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Abstract Classical conditioning has been well stud-
ied in social Hymenoptera, exploring how members 
of a colony gain foraging benefits from learning to 
associate various stimuli. While some of this work 
has been extended into Blattodea, learning in eusocial 
termite societies has not been well documented. Ter-
mites mainly rely on chemical cues for feeding; thus, 
they would be predicted to associate odor with food. 
In this study, we tested the ability of species Zooter-
mopsis angusticollis to learn via classical condition-
ing. We used a natural odorant in conjunction with 
sugar water to attempt to elicit a feeding response. 
Termites were individually exposed to our uncondi-
tioned and conditioned stimuli through a series of tri-
als, after which the response to the conditioned stim-
ulus alone was recorded and compared to controls. 
We found that those trained exhibited a significantly 
greater frequency of feeding responses to the condi-
tioned stimulus. Thus, Z. angusticollis can associate a 
novel odor with food.

Keywords Classical conditioning · Zootermopsis · 
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Introduction

Reception of external stimuli is a key physiological 
process to initiate ingestion and digestion for many liv-
ing organisms. In insects, this is achieved through spe-
cialized chemical receptors, which perceive nutrient 
sources, detect toxins, and allow for communication via 
pheromones (Yarmolinsky et al. 2009). These gustatory 
and olfactory sensory systems are not mutually exclu-
sive and when two stimuli are perceived in temporal 
proximity, associative learning can occur (Pavlov 1927; 
Davey 1989; Delamater and Matthew Lattal 2014).

Insects provide a simplified model by which this 
effect can be documented more closely, and many 
genera have been the subjects of intensive learning 
research. The responsiveness toward odorant condition-
ing has been well documented in social bees (Giurfa 
and Sandoz 2012; von Frisch 1943) showed that hon-
eybees use odors for communication of specific food 
sources, contributing to his later work on honeybee 
waggle dances. The neural pathway of this process was 
later documented by Menzel and Erber (1978), who 
demonstrated the response is due to associative learn-
ing. Bitterman et al. (1983) and Abramson et al. (1997) 
classically conditioned Apis mellifera on a variety of 
odorants, further confirmed through electroantenno-
gram analysis (de Jong and Pham-Delègue 1991). The 
stingless bees were found to be responsive to condition-
ing (Mc Cabe et al. 2007; Mc Cabe and Farina 2010) 
as were ants (Guerrieri and d’Ettorre 2010) suggesting 
that the response may be more widespread in social 
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Hymenoptera. Studies involving members of Orthop-
tera (Matsumoto et al. 2003) and Lepidoptera (Daly and 
Smith 2000) have also shown the capacities for condi-
tioning, and more recent efforts have extended these 
findings to some members of Blattodea (Watanabe and 
Mizunami 2006, 2007; Liu and Sakuma 2013; Arican 
et al. 2019). Although classical conditioning has been 
well documented in cockroaches, little work has been 
done on termites which are direct ancestors of cock-
roaches (Chouvenc et al. 2021).

Wood preference in termites has been docu-
mented by a number of studies (Wood 1978; Waller 
and La Fage 1987; Judd 2018) and is especially criti-
cal to understanding colonization and foraging behav-
ior. Wood density (Waller et  al. 1990; Shanbhag and 
Sundararaj 2013), defensive chemicals (Arango et  al. 
2006), and nutrient content (Shellman-Reeve 1990; 
Saran and Rust 2005; Botch et  al. 2010; Wallace and 
Judd 2010) all affect wood selection in wood feeding 
termites. Survival of termites can be affected by wood 
type (Morales-Ramos and Rojas 2003). However, few 
studies have examined the role of learning in wood 
preference in termites. McMahan (1966) demonstrated 
preferential feeding on wood species that Cryptotermes 
brevis colonies were reared in, suggesting the termites 
were learning cues from the wood they fed on. Grace 
(1989) found that the termite Reticulitermes flavipes 
will habituate to fungal extracts. Analyses have also 
been done on the reception of pheromones and odorants 
through an antennae odorant-binding protein in Zoot-
ermopsis nevadensis (Ishida et  al. 2002). This protein 
allows for the introduction of novel stimuli (odorants), 
which may have little nutritional value, to a familiar 
stimulus. Thus, the mechanism exists that could allow 
for associative learning in termites.

The focus of this study was to determine if a con-
ditioning effect could occur in Zootermopsis angus-
ticollis with an odorant that the termites would not 
regularly encounter. Our results were compared to 
contemporary studies of conditioning.

Methods

Classical Conditioning in Zootermopsis angusticollis

Termites were obtained from Ward’s Science© and 
housed in small terrariums containing damp wood, 
soil, sand, and a paper towel for moisture retention. 

Wood sources were acquired through the supplier. 
The species was identified using the subsidiary tooth 
of the mandible (Thorne and Haverty 1989).

In preparation for testing, worker termites were 
placed inside 1000 µl pipet tips (and held near the tip 
using a cotton plug, a setup analogous to the apparatus 
used by Bitterman et al. (1983). This environment was 
very conducive to testing because the transparency and 
structure of the tip made observing behaviors easier 
during trials while providing an ideal substance inser-
tion point. Once the termite was successfully inserted, 
there was a 5 min waiting period to allow the termite 
to settle down. To present each solution, we dipped a 
micro-brush into the solution being tested, inserted it 
into the pipet tip, and kept it there for 20 s. During this 
time, the termites were given the chance to respond. 
Observations were made under a dissection scope and 
drawn based on antennal attraction to the substance, 
rapid extension/contraction motion of the maxil-
lae coupled with lunges, and oral secretions. These 
behaviors were similar to the maxilla-labium extension 
response reported for the ant Camponotus aethiops 
(Guerrieri and d’Ettorre 2010) and were easily distin-
guishable from other behaviors such as struggling or 
disinterest. Hereafter, we will refer to the response as 
the Maxilla Extension-Contraction Response (MECR).

The experiment had two phases, the training phase, 
and the test phase. During the training phase, termites 
were presented with an experimental stimulus, a maple 
extract (McCormick®) (preliminary studies suggested 
that termites respond to maple flavoring), and, an 
unconditioned stimulus, a 0.83  M solution of D-glu-
cose in deionized water was presented immediately 
after the maple extract. The termites were then allowed 
to rest for 3 min before being tested again. Each termite 
underwent four trials with both the conditioned and 
unconditioned stimulus. The test phase consisted of 
two additional trials with only the conditioned stimulus 
(maple extract). After both phases were complete, indi-
viduals were marked with Testors© paint to prevent 
repeated use. A total of 23 termites (hereafter referred 
to as trained group) were tested in this manner.

Controls were performed using the same proce-
dure as described above except distilled water was 
used instead of sugar water. A total of 10 termites 
(hereafter referred to as control group) were used 
in the control tests. Sample sizes in the trained and 
control groups were based on the availability of 
individuals from the samples we ordered.
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Data Analysis

The chi square test was used to compare the num-
ber of individuals showing a MECR response to 
the number showing no MECR response during the 
test phase. The control group was tested separately 
from the trained group. An additional chi-square 
test was used to test the overall proportions of those 
responding and those not responding in the trained 
vs. control group (Daniel 1990).

Results

Classical Conditioning in Zootermopsis angusticollis

A total of 20 of the 23 individuals in the trained 
group showed a MECR response to the maple fla-
voring during the test phase (N = 23, X2 = 12.57, 

P < 0.005, Table 1). None of the individuals in the 
control group ever displayed a MECR response to 
the maple extract (N = 10, X2 = 10.00, P < 0.005, 
Table 1). The proportion of MECR vs. no response 
was significantly different between the trained 
group and control group (X2 = 22,07 P < 0.001).

Most of the individuals from the trained group 
responded to sugar throughout the training phase. 
There was one case in trials 2 and 4 in which one 
individual that ultimately did not show a MECR 
response during the training phase did not respond 
to the sugar solution (Table  2). There was an 
increase in the response to the maple extract dur-
ing the training phase from individuals that ulti-
mately had a MECR response in the test phase 
(Table  2). Interestingly a few individuals from the 
control group did respond to water during the train-
ing phase but none of the individuals in the control 
group ever responded to maple (Table  2). Thus, 
there is no evidence of spontaneous acquisition in 
the trained or control groups (i.e. trials in which the 
conditioned stimulus suddenly produced a response 
in trials without the unconditioned stimulus, with 
no prior response).

Discussion

Our findings suggest that Z. angusticollis can be 
conditioned to a novel odorant by pairing it with a 
nutritive stimulus, as individuals responded signifi-
cantly toward the isolated presentation of conditioned 
stimuli. No members of the control group lacking 

Table 1  The response count and results of Chi Square Tests of 
trained and control groups from the maple extract retention tri-
als for Zootermopsis angusticollis for the number of individu-
als that showed a positive (+) MECR response (from at least 
one of two trials) during the test phase and individuals that 
showed no (-) MECR response

The overall results from the trained individuals were signifi-
cantly different from the controls  (X2 = 22.07, p < 0.001)

Group Number of 
+ MECR 
responses

Number 
of -MECR 
responses

X2 p

Trained 20 3 12.57 < 0.005
Control 0 10 10.00 < 0.005

Table 2  Numbers of Zootermopsis angusticollis individuals showing a MECR response to maple extract, sugar solution or water 
across the four trials during the training period

“Control” indicates individuals from the control group that were tested with water rather than sugar solution (N = 10)
“+MECR” and “-MECR” indicates individuals from the trained group that had MECR response (N = 20) or did not have a MECR 
response (N = 3) respectively during the test phase

Number of individuals with MECR reponses

Termites N Stimulus Trial 1 Trial 2 Trial 3 Trial 4

Trained with + MECR 23 Maple 0 4 9 17
Sugar 23 23 23 23

Trained with -MECR 3 Maple 0 0 0 0
Sugar 3 2 3 2

Control 10 Maple 0 0 0 0
Water 3 4 3 2
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the unconditioned stimulus ever displayed a feeding 
response to maple extract in trials.

The present consensus of termite evolutionary his-
tory is that termites are eusocial cockroach descend-
ants (Inward et al. 2007). Members of the family Blat-
tidae, some of termites’ closest phylogenetic relatives, 
have—in earlier studies—shown aptitude toward clas-
sical and operant conditioning, first demonstrated in 
Periplaneta americana using novel odorants (Wata-
nabe et al. 2003). Subsequent studies reaffirmed this 
finding while providing additional odorants, alter-
ing unconditioned stimuli (Gadd and Raubenheimer 
2000), and running controls to remove possible con-
founding variables (Watanabe and Mizunami 2006, 
2007). Archotermopsidae (the family Zootermopsis is 
in) is among the basal families of termites (Chouvenc 
et  al. 2021), thus termites have retained this ability 
from their cockroach ancestors.

McMahan (1966) pointed out that although colo-
nies of wood feeding termites are initiated at a single 
cellulose source, colonies can incorporate other cel-
lulose sources. Learning could affect the selection of 
new sources. Although colonies of Zootermopsis tend 
to remain in the wood sources pseudagates can become 
alate reproductives and disperse to new sources once 
the current food source becomes depleted (Shellman 
Reeve 1997). The selection of a new food source to 
nest in is critical and locating a food source chemically 
similar to the previous nest could increase survival of 
new colonies. Survival can be affected by the choice of 
wood in termites (Smythe and Carter 1969; Morales-
Ramos and Rojas 2003). Thus, past experience as a 
pseudagate could affect the selection of new nests in 
addition to the nutritional cues by pseudagates and 
alates (Shellman-Reeve 1990).

Early associative learning experience has been 
shown to improve associative learning later in life in 
other insects (Arenas et  al. 2013). The relationship 
between associative learning and locating food is well 
studied in nectar feeders. Both adolescent (Arenas et al. 
2013) and older forager (Dukas and Real 1991; Palot-
tini et al. 2018) bees become more efficient at finding 
food sources though social learning. Members of Lepi-
doptera are also capable of associative learning (Kan-
dori and Yamaki 2012). In natural conditions, asso-
ciative learning improves foraging efficiency (Goulson 
et al. 1997). Associative learning has also been found to 
play a role in the selection of oviposition sites in Lepi-
doptera (Traynier 1984; Van Loon et al. 1992; Gámez 

and León 2018), parasitoid wasps (Giunti et al. 2015) 
and parasitoid beetles (Kandori and Yamaki 2012) and 
increases the efficiency of locating quality hosts. Gynes 
of social wasps will remember nest location cues and 
return to natal nest sites the following year (Klahn 
1979; Röseler 1991). It is in the best interest for ter-
mite alates to spend as little time as possible exposed 
to potential hazards such as predation while outside a 
wood source. Learned cues could help reduced the 
amount of time they are exposed. Thus, it would benefit 
Zootermopsis pseudagates and alates to have the ability 
to associate certain cues with potential nest sites.

Past studies have demonstrated that termites use 
environmental odor as part of nestmate recognition 
cues (Adams 1991; Shelton and Grace 1997). Pre-
sumably these are learned as well. Thus, odor-based 
learning seems to have multiple roles (food location 
and nestmate recognition) in the biology of termites.
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