electrons on thin helium films formed on metallic substrates
should be strongly screened, and have been shown to rapidly drain away, possibly due
to tunneling through the film at points where surface roughness causes the helium to
become very thin [33]. We therefore conclude that, when the potential at the center
of the saddle-point is more negative than the guard electrode potential, the resulting
potential barrier between the two reservoirs should block electron transport through
the constriction.

3 Results and Discussion

Before discussing experimental results, we first develop an electrostatic model of the
device, following the approach presented in [30]. Note that in this model, a more
positive voltage corresponds to a lower potential energy for an electron. We estimate
that the change in the depth of the helium at the center of the 20 µm-wide reservoir
microchannels should be less than 0.1 µm. Therefore we do not take the curvature of
the helium surface into account here. Also, as mentioned in the previous section, any
variation in helium depth due to the misleveling of the sample should be negligibly
small. We begin by assuming that the electron system may be considered as a charge
continuum. The electrostatic potential energy of the electron system in the reservoirs,
Ve , depends on the reservoir electrode voltage Vr and the electron density. There-
fore we may write Ve = −ensd/εε0 + Vr . The results of the finite element modeling
analysis (Fig. 3) indicate that a saddle-point potential is formed at the constriction be-
tween the two reservoirs when Vgt is more negative than Vr . At appropriate values of
Vgt a potential barrier between the two reservoirs may be formed. The saddle-point
potential may be written as V (x, y) = Vb + 1

2ax2 − 1
2by2 where Vb is the poten-

tial at the center of the saddle-point and a and b are constants. We consider that
for −eVe > −eVb electrons may pass over the potential barrier, allowing transport
through the constriction, whereas for −eVe < −eVb electron transport is blocked.
The condition −eVe = −eVb therefore defines the threshold of current flow through
the constriction. This condition is depicted schematically in Fig. 4(a).

The influence of the reservoir, split-gate and guard electrodes on the potential
barrier may be estimated by considering the region of space at the center of the con-
striction to have some capacitance to the three electrodes, Cr , Cgt and Cgu, as well as
a stray capacitance to the surroundings Cs . The total capacitance of the region is then
described by CΣ = Cr +Cgt +Cgu +Cs and we can define constants to represent the
relative strength of coupling from each electrode to the barrier region as α = Cr/CΣ ,
β = Cgt/CΣ , γ = Cgu/CΣ and σ = Cs/CΣ . Experimentally it was found that, on
increasing Vr,Vgt and Vgu by +100 mV simultaneously the threshold of current flow
also increased by exactly +100 mV (data not shown), indicating that Cs was in fact
negligibly small (σ = 0) and that α + β + γ = 1. The potential at the center of the
constriction may then be written as Vb = αVr + βVgt + γVgu.



J Low Temp Phys (2012) 166:107–124 113

Fig. 4 (Color online) Two electrostatic models of the system. (a) Schematic diagram of the electrostatic
potential across the device through the central channel, V (x,0), for the case where Ve = Vb , assuming that
the electron system forms a charge continuum. (b) As Vr becomes more negative, Ve becomes negative
more quickly than Vb and Vgt must be set more negative to ‘pinch-off’ the current. (c) Eventually Ve = Vgu
and when Vr becomes more negative electrons are lost to the guard electrode. Because Ve now remains
constant, Vgt must be set more positive to maintain the threshold condition. (d) Schematic representation
of the constriction under a granular charge model in which the constriction is modeled as a small square
of the helium surface of area A = w2

c . The number of electrons in the constriction Nc = nsw
2
c . Under this

model, the current passing through the constriction should be suppressed when Nc < 1

We now consider the case in which the reservoir voltage is set progressively more
negative with a fixed bias applied to the split gate and guard electrode (here we as-
sume Vin to be small). This is depicted schematically in Fig. 4(a–c); from top to
bottom Vr goes from positive to negative bias. In Fig. 4(a) we see that, at a certain
positive reservoir bias, the height of the potential barrier just meets the potential en-
ergy of the electron system and the current is ‘pinched-off’. Making Vr more negative
(Fig. 4(b)) causes both Ve and Vb to become more negative. As Ve remains below the
guard potential electrons do not escape from the channels onto the thin helium film
above the guard; there is no change in the electron density and Ve simply changes
by the change in Vr . However, the change in the barrier height is smaller due its
additional dependence on the split-gate and guard electrodes (α < 1). Therefore a
negative change in Vr causes Vb to become more positive relative to Ve and current
flows across the barrier. By setting Vr more negative still (Fig. 4(c)) electrons are
eventually lost to the guard leading to a reduction in ns until Ve is equal to the guard
potential. Now as Vr becomes more negative, Vb becomes more negative with respect
to Ve and the current may eventually be suppressed once more.

We denote the value of Vgt for which −eVe = −eVb as V 0
gt . Following the model

described above, expressions may now be derived to describe the dependence of V 0
gt

on Vr , for constant Vgu. From the threshold condition −eVe = −eVb, for the case
where −eVe < −eVgu we have

−ensd

εε0
+ Vr = αVr + βV 0

gt + γVgu, (1)



114 J Low Temp Phys (2012) 166:107–124

and for the case where −eVe = −eVgu,

Vgu = αVr + βV 0
gt + γVgu. (2)

Rearranging (1) and (2) gives respectively,

V 0
gt = 1 − α

β
Vr −

ensd
εε0

+ γVgu

β
, (3)

and

V 0
gt = −α

β
Vr + 1 − γ

β
Vgu. (4)

Because the separation between the split-gate electrodes (2.8 µm) is comparable to
the inter-electron spacing (∼0.3 µm for ns = 1 × 109 cm−2), we expect only a small
number of electrons to be in the constriction region when the system is close to the
threshold condition. To estimate this number, we model the center of the constriction
as a small square of area A = w2

c , where wc is the effective width of the constriction.
As the FEM calculation indicates that the constant a is small compared to b, we will
assume that the potential in the x direction is flat, whilst the electrons are confined in
the y direction by a parabolic potential V (y) = Vb − 1

2by2, as pictured schematically
in Fig. 4(d). The maximum lateral displacement for electrons in the constriction, ymax,
satisfies the expression V (ymax) = Vb − 1

2by2
max = Ve . Substituting ymax = wc/2 gives

wc =
√

8

b
(Vb − Ve). (5)

Note that for the threshold condition −eVe = −eVb , wc = 0. Assuming a parallel-
plate capacitor approximation, the charge density in the area A may be written as

nc = εε0

ed
(V (y) − Ve), (6)

and the total number of electrons in A is therefore

Nc = εε0

ed

∫ wc
2

−wc
2

∫ wc
2

−wc
2

(V (y) − Ve) dxdy. (7)

After integration over the limits as given by (5), we obtain the result

Nc = 2

3

8εε0

bed
(Vb − Ve)

2. (8)

Although for the electron liquid electrons are not localized as in the Wigner crys-
tal, we assume that electrons are distributed evenly over A, effectively forming a
series of rows across the constriction. The number of electrons lying in the y direc-
tion across the constriction may then be estimated as Ny = √

Nc. For constant Vr
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and Vgu, we also have the relation Vb − Ve = β(Vgt − V 0
gt). This gives an expression

relating Ny to Vgt as

Ny =
√

2

3

8εε0

bed
β(Vgt − V 0

gt). (9)

The number of electrons across the constriction should therefore increase linearly
with increasing Vgt above the current threshold.

We suggest that the granularity of charge may cause some deviation from the
behavior of the system as expected under the charge continuum model. From (9),
the value of Vgt for which one row of electrons may be formed in the constriction
(Ny = 1) is

V 1
gt = V 0

gt + 1

β

√
3

2

bed

8εε0
. (10)

For V 0
gt ≤ Vgt < V 1

gt the number of electron rows across the constriction is less than 1.
Therefore, as no electrons are present in the constriction, current flow should be sup-
pressed when Vgt = V 1

gt rather than at the threshold condition assumed under the

charge continuum model Vgt = V 0
gt . We may now correct (3) and (4) to give V 1

gt for
changing Vr at constant Vgu. For the case where −eVe < −eVgu we have

V 1
gt = 1 − α

β
Vr + 1

β

√
3

2

b(Vr)ed

8εε0
−

ensd
εε0

+ γVgu

β
, (11)

and for the case where −eVe = −eVgu,

V 1
gt = −α

β
Vr + 1

β

√
3

2

b(Vr)ed

8εε0
+ 1 − γ

β
Vgu. (12)

Note that the value of b, which describes the parabolic lateral confinement at the con-
striction, is dependent on the potential applied to the reservoir electrodes (assuming
constant Vgu). The FEM calculation of the potential profile shows this dependency
to be linear. The corrective terms therefore introduce a non-linear dependence of V 1

gt
on Vr . However, in the following discussion, we will assume that, for constant Vr ,
small changes in Vgt cause a negligibly small change in b.

We have performed measurements in order to determine whether the charge con-
tinuum model or the granular charge model best describes the dynamics of electrons
in the device. We denote the experimentally determined value of the split-gate voltage
for which the current is suppressed as V th

gt . Figure 5(a) shows the dependence of the
current I flowing through the central channel as Vgt is varied for different values of
the driving voltage Vin. The current decreases as Vgt is swept negative and finally is
completely suppressed at the threshold voltage V th

gt , which for all cases is more neg-

ative than the reservoir voltage Vr = +1 V. The linear dependence of V th
gt on Vin is

shown in Fig. 5(b). The threshold for current flow occurs at more negative split-gate
bias as the driving voltage is increased.
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Fig. 5 (Color online) (a) Peak current I measured as a function of Vgt for different driving voltage ampli-

tude Vin. (b) The current threshold V th
gt against Vin. (c) Conductance of the electron system G as a function

of Vgt for different Vin. Above 4 mVpp each data set is shifted vertically for clarity. (d) Constriction con-
ductance Gc for Vin = 4 mVpp. Gc increases in a series of smoothed steps. The grey dotted line is a guide
to the eye indicating values of Vgt at which, under the granular charge model, the number of electrons

across the constriction increases by 1. The threshold V th
gt lies between Ny = 0 and Ny = 1. The solid grey

line is a guide to the eye of functional form Gc ∼ V
3/2
gt starting at Vgt = 0.25 V. Inset: dGc/dVgt in units

M�−1 V−1 for different Vin. For each value of Vgt the gradient was calculated over a 60 mV sampling
window

Measurements of SSE current flow over a potential barrier formed by a split-gate
electrode in a similar device have already been reported [34]. There, for values of
Vin up to 100 mVpp, it was shown that current flow across a potential barrier could
be induced by increasing Vin until the potential energy of the electron system could
overcome the barrier, allowing electrons to be transferred between the reservoirs.
Here we observe the same behavior. The dependence of V th

gt on Vin is discussed in
more detail later in this section.



J Low Temp Phys (2012) 166:107–124 117

In Fig. 5(c) we show the corresponding conductance G for each current measure-
ment. Above V th

gt , G increases sharply for all values of Vin. Considering the saddle-
point potential shown in the modeling results in Fig. 3, both the depth of the potential
at the center of the constriction (which is proportional to the electron density in the
constriction under the charge continuum model), and the effective width wc of the
constriction, should increase as Vgt is swept positive. Both effects should lead to an
increase of conductance at the constriction. For high values of Vgt, where the split-
gate electrode is more positive than the reservoir electrode and no potential barrier is
expected to exist, G rises further, presumably due to the continuing increase of the
electron density in the constriction region.

For still higher values of Vgt, the conductance eventually saturates. For
Vin = 4 mVpp, G = 2.30 M�−1 at Vgt = 3.0 V. As the total conductance of the
electron system no longer depends on the split-gate voltage in this region, we assume
that the resistance of the constriction region is small compared to that of the elec-
tron system in the reservoirs. Therefore, the saturated conductance can be attributed
to that of the reservoir region, and by subtracting the value of the resistance at this
split-gate voltage, R = 1/G = 0.434 M�, from the values of the resistance over the
entire split-gate sweep, an approximation of the constriction resistance Rc can be
calculated. The corresponding conductance of the constriction, Gc = 1/Rc, is shown
in Fig. 5(d), for Vin = 4 mVpp. We see that above the conductance threshold, Gc in-
creases in a series of steps. The steps are not a series of sharp rises and flat plateaus;
rather, they appear smoothed-out. We add to the plot a guide to the eye (grey dotted
line) indicating the manner in which a sharp step pattern fits the data. We align each
sharp step with the maximum in the gradient at each increase in Gc . The spacing
between the steps is �Vgt = 250 mV. In the inset of Fig. 5(d) we show the gradient
of Gc with respect to Vgt for all five values of Vin. Each step in conductance corre-
sponds to a peak in dGc/dVgt. With increasing Vin the peaks become less distinct as
the conductance features are smoothed out.

We suggest that the increasing number of electron rows across the constriction
could lead to steplike increases in the constriction conductance. Such behavior is ob-
served in other classical many-body systems with long-range interactions, such as
pedestrians moving through bottlenecks [35]. Here, such an effect is essentially the
result of Coulomb blockade at a single constriction; for the case in which Ny = 1
and one electron row occupies the constriction, Coulomb repulsion prevents other
electrons from passing through and electrons may only pass through in a single row.
As the constriction is opened to the point where Ny = 2, the additional conduction
channel should cause an increase in the constriction conductance as electrons may
now pass freely through the constriction, side-by-side. The steplike increase in con-
ductance resembles the quantized conductance steps observed in quantum point con-
tact devices [36]. From the FEM calculation results shown in Fig. 3(b), we estimate
that the spacing of the energy subbands for lateral motion at the constriction to be
∼0.1 meV, which, as shown below, is much smaller than the change in Vb associated
with each conductance step, and is also smaller than Vin. We therefore conclude that
the origin of the steps observed here, due to the Coulomb interaction between elec-
trons at the constriction, is quite different to the case of the quantum point contact, of
which our device acts as a classical analogue.
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The smoothing of the steps in Gc indicates that neither the charge continuum
model, nor the granular charge model, describes the system precisely. We assume that
the sharp steps fitted to the data in Fig. 5(d) correspond to the values of Vgt where,
under the granular charge model, the number of electrons able to pass simultaneously
through the constriction increases by 1. By extrapolation of these fitted steps, we can
obtain an estimate of V 0

gt = 0.25 V. As described above, the constriction conductance
should increase with increasing wc and as Vb becomes more positive. The FEM cal-
culation shows that wc ∼ √

Vgt whereas Vb ∼ Vgt. We therefore naively expect the

conductance of the constriction to vary as Gc ∼ V
3
2

gt , under the charge continuum

model. In Fig. 5(d) we plot the function Gc = 1.04 × 107(Vgt − V 0
gt)

3
2 (solid grey

line). We see that this function describes Gc reasonably well, other than at points
along the curve where the conductance is suppressed, which we attribute to devia-
tions from the continuum model due to the granular nature of charge. The agreement
becomes closer for higher values of Vgt as the step features are lost, presumably as the
number of electron rows increases and the electron system at the constriction better
approximates a 2D charge continuum. We therefore conclude that whilst the granu-
larity of charge causes observable deviations from the charge continuum model, and
causes the current to be suppressed above the expected threshold V 0

gt, the simplified
approach depicted in Fig. 4(d) does not describe the system accurately. Correspond-
ingly, the experimentally observed threshold of current flow, V th

gt = 0.456 V, lies be-

tween the values which we have estimated correspond to V 0
gt and V 1

gt.
We suggest that our experimental observation of the step-like increase in the con-

ductance of the constriction may be verified by molecular dynamics simulations of
classical charge systems at potential bottlenecks [24]. Indeed, recent simulations of a
system very similar to ours reproduce the smooth steplike increase in Gc, and show
that each step is related to an increase in the number of electron rows across the con-
striction [37]. These simulations also indicate that temporal fluctuations in the poten-
tial of electrons at the constriction, which are of thermal origin but essentially due
to electron-electron interactions, and are not considered in our mean-field approach,
cause the smoothing of the conductance steps. These fluctuations also cause V th

gt to lie

at vales of Vgt more negative than V 1
gt as, even for the case Ny < 1, there still exists

some probability that the potential of electrons may be raised in order to overcome the
barrier at the constriction, thus allowing transport. For our experiments, the driving
voltage Vin causes an additional modulation of the electron density at the constric-
tion over each AC cycle. In Fig. 5(c) the smoothing of the step-like features increases
with increasing Vin, as discussed in more detail later in this section. However, we
note here that extrapolation of the data shown in Fig. 5(b) to the limit Vin = 0 mVpp
yields a value of V th

gt ≈ 0.47 V, which is a small change from the value recorded for

Vin = 4 mVpp and is still more negative than the value of V 1
gt = 0.5 V. Further com-

parison of our experimental results with numerical simulations is required to fully
understand the dynamics of the electron system close to the conductance threshold.

We consider that the modulation of the potential of the electron system due to
the applied driving voltage may cause additional non-linear behavior to appear in the
electron transport properties close to the current threshold. To investigate such ef-
fects, the magnitude of the second harmonic component of the AC voltage induced
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Fig. 6 (Color online) (a) Magnitude of the second harmonic component of the voltage signal, R2f , as
a function of Vgt for different driving voltages. (b) Processes giving rise to distortion in the AC current
through a saddle-point potential. As the potential across the constriction Vy is parabolic, the effective
width of the constriction wc oscillates over each AC cycle of Vin, causing the conductance of the con-
striction region to vary over each cycle. (c) Close to the threshold of current flow, electrons may only pass
intermittently across the potential barrier formed at the constriction

on the left reservoir electrode, R2f , was measured. In the case that the SSE AC cur-
rent flow is perfectly sinusoidal in response to the driving voltage, the second har-
monic component is zero. However, if the conductance should vary over each AC
cycle, the current signal should become distorted causing higher frequency compo-
nents to appear. In Fig. 6(a) we see that R2f indeed rises as Vgt is swept negative and
reaches a maximum close to V th

gt . The magnitude of R2f increases with the driving
voltage Vin.

In Fig. 6(b) and (c) we depict schematically two processes which may give rise to
the distortion of the electron current through a saddle-point potential as the electron
energy Ve is modulated. In the first case (Fig. 6(b)), when Ve is close to the bottom of
the parabolic potential Vy , the effective width of the conductive channel wc changes
over the AC cycle which should lead to a time dependence of the conductance G.
In addition, the effective depth of the potential for electrons at the constriction also
varies, which should lead to a variation of the electron density, and so conductance,
over each cycle. In the second case (Fig. 6(c)), as the potential maximum in Vx is
raised and becomes higher than Ve −Vin/2, electrons are expected to flow only inter-
mittently across the barrier.

In both of these cases, the degree of distortion in the current should reach a max-
imum close to the threshold of current flow. We therefore find the observed increase
in R2f close to the current threshold to be consistent with transport through a saddle-
point potential. We also note that R2f appears to rise in a series of weak peaks or steps
which appear to mirror the step-like decrease in conductance observed in Fig. 5(c).
We again find this to be consistent with our model. For values of Vgt where dI/dVgt is
large, modulating Ve gives rise to a large change in conductance over each AC cycle,
and so the value of R2f should be large. Each step in conductance should therefore
be accompanied by a peak in R2f . Indeed, the step-like feature in the conductance at
Vgt = 0.75 V (Fig. 5(c)) is accompanied by a weak second peak in R2f at the same
split-gate voltage. However, the non-linear response of the SSE system to a driving
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Fig. 7 (Color online) Measured
values of V th

gt for different
values of Vr , which was varied
from positive to negative values,
and Vin = 8 mVpp. The
measurement was performed
five times, as indicated by the
different colors. The helium
surface was charged at the start
of each measurement. The
dotted and dashed lines
correspond to (3) and (4)
respectively. As explained in the
text, for the data sets 1–5,
ns = 0.70, 0.50, 0.99, 1.28,
1.48 × 109 cm−2 respectively

field has been predicted by Saitoh [38] and observed experimentally [39]. We there-
fore note that the distortion in the current signal may also be due in some part to the
intrinsic non-linear transport properties of the SSE system rather than solely due to
the geometry or potential profile of the device.

The dependence of V th
gt on Vr was investigated by measuring the current threshold

for decreasing values of Vr , from 1.5 V to 0 V in 50 mV steps, for Vin = 8 mVpp. The
results of 5 such measurements, taken on different days, are shown in Fig. 7. In all
5 cases the split-gate voltage required to suppress the current initially becomes more
negative as the reservoir potential is made more negative. Then, at a certain reservoir
potential, the trend is reversed; the threshold moves to more positive values as the
reservoir potential becomes more negative. In both cases the relationship between V th

gt
and Vr is approximately linear. These results are found to be in agreement with the
behavior predicted by our electrostatic analysis. Starting at highly positive reservoir
electrode bias, Vgt must initially be made more negative to suppress the current flow
each time Vr is set more negative, to compensate for the reduction in the barrier height
relative to Ve . Then, as electrons are lost to the guard, ns decreases and Ve remains
constant, the split-gate voltage must be made more positive to allow current flow with
each step in Vr , due to the relative increase of the barrier height. The intersection
between the two linear regions in the data marks the point at which electrons begin to
escape to the guard. This point is different for each data set indicating that the initial
surface density in each case was different. The intersection was not observed to occur
for values of Vr greater than +1.0 V, the voltage at which the electron reservoirs were
charged.

By making linear fits to the data presented in Fig. 7, we may derive values for α,
β and γ based on the charge continuum model, using (3) and (4), and the relation
α + β + γ = 1. The values of the coupling constants were determined for each of the
data sets. The similarity in the gradient of each data set indicates the stability of the
coupling constants, the average values of which are shown in Table 1.

We may also estimate α, β and γ taking into account the fact that the experimen-
tally determined current threshold does not correspond exactly to V 0

gt. The results in

Fig. 5 show that V th
gt appears to lie closer to V 1

gt , the threshold under the granular
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Table 1 Coupling constants α,β and γ as calculated by the finite element analysis and the values mea-
sured experimentally from the results shown in Fig. 5 and Fig. 7

Coupling Calculated Measured Measured Measured

constant (FEM) (Eqs. (3), (4)) (Eq. (13)) (dV th/dVin)

α 0.75 0.77 0.79 0.83

β 0.10 0.16 0.15 0.10

γ 0.15 0.07 0.06 0.07

charge model, as given by (11) and (12). Whilst the constant b, which determines the
deviation of V 0

gt from V 1
gt , may be estimated from the FEM modeling of the device,

here we adopt a more straight-forward approach to take into account the deviation of
V th

gt from V 0
gt. From Fig. 5, for Vr = 1.0 V, V th

gt − V 0
gt = 0.16 V. As discussed in more

detail below, the reservoir electrode potential is equal to the guard electrode poten-
tial for Vgu ≈ 0.5 V, due to an offset in the potential of the guard electrode. Because
no parabolic confinement exists when Vr = Vgu, for this condition we expect b = 0
and therefore V th

gt − V 0
gt = 0 V. As the correction to V 0

gt should display a square-root

dependence on Vr , the value of V 0
gt can be estimated for each value of Vr using the

expression

V 0
gt = V th

gt − 0.16

√
Vr − 0.5

1 − 0.5
. (13)

The average values for α, β and γ calculated using the values for V 0
gt given by (13)

are also listed in Table 1.
The coupling constant β may also be estimated from dependence of V th

gt on Vin

shown in Fig. 5(b). We assume that, on increasing Vin, the increase in the barrier
height required to suppress the current is equal to the corresponding increase in the
maximum energy of the electron system in the right reservoir, Vin/2. Because, for
fixed bias on the reservoir and guard electrodes, �Vb = β�Vgt we may derive β

from the gradient in Fig. 5(b) as dV th
gt /dVin = −1/2β . Similar measurements were

made by sweeping the reservoir and guard potentials (data not shown) in order to
determine the dependence of the thresholds V th

r and V th
gu on Vin. Under the charge

continuum model, the constants α and γ may be given by dV th
r /dVin = 1/2(1 − α)

and dV th
gu/dVin = −1/2γ . The results of these measurements (denoted dV th/dVin)

are shown in Table 1 as well as the corresponding values calculated from the finite
element model.

From the results shown in Table 1, we see that, compared to the values calculated
using (3), (4), the change in α, β and γ when including the correction given by (13)
is small. These values are also close to those given by measuring the dependence of
V th on Vin. All the experimentally determined values are in relatively good agree-
ment with the FEM calculation. For all four results, α is largest and so the reservoir
electrode dominates in determining the height of the potential barrier. This confirms
that in our experiment, close to the conductance threshold, the electrons are indeed
passing through the region between the split-gate electrodes and above the reservoir
electrode.
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Fig. 8 (Color online)
Resistance against temperature
for the case in which the
constriction is widely opened
(Vgt = +1 V) for Vin = 5 mVpp.
Inset: I as a function of Vgt for
the same electron density,
measured at 1.23 K

The determination of the constant β allows the expected change in Vgt to add one
electron row across the constriction to be calculated using (10). We use the FEM
model to obtain an estimate of b = 2.5 × 1011 V m−2 for Vr = 1.0 V and Vgu =
0.62 V. Using β = 0.16 we find that V 1

gt − V 0
gt = 224 mV. This value is in good

agreement with the experimentally observed step separation, �Vgt = 250 mV for
Vr = 1.0 V (Fig. 5(d)), indicating that the step-like increases in Gc are indeed due
to increases in the number of electrons across the constriction. The change in split-
gate voltage �Vgt is related to the corresponding change in Vb by the constant β . For
β = 0.16, �Vb ≈ 40 mV, which is comparable to Vin. We therefore conclude that the
increase of smoothing of the steplike features with increasing Vin may be due to the
modulation of the electron density at the constriction, which causes transport features
arising from the discreet number of electrons across the constriction to be lost.

The data shown in Fig. 7 was taken with a voltage of 0 V applied to the guard
electrode. From (4) it is then to be expected that V th

gt = 0 V for Vr = 0 V. However,

the intercept on the V th
gt axis for each data set is typically +3.6 V indicating a true

value of the guard potential of Vgu ≈ +0.62 V. This apparent offset is confirmed ex-
perimentally for each of the data sets; below a value of Vr ≈ 0.5 V the electron signal
was lost completely indicating that at this point Vr ≈ Vgu. The offset is seen to vary
over a small range; for data sets with a higher intercept on the V th

gt axis the elec-
trons were lost at more positive values of Vr . Despite thermally cycling the device to
room temperature and making efforts to ensure correct grounding of the experimen-
tal wiring the offset remained. However, the stability of the offset over many hours
or days allowed consistent measurements to be made. Voltage offsets in mesoscopic
devices may be caused by contact potential differences, thermoelectric effects or sur-
face charging effects [29]. The cause of the offset observed in this experiment is not
yet clear. Taking the offset into account, the estimated initial surface electron densi-
ties for the data sets 1–5 shown in Fig. 7 are 0.70, 0.50, 0.99, 1.28, 1.48 × 109 cm−2

respectively.
The melting temperature of the 2D Wigner solid depends on the electron density

as Tm = 0.225×106√ns [16]. For the case of a potential offset on the guard potential
of +0.62 V, the saturated electron density achieved when charging the reservoirs with
Vr = +1 V is ns = 1.48 × 109 cm−2 which gives a value of Tm = 0.866 K. In Fig. 8
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we show the temperature dependence of the resistance R of the electron system for
Vr = Vgt = +1.0 V. At 1.23 K the current threshold was measured (inset). In refer-
ence to Fig. 7, the highly negative value of the threshold V th

gt = −0.29 V indicates
that the density was close to saturation. The increase in R below 1 K is attributed
to the formation of the 2D Wigner solid. The localization of electrons in the Wigner
lattice leads to the formation of a small depression, or dimple, in the helium surface
beneath each electron, which increases the electron effective mass, and so resistivity
of the system [40]. Recent experiments have investigated the transport of the Wigner
solid in a microchannel geometry where the decoupling of the electron lattice from
the dimple lattice at high driving fields leads to a highly non-linear response [17]. In
our measurement, a sharp increase in the resistance is observed at T ≈ 0.875 K which
may correspond to the melting temperature of the electron system, in agreement with
the predicted value of Tm for the case in which the guard potential is offset.

4 Conclusions

We have investigated the AC transport of strongly-correlated electrons on the surface
of liquid helium at a constriction formed by a split-gate electrode. The electron cur-
rent may be suppressed by sweeping the voltage of the split gate negative. The thresh-
old for current flow was dependent on the DC voltages of all the device electrodes and
the AC driving voltage applied to the electron system, as well as the electron density.
Step-like increases in the conductance of the electron system as the split-gate volt-
age was swept positive were found to be due to increases in the number of electrons
able to pass simultaneously through the constriction. The device therefore acts as a
classical analogue of the quantum point contact. When compared to simple analyti-
cal models, our measurements allow a characterization of the saddle-point potential
profile formed at the constriction, in good agreement with finite element calculations.
Comparison with these models reveals that a potential offset on the guard electrode
of the device plays a crucial role in determining the potential profile of the sample.
Such detailed characterization of microfabricated samples for electrons on the sur-
face of liquid helium is an important step towards the realization of more advanced
mesoscopic devices such as single electron devices and quasi-one dimensional wires.
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