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We have used a Hartree–type electron–helium (e–He) potential together
with a density functional description of liquid 4He and 3He to study the
explosion of electron bubbles submitted to a negative pressure. The critical
pressure at which bubbles explode has been determined as a function of tem-
perature. It has been found that this critical pressure is very close to the
pressure at which liquid helium becomes globally unstable in the presence of
electrons. It is shown that at high temperatures the capillary model overes-
timates the critical pressures. We have checked that a commonly used and
rather simple e-He interaction yields results very similar to those obtained
using the more accurate Hartree-type interaction. We have estimated that
the crossover temperature for thermal to quantum nucleation of electron bub-
bles is very low, of the order of 6 mK for 4He.
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1. INTRODUCTION

It has been recognized that liquid helium is especially well suited for
homogeneous cavitation studies. On the one hand, it can be prepared in
a high-purity state, avoiding heterogeneous cavitation driven by impurities
in the liquid. Besides, experimental techniques have been developed1–4 that
focus a short burst of ultrasound into a small volume of bulk liquid, thus
preventing cavitation on defects at the walls of the experimental cell. On
the other hand, helium remains liquid down to zero temperature (T ). This
allows to address quantum cavitation, a phenomenon that may appear at
very low temperatures.3,5,6

Heterogeneous cavitation produced by impurities purposely intro-
duced in the liquid is also interesting by itself,7 and in a series of recent
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experiments the case of heterogeneous cavitation caused by electrons
(electron bubble explosions) has been addressed in detail.8–10 Another
interesting case of heterogeneous cavitation in liquid 4He thoroughly
studied is that caused by the presence of quantized vortices acting as cav-
itation seeds.11–13

In this work we attempt a theoretical description of electron bubble
explosions using a T -dependent density functional approach we have
employed in a series of studies on cavitation and nucleation in liquid
helium (see Ref. 14 for a comprehensive review) in conjunction with
a realistic electron–helium (e–He) effective potential. Our results are in
agreement with those obtained in Refs. 8 and 9 for 4He, and in Ref. 10
for 3He, covering a wider temperature range.

This paper is organized as follows. Sections 2 and 3 are mostly
devoted to 4He and to the general formalism. In Sec. 2 we present the
results obtained using the capillary approximation. In the case of elec-
tron bubbles, this approximation has been considered realistic enough to
yield semi-quantitative results for critical pressures and thermal to quan-
tum crossover temperatures, and constitutes a useful guide to the results
obtained within density functional (DF) theory. In Sec. 3 we present the
DF plus Hartree electron-effective potential approach together with the
results obtained for 4He using this method. In Sec. 4 we present the results
obtained for 3He, and a brief summary is presented in Sec. 5. A prelimi-
nary version of part of this work has been presented elsewhere.15

2. CAPILLARY MODEL

In this simple model, the electron is confined in an impenetrable
spherical well potential of radius R. The total energy of the e–He system
can be written as a function of the radius as16,17

U(R)= π2–h2

2meR2
+4πR2σ + 4

3
πR2P − ξ

ε −1
ε

e2

2R
, (1)

where P is the pressure applied to the system, σ is the surface tension of
the liquid, and ε is its dielectric constant. The first term is the energy of
the electron in the ground-state of an infinite well potential of radius R.
For 4He the last term can be evaluated taking ε = 1.0588 (Ref. 18) and
ξ =1.345 (Ref. 17). Its effect is small and it will not be considered in the
following. We have also checked that the effect of including a curvature
energy term in Eq.(1) is small. On the contrary, the effect of the surface
tension on any cavitation process is crucial, and quantitative results can
only be obtained with the use of the correct value of σ . In the follow-
ing, we will take19 σ = 0.272 K Å−2, instead of the value σ = 0.257 K Å−2
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given in Ref 20 that we and other authors have used in the past.8,9,13,21

We want to mention that the value of Roche et al.19 agrees well with that
of Guo et al.22 obtained long time ago.

When P � 0 Eq. (1) has an absolute minimum located at Rmin =
18.9 Å at P =0. This configuration corresponds to a stable electron bubble.
When the liquid is depressed below its saturation vapor pressure, the abso-
lute minimum becomes local, and U(R) also displays a local maximum.
The metastability region in the P − T plane extends between the liquid–
vapor coexistence line down to the instability line. Consequently, metasta-
ble bubbles can be formed at positive and negative pressures as well. In that
region, the electron bubbles are metastable, and an energy barrier of height
�U =U(Rmax)−U(Rmin) appears which can be overcome either by thermal
activation above the barrier or by quantum tunnelling through it.

The height of the energy barrier �U is displayed in Fig. 1 as a function
of P at T = 0 K. It can be seen that if the negative pressure is large enough,
the barrier eventually disappears and the system becomes globally unstable.
This happens at an instability pressure Pu given by the expression:

Pu =−16
5

(
2πme

5–h2

)1/4

σ 5/4. (2)

For the parameters we use, Pu = −2.12 bar, and the radius of the cor-
responding electron bubble is Ru = 28.2 Å. Had we taken into account
the last term in Eq. (1), we would have obtained Pu = −2.24 bar and
Ru = 27.1 Å. The instability pressure can be compared to the spinod-
al pressure at which pure 4He liquid becomes macroscopically unstable,
Psp =−9.20 bar.21 This value of Psp is consistent with the value obtained
by other authors.9,23,24

A necessary condition for the validity of the capillary model is that
the metastable electron bubble has a fairly large radius. Only in this case
one may split the system into a volume and a surface region which justi-
fies the use of Eq. (1). This happens when the critical configurations are
large enough, as for example in the case of cavitation occuring near the
liquid-vapor coexistence line.23,25 However, in the case of electron bubble
explosions the situation is more complex because the e–He interaction is
strongly repulsive and small changes in the electron wave function may
cause a sizeable effect on the metastable bubble. It is obvious that the bub-
ble configurations used in the capillary model have little flexibility, and
consequently, the validity of this approximation should eventually rely on
the comparison with more realistic methods, as the DF approach. This
will be done in Sec. 3.

In most cases, cavitating liquids undergo phase separation before they
reach the stage of global unstability. This proceeds through the formation
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Fig. 1. Energy barrier height �U (K) (dashed line) as a function of P (bar) of an electron
bubble in liquid 4He at T = 0 in the capillary model. Also shown is the corresponding DF
result (solid line). The crosses along the DF curve have been obtained using a simpler elec-
tron–He interaction, see text.

of critical bubbles either by thermal or by quantum activation. We will
show that for electron bubbles, the critical pressure Pcr at which it hap-
pens is very close to Pu, a result already obtained in Ref. 9. As a general
rule, the presence of impurities in the liquid results in a sizeable decrease
of |Pcr |. Quantized vortices in liquid 4He play the same role as impuri-
ties, and their presence also decrease |Pcr | (Refs. 11 and 12) as well as the
degree of critical supersaturation in 3He–4He liquid mixtures.13

Within the capillary approximation, the dynamical evolution of the
electron bubble can be parametrized by one single collective variable,
namely the radius of the bubble. In this case, it is rather simple to describe
quantum and thermal cavitation regimes on the same footing, continu-
ously passing from one to the other. This is accomplished by the use of
the functional integral method (FIM)26,27 thoroughly described in Ref. 13.
We now recall its essentials.

The nucleation rate J for a thermally activated process, i.e., the num-
ber of critical bubbles formed in the system per unit time and volume, is

JT =J0T exp(−�U/kBT ), (3)

where kB is the Boltzmann constant. The prefactor J0T depends on the
dynamics of the process, and it is of the order of the number of cavitation.
sites per unit volume (the number of electrons per unit volume, ne in the
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present case) times an attempt frequency νT . For simplicity, we take νT =
kBT /h, where h is the Planck constant.

At low enough T , thermal activation is no longer possible. However,
cavitation may proceed by quantum tunnelling. The transition from one
regime to the other is very abrupt, so that a thermal-to-quantum crossover
temperature T ∗ may be defined by indicating whether nucleation takes
place thermally (T >T ∗) or quantically (T <T ∗). In the limit of zero tem-
perature, cavitation is purely quantal, but for T ∗ >T >0 thermally assisted
quantum cavitation is the physical process.

For T <T ∗ the tunnelling rate is

JQ =J0Q exp(−SQ/–h), (4)

where P = exp(−SQ/–h) is the tunnelling probability, SQ is the quantum
action, and the prefactor J0Q is again of the order of the number of nucle-
ation sites per unit volume times an attempt frequency νQ which can be
estimated from the zero point motion of the system about the metastable
equilibrium position Rmin.

An analytical expression for T ∗ is obtained which involves the sec-
ond derivative of U(R) and the value of the collective mass of the bubble
M(R) at the maximum of the cavitation barrier, Rmax

kBT ∗ =
–h

2π

√
−1

M(Rmax)

d2U

dR2

∣∣∣∣
Rmax

. (5)

If the motion is irrotational and the fluid incompressible, the collective
mass M depends on R as10,13

M(R)= 4π

–h2
R3mHeρb, (6)

where ρb is the particle density of the metastable bulk liquid and mHe is
the mass of a helium atom. Eq. (5) shows that the value of T ∗ is deter-
mined by small variations around Rmax. An expression for the attempt fre-
quency in the quantum regime can be also worked out easily:

νQ = 1
2π–h

√
1

M(Rmin)

d2U

dR2

∣∣∣∣
Rmin

. (7)

Using Eq. (5) we have determined T ∗(P ) and the results are shown
in Fig. 2. This figure shows that in the capillary approximation, irrespec-
tive of the pressure, above T ∼10 mK the cavitation process is thermal and
not quantal. To determine which T ∗ corresponds to the actual experimen-
tal conditions, one has to look for the intersection of the curve T ∗(P ) with
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Fig. 2. Crossover temperature T ∗ (mK) as a function of P (bar) of an electron bubble in
liquid 4He in the capillary model (dashed line) and in the DF approach (solid line).

the line that results imposing that critical bubbles nucleate with appre-
ciable probability inside the experimental volume during the experimental
time:

1 = texpVexpJ0Q e−S
Q

min/–h = texpVexpJ0T e−�U(P )/kBT ∗
, (8)

where texp and Vexp are the experimental time and volume, respectively,
and J0Q =neνQ. Taking9 texp ∼10−5 s, Vexp ∼10−5 cm3, ne =106 cm−3, and
the value νQ ∼ 109 s−1 obtained from Eq. (7), one gets T ∗ = 4.7 mK at a
pressure slightly above Pu. At T ∗ = 4.7 mK one has SQ = 11.5 –h, so that
the use of the formalism of Ref. 13 is well justified.17 Had we used the
WKB approximation28 to estimate T ∗, we would have obtained similar
results. In particular, the maximum of T ∗

WKB is 9.6 mK. We will see in
Sec. 3 how these results change in the DF approach.

For a given temperature above T ∗, the solution to Eq. (8) with JT

instead of JQ yields the pressure at which critical electron bubbles are cre-
ated with sizeable probability. For the mentioned experimental parameters,
it turns out that in the T ∼ 1 K regime this happens when �U ∼ 11.5 K.
Inspection of Fig. 1 readily shows that this pressure is very close to Pu.
Consequently, Pu is the key quantity for electron bubble explosions.9

We would like to recall why the capillary model is expected to be
fairly realistic for electron bubble explosions whereas it is completely unre-
alistic to address homogeneous cavitation in liquid helium. Dropping the
electron contributions to Eq. (1), it is easy to see that for negative pres-
sures �U = 16πσ 3/3|P |2 at Rmax = 2σ/|P |. This means that the barrier
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height is not zero at the spinodal pressure, which is very unphysical. This
drawback renders useless the capillary model for homogeneous cavitation
in pure liquid helium at low T because it has been experimentally estab-
lished that cavitation occurs near the spinodal region.3,4,29

On the other hand, near Rmin the model yields empty bubbles
of very small radius, which is also unphysical. As a consequence, any
dynamical approach based on the use of these bubble configurations is
rather dubious.30 The model can only work well for large bubbles, as for
example near the saturation curve. In these situations, it has been shown
that it yields realistic homogeneous cavitation pressures,1,4,31 and the use
of Eq. (5) to obtain T ∗ yields values in good agreement with the DF
ones.14,32 The situation is quite similar to that found in the description of
supersaturated 3He–4He liquid mixtures, see Refs. 13 and 33 for a thor-
ough discussion.

3. DENSITY-FUNCTIONAL APPROACH TO ELECTRON BUBBLE
EXPLOSIONS

Density functional theory has been applied in the past to cavitation in
classical liquids (see Ref. 34 and Refs. therein). Since the pioneering work
of Xiong and Maxis,23 it has proven to be the most successful approach
in addressing cavitation in liquid helium so far.14 It incorporates in a self-
consistent way the equation of state of bulk liquid and surface tension of
the liquid–gas interface as a function of temperature, which are key ingre-
dients of any cavitation model. It does not impose a priori the density pro-
file of the critical cavity, allowing for a flexible description of the process
from the saturation line down to the spinodal line. Moreover, within DF
theory one avoids to split the system into a bulk and a surface region, and
the use of macroscopic concepts such as surface tension and pressure at a
nanoscopic scale. However, it is a continuous, not an atomic description of
the system. In spite of this, it has been found to well describe situations in
which the atomic scale is relevant, such as quantized vortices, or the pres-
ence of strongly attractive atomic or molecular impurities (see for instance
Ref. 35 and Refs. therein).

In the frame of DF theory, the properties of an electron bubble
approaching the surface of liquid 4He have been studied by Ancilotto and
Toigo.36 They have used the so-called Orsay-Paris zero temperature finite-
range DF,37 and the pseudopotential proposed in Ref. 38 as e–He interac-
tion. The method chosen by Classen et al.9 is a simplification of that of
Ref. 36 in two respects. First, they have used a zero-range DF to describe
4He, which seems justified in view of the slowly varying helium densi-
ties even in the presence of excess electrons in the liquid (the situation is
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completely different for strongly attractive atomic or molecular impurities,
see for example Ref. 39). However, they have included some thermal effects
in the DF, whereas the approach of Ancilotto and Toigo is at zero temper-
ature.36 Second, the pseudopotential has been replaced by a contact e–He
interaction whose intensity has been adjusted so as to reproduce the total
energy of an excess electron in bulk helium,40 which is about 1 eV for a
particle density of 0.0218 Å−3 (saturation density).

Our starting point is a finite temperature zero-range DF that
reproduces thermal properties of liquid 4He such as the experimental
isotherms and the 4He liquid–gas coexistence line up to T = 4.5 K, and
the T dependence of the surface tension of the liquid free surface.21 This
DF has been successfully used to address homogeneous cavitation in liq-
uid helium from T ∼0 K up to temperatures close to the critical one.4 In
the quantum cavitation regime, it has also yielded results in good agree-
ment with experiment3 and with other theoretical approaches.41 We have
taken the Hartree-type e–He effective potential derived by Cheng et al.42

(see also Ref. 18) as e–He interaction. This allows us to write the free
energy of the system as a functional of the 4He particle density ρ, the
excess electron wave function � and T :

F [ρ,�,T ]=
∫

d�rf (ρ, T )+
–h2

2me

∫
d�r|∇�(�r)|2 +

∫
d�r|�(�r)|2V (ρ), (9)

where f (ρ, T ) is the 4He free energy density per unit volume written as

f (ρ, T )=fvol(ρ, T )+β
(∇ρ)2

ρ
+ ξ(∇ρ)2. (10)

In this expression, fvol(ρ, T ) consists of the well-known free energy den-
sity of a Bose gas, plus phenomenological density dependent terms that
take into account the effective interaction of helium atoms in the bulk
liquid.21 The parameters of these terms and those of the density gradient
terms in Eq. (10) have been adjusted so as to reproduce physical quanti-
ties such as the equation of state of the bulk liquid and the surface tension
of the liquid free surface. We have slightly modified the original value21

of the parameter ξ in Eq. (10) to exactly reproduce the surface tension of
liquid 4He (Ref. 19), taking ξ =2330 K Å5. The β-term is a kinetic energy
term; at T = 0 the system is described as a Bose condensate and for this
reason the kinetic energy arises only from the inhomogeneity of the den-
sity.43 For inhomogeneous systems, this term is essential to have densi-
ties well behaved everywhere, and in the case of 4He droplets its inclusion
in the functional yields densities that smoothly-exponentially-go from the
bulk liquid down to zero. We have taken43 β = (–h2/2m4)/4.
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In bulk helium, knowledge of f (ρ, T ) enables solution of the phase
equilibrium equations and to determine the spinodal line. It also yields
an equation of state in the negative pressure regime, inaccessible to
the experimental determination, through the thermodynamic relationship
P =−fvol(ρ, T )+µρ, where µ is the 4He chemical potential.

The e–He interaction V (ρ) is written as a function of the local helium
density42

V (ρ)=
–h2k2

0

2me

+ 2π–h2

me

ρaα −2παe2
(

4π

3

)1/3

ρ4/3, (11)

where α = 0.208 Å3 is the static polarizability of a 4He atom, and k0 is
determined from the helium local Wigner–Seitz radius rs = (3/4πρ)1/3 by
solving the transcendent equation

tan[k0(rs −ac)]=k0rs (12)

with ac and aα being the scattering lengths arising from a hard-core and
from a polarization potential. We have taken42 aα =−0.06 Å, ac =0.68 Å.

The application of DF theory to the cavitation problem proceeds as
follows. For given P and T values one first determines the metastable and
unstable cavities that would correspond to the local minimum and max-
imum configurations in the capillary model (actually, in the multidimen-
sional space spanned by the more flexible DF configurations, the latter is
no longer a local maximum but a saddle point). This is achieved by solv-
ing the Euler–Lagrange equations which result from the variation of the
constrained grand potential density ω̃(ρ,�,T )=ω(ρ,�,T )−ε|�|2, where
the grand potential density ω(ρ,�,T ) is defined from Eq. (9) as

ω(ρ,�,T )=f (ρ, T )+
–h2

2me

|∇�|2 +|�|2V (ρ)−µρ. (13)

It yields

δf

δρ
+|�|2 ∂V

∂ρ
= µ, (14)

−
–h2

2me

�� +V (ρ)� = ε�, (15)

where ε is the lowest eigenvalue of the Schrödinger equation obeyed by
the electron. These equations are solved assuming spherical symmetry,
imposing for ρ the physical conditions that ρ′(0)= 0 and ρ(r →∞)=ρb,
where ρb is the density of the metastable bulk liquid, and that the electron
is in the 1s state. Fixing ρb and T amounts to fix P and T , as the pressure
can be obtained from the bulk equation of state P =−fvol(ρb, T )+µρb as
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well as µ. Thus, µ = ∂fvol(ρ, T )/∂ρ|T is known in advance, whereas ε is
not and has to be determined from Eq. (15).

We have solved Eqs. (14) and (15) using a multidimensional Newton–
Raphson method44 after having discretized them using n-point formulas for
the r derivatives. We have used n=13 formulas, but comparable results have
been obtained using n=7 and 9 formulas.45 A fine mesh of step �r =0.1 Å
has been employed, and the equations have been integrated up to R∞ =
150 Å to make sure that the asymptotic bulk liquid has been reached. The
multidimensional Newton–Raphson method has been applied until the local
chemical potential-left hand side of Eq. (14)–does not differ substantially
from µ. We have checked that, for every r value, both coincide up to at
least the sixth decimal figure. This is a crucial test on the accuracy of our
method. We have thus achieved a fully variational solution of the Euler–Lag-
range problem embodied in Eqs. (14) and (15), valid from r =0 up to R∞.

We represent in Fig. 3 several 4He density profiles and excess elec-
tron squared wave functions |�|.2 The top panel shows the stable bubble
at T =0 K, P =0 bar. The other three panels display the near-to-unstable
electron bubble for several (P, T ) values. For a given T , they have been
obtained decreasing ρb, i.e. P , until Eqs. (14) and (15) have no solution.
The smaller P value defines Pu. The 4He instability pressure Pu is shown
in Fig. 4 as a function of T . This figure shows that the lowest pressure the
system may reach before becoming macroscopically unstable is Pu =−2.07
bar, which is the value corresponding to T =0 K.

As we have indicated, in the metastability region the Euler–Lagrange
equations have two different solutions for given ρb and T -i.e., P and T -values,
one corresponding to the metastable configuration and another corresponding
to the saddle configuration. A similar situation is found in the case of cavitation
in the presence of vortices.46 Actually, it is the search of the saddle configuration
that constitutes a numerical challenge. The reason is that, due to the strongly
repulsive e–He interaction, fairly small changes in the electron configuration
induce changes in the helium configuration hard to handle numerically, so that
in the course of the numerical procedure, the system has a strong tendency to
jump from the saddle to the metastable solution. We have represented in Fig. 5
several 4He density profiles and excess electron squared wave functions |�|2
corresponding to the metastable and saddle electron bubbles for T = 0, 2 and
4 K, and a value of P close to Pu.

The cavitation barrier height ��max is obtained by subtracting the
grand potential of the saddle bubble ω(ρs,�s, T ) from that of the meta-
stable bubble ω(ρm,�m,T ) :

��max =
∫

d�r[ω(ρs,�s, T )−ω(ρm,�m,T )]. (16)
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Fig. 3. 4He density profiles in Å−3 (solid lines, right scale) and excess electron squared wave
functions |�|2 in Å−3 (dashed lines, left scale), as a function of radial distance r (Å). The top
panel shows the stable bubble at T = 0 K, P = 0 bar. The other three panels show the near-
to- unstable electron bubble for several (P, T ) values. In the upper panel, the vertical thin
dashed line indicates the radius of the capillary model bubble (Rmin = 18.9 Å), and the ver-
tical thin solid line indicates the radius at which the helium density equals ρb/2[R(ρb/2) =
18.0 Å, with ρb =0.0218 Å−3].

Since both configurations go asymptotically to the same ρb value, Eq.
(16) gives ��max as a function of P and T via the equation of state of
bulk liquid helium. ��max is shown in Fig. 6 as a function of P for T =2
and 4 K, and in Fig. 1 for T =0 K. As indicated, ��max becomes negligi-
ble when the system approaches the unstability pressure. This constitutes a
suplementary test on the correctness of the near-to-unstable configurations
we have found by decreasing ρb at fixed T . Otherwise, ��max would not
be negligible for this configuration.

Once ��max(P, T ) has been determined, it can be used to obtain the
critical pressure Pcr at which critical bubbles nucleate at an appreciable
rate by solving an equation similar to Eq. (8):

1= texpVexpJ0T e��max(P,T )/kBT (17)
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Fig. 4. Instability pressure Pu as a function of T for 4He. Circles and triangles are
experimental data from Refs. 8 and 9, respectively. The results of the capillary model are
represented by a dashed line, and the DF results by a solid line. The dash-dotted line
represents the experimental saturation vapor pressure Psv line. The crosses at T = 2 and 4 K
indicate the critical pressures Pcr.

taking J0T = νT ne. This yields Pcr =−1.55 bar at T = 2 K, and Pcr = 0.211
bar at T = 4 K. These pressures are slightly above the corresponding Pu

values which are, respectively, −1.62 and 0.151 bar.
We thus see from Fig. 4 that our results are fully compatible with the

available experimental data—the calculated Pu should be a lower bound to
the cavitation pressure—if the experimental results of Ref. 8 are ruled out,
and those carried out more recently by the same group9 have error bars
similar to those found in the case of pure liquid 4He,29 as well as in the
case of electron bubble cavitation in 3He.10

The capillary model yields instability pressures lower than those
obtained within DF theory, especially at high-temperatures. The discrep-
ancy arises even if one takes into account, as we did, the T-dependence
of the surface tension. The origin of the discrepancy is the e–He strongly
repulsive interation acting on the helium density tail that penetrates inside
the cavity as T increases: the electron has to ‘push’ not only the bulk
surface, which for DF configurations is at the radius where the helium
density equals ρb/2, but also the part of the helium density that is spread
inside the bubble, especially at high temperatures. This ‘pushing’ produces
a steeper bubble density profile, and not only an actual displacement of
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Fig. 5. 4He density profiles in Å−3 (thick lines, right scale) and excess electron squared wave
functions |�|2 in Å−3 (thin lines, left scale), as a function of radial distance r (Å) for the
metastable and saddle electron bubble at different (P, T ) values. Dashed lines correspond to
the metastable configuration, and solid lines to the saddle configuration. From top to bot-
tom, the ��max values are 65.3, 80.2, and 88.1 K, respectively.

its surface. For this reason, the radius of the bubbles are smaller in the
DF than in the simple capillary approach (see Figs. 3 and 8). Part of the
difference is removed if one allows for penetration of the electron wave
function into the liquid using a finite height barrier for the potential that
confines the electron within the bubble. This would diminish the bubble
radius, as it lowers the zero-point energy of the electron. However, the
final effect is that it increases |Pu| and the agreement with the DF result
worsens.9

Our results for Pu are slightly below those of Ref. 9 (compare for
instance our value of −2.07 bar at T = 0 K with their value of −1.92
bar). This difference is essentially due to the different value of the surface
tensions used to build the DF used in our work and in theirs. Indeed,
the pressure we obtain if the DF is adjusted to reproduce the surface
tension of Ref. 20 is Pu =−1.93 bar, in excellent agreement with the value
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Fig. 6. DF energy barrier height ��max (K) for 4He as a function of P (bar) for T = 2 K
(left panel) and T =4 K (right panel).

found in Ref. 9. Moreover, the ratio 2.07/1.93 compares very well with
that obtained from Eq. (2) if ones takes σ =0.272 K Å−2 in one case, and
σ = 0.257 K Å−2 in the other. We recall that in Ref. 9 the kinetic β-term
in Eq. (10) has been neglected, which makes the helium density to be zero
at the origin, and that these authors have made the helium density strictly
zero inside a sphere around the excess electron, whereas in our case the
helium density is defined everywhere. These differences do not seem to
play any role.

We have also obtained ��max at T = 0 K using the contact e–He
interaction used in Ref. 9. The results, indicated by crosses in Fig. 1, indi-
cate that the contact interaction sensibly yields the same barrier heights as
the Hartree-type interaction.

We have employed the DF theory to obtain the crossover temperature
T ∗.47 To this end, one has to obtain the frequency of the small ampli-
tude oscillations around the saddle configuration in the inverted barrier
potential well. From the capillary model results we expect that T ∗ is very
small, so that thermal effects on ρs can be neglected. In view of the fairly
large size of the saddle bubble, the oscillation frequency can be obtained
as follows.32,48 After determining the saddle configuration ρs(r), we define
a continuous set of densities by a rigid translation of ρs(r):

ρδ(r)≡
{

ρs(r =0) if r � δ,

ρs(r − δ) if r � δ.
(18)
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The variable δ roughly represents the displacement of the surface of the
saddle configuration with respect to its stationary value. Varying δ, all
physically relevant configurations are generated. Eq. (18) implies that the
surface diffuseness of the bubble is kept frozen during the displacement.

The barrier is then obtained as a function of δ:

��δ =
∫

d�r[ω(ρδ,�δ, T = 0)−ω(ρm,�m,T = 0)]. (19)

Within this model, δ is the only collective variable describing the bubble
oscillation, and all the time-dependence is in δ(t). The kinetic energy asso-
ciated with the oscillation is

Ekin = mHe

2

∫
d�r ρ(�r, t) �u2(�r, t), (20)

where �u(�r, t) is the velocity field which can be formally obtained from the
continuity equation

∂ρ

∂t
+ �∇(ρ �u)=0. (21)

It yields:

u(r, t)=− 1
r2ρ(r, t)

∫ r

0
s2ρ̇(s, t)ds. (22)

By construction,

ρ(r, t)=ρs(r − δ(t)). (23)

Thus

ρ̇(r, t)=−ρ′
δ(r)δ̇ (24)

and

u(r, t)= δ̇

r2ρδ(r)

[
r2ρδ(r)−2

∫ r

0
sρδ(s)ds

]
. (25)

Defining the mass parameter M(δ) as

Ekin ≡
–h2

2
M(δ)δ̇2, (26)

we get

M(δ)= 4πmHe

–h2

∫ ∞

0

dr

r2ρδ(r)

[
r2ρδ(r)−2

∫ r

0
ds sρδ(s)

]2

. (27)



412 Martı́ Pi et al.

0 1 2

T(K)

-1.0

-0.5

0.0

0.5

1.0

P 
(b

ar
)

P
u

P
sv

3
He

3

Fig. 7. 3He instability pressure Pu as a function of T . Dots are experimental data from Ref.
10. The dash-dotted line represents the experimental saturation vapor pressure Psv line. The
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line.

Proceeding as in the capillary case one obtains

kBT ∗ =
–h

2π

√
−∂2��

∂δ2
/M(δ)

∣∣∣∣
δ=0

, (28)

which is the generalization of Eq. (5) to the case of diffuse density profiles.
Using this equation we have obtained the T ∗(P ) curve shown in Fig. 2,
and proceeding as in the capillary model, we have determined a crossover
temperature of 6.0 mK.

4. ELECTRON BUBBLE EXPLOSIONS IN LIQUID 3HE

We have also studied the explosion of electron bubbles in the case of
liquid 3He. The capillary model of Sec. 2 can be straightfowardly applied
to this isotope using the appropriate values of the surface tension σ =
0.113 K Å−2 (Ref. 49, where one may also find the values of σ(T ) we have
used to obtain the capillary model results we show in Fig. 7) and of the
dielectric constant ε =1.0428 (Ref. 50) As in Sec. 2, we have neglected this
term in the calculations because of its smallness.

At zero pressure and temperature, the capillary model yields an elec-
tron bubble of radius Rmin = 23.5 Å, larger than for 4He because of the
smaller 3He surface tension. For the same reason, the 3He instability pres-
sure Pu =−0.71 bar is smaller in absolute value [see Eq. (2)]. This pressure
is atteined for an electron bubble of radius Ru =35.2 Å.
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The application of DF theory to describe electron bubble explosions
in 3He proceeds as indicated in Sec. 3. We have used the functional
proposed in Ref. 51 which we have employed in the past25 to describe
homogeneous cavitation in liquid 3He, and the e–He interaction given in
Eq. (11) with the parameters corresponding to 3He, namely α = 0.206 Å3,
and same values for aα and ac.

The 3He instability pressure Pu is shown in Fig. 7 as a function of
T . This figure shows that the lowest pressure the system may reach before
becoming macroscopically unstable is Pu = −0.69 bar, which is again the
value corresponding to T = 0 K. For the reason indicated before, we have
not considered necessary to calculate the critical pressures in the case of
3He. It can be seen that our values of Pu are somewhat above the exper-
imental values of Pcr obtained in Ref. 10, especially at T ∼1 K. As in the
4He case, the capillary model fails as soon as thermal effects start being
sizeable.

We represent in Fig. 8 several 3He density profiles and excess electron
squared wave functions |�|2. The top panel shows the stable bubble at
T = 0 K, P = 0 bar. The other three panels display the near-to-unstable
electron bubble for several (P, T ) values. Comparing with Fig. 3, it can be
seen that 3He electron bubbles are more diffuse than 4He electron bubbles.

We have also obtained T ∗ for 3He in the capillary model. In spite of
theoretical predictions that point to a crossover temperature of the order of
100 mK in pure liquid 3He,41,47 recent experiments have not found such a
crossing,52 indicating that superfluid coherence might play a role in quan-
tum cavitation. Yet, using the expressions given in Sec. 2 we have obtained
T ∗(P ) for 3He and show it in Fig. 9. It can be seen that the maximum of
T ∗(P ) is roughly half the value we have obtained for 4He in the capillary
model. Proceeding as in the case of 4He and assuming the same experimen-
tal parameteres, we have found that the value of T ∗ that would correspond
to this situation is about 2.3 mK. This estimate is close to the normal-to-
superfluid transition temperature in 3He, below which our DF method does
not apply as it assumes that 3He is in the normal phase.

5. SUMMARY

We have thoroughly addressed electron bubble explosions in liquid
helium. Our approach is based on the application of finite temperature
density functionals succesfully used to describe cavitation in liquid 4He
and 3He. This approach is fully selfconsistent and unbiased by numerical
aitifacts, and to our knowledge, it is the only one applied in a wide range
of temperatures.
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functions |�|2 in Å−3 (dashed lines, left scale), as a function of radial distance r (Å). The
top panel shows the stable bubble at T = 0 K, P = 0 bar. The other three panels show the
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thin dashed line indicates the radius of the capillary model bubble (Rmin = 23.5 Å), and the
vertical thin solid line indicates the radius at which the helium density equals ρb/2[R(ρb/2)=
22.5 Å, with ρb =0.0163 Å−3].

We have compared our results with experiments and have found that
our calculations are either in agreement with the experimental data,9,10 or
compatible with them if they have error bars similar to these attributed to
other cavitation processes in liquid helium.

We have used a realistic electron–helium interaction and have tested
another approach based on the use of a simpler interaction. We have
found that in spite of the fairly large electron bubbles involved in the
process, at high temperatures the capillary model fails to yield quantita-
tive results, overestimating the critical pressures. We attribute this to the
‘rigidity’ of the bubble configurations which is inherent to the capillary
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approach. Whereas these are serious drawbacks for nanoscopic bubbles,
they are expected not to have a sizeable influence for microscopic multi-
electron bubbles.53

We have also used the density functional results in conjunction with
a functional integral method to obtain the thermal to quantum crossover
temperature. This approach has led in the past to a correct description
of the same process in pure liquid 4He. In the present case, the crossover
temperature turns out to be very small, about 6 mK.

Finally, we want to stress the suitability of the DF approach to quan-
titatively address electron bubbles in liquid He. This might encourage one
to investigate other problems like the infrared spectrum of the electron
bubble in liquid helium, and the effect of quantized vortices pinned to
excess electrons on the critical cavitation pressure. It has been argued54 hat
the rising of Pu below T =1 K could be attributed to the presence of quan-
tized vortices. However, only simple models have been used to study their
effect, and the agreement with experiment is only qualitative. In the case
of the infrared spectrum of electron bubbles, the DF approach might shed
light on the long-standing problem of how to understand the experimen-
tal results of Grimes and Adams55 on the 1s − 1p and 1s − 2p electron
transition energies without using unjustifiable pressure dependences of the
helium surface tension within the capillary model.
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