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Abstract
Exploring novel photoconductance switch crystalline materials with color indication is of the utmost importance. Herein, we 
reported a photochromic and photoconductive zinc organic framework,  [Zn2(TDC)2(TPT)]·H2O, composed of electron-rich 
sulfur-containing compounds, 2,5-thiophenedicarboxylic acid (TDC), as electron donor, and electron-deficient 2,4,6-tri-
(4-pyridyl)-s-triazine (TPT) as the electron acceptor, which exhibited an uncommon electron transfer pathway. Upon photo-
stimuli and subsequently storing in dark, the crystalline materials show reversible color changes from pale-yellow to green 
accompanied by the conductance switching from 4.3 ×  10–9 to 1.9 ×  10–9 S  cm−1. The mechanism and electron transfer 
pathway of the stimuli-responsive materials have been explained by X-ray photoelectron spectroscopy (XPS), electron spin-
resonance spectroscopy (ESR), and single X-ray diffraction data. Upon light exposure, the electron could hop from both 
thienyl-S/carboxyl-O to s-triazine-N. This work not only offers a new approach to the modification of visible photoconducting 
switch by the crystal engineering strategy but also sheds light on a new electron transfer system.

Graphical Abstract
A single crystalline photoconductance switch with color indication has been constructed based on the thienyl-containing 
photosensitive zinc organic framework. It shows reversible color changes from yellow to green accompanied by conductance 
switching from 4.3 ×  10–9 to 1.9 ×  10–9 S·cm−1.
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1 Introduction

Developing molecule-based materials with tuneable 
electrical conductivity properties is of great interest for 
their potential wide applications in energy storage and 
electronic devices, such as photovoltaic, thermoelectric 
batteries, and supercapacitors [1–3]. Particularly, semi-
conductors with the reversible altering of both electrical 
conductivity and color upon external stimuli can serve as 
smart switches and detectors in many devices both visual 
and electronic responses [4, 5]. Among various molecular 
systems, metal–organic frameworks (MOFs) bring conven-
ience for integrating photosensitive and conducting char-
acters into single crystalline devices for their well-defined 
structures that can be tailored by selecting metal ions and 
ligands [6–8]. Recently, various interesting photochromic 
systems are built via the assembly of electron donors (D) 
and acceptors (A) units with metal–ligand connections 
[9–11]. It is established that light-driven electron transfer 
can proceed in the well-ordered D–A assembling frame-
work, and simultaneously alter the physical properties of 
the materials, such as photochromism, magnetism, and 
conductance [12–14]. Many stimuli-responsive D–A sys-
tems have been explored by combining electron-deficient 
N-containing heterocyclic components as electron accep-
tor and electron-rich halogen or oxygen from carboxyl 
group units as electron donor [15–17]. Benefitting from 
better chemical stability, structural tunability, and fatigue 
resistance of MOFs frameworks, the electron transfer path 
could be established by the appropriate selection of D and 
A building blocks and the control structure [18, 19]. For 
the acceptor, 2,4,6-tri-(4-pyridyl)-s-triazine (TPT) mol-
ecule is well-used for its electron-deficient character and 
planar rigid structure facilitating electron capture. In addi-
tion, it features a 3-connected linker that helps to con-
struct 2D or 3D coordination networks [20–22]. Never-
theless, for the donor selection of existing D–A systems, 
few reports go beyond halogen or oxygen donors [7, 23]. 
Electron-rich sulfur-containing compounds, such as fulva-
lene, thiophene mercaptan and inorganic nanomaterials, 
have been well used to build conductive charge-transfer 
complexes as charge donors for rapid electron transport 
[24–29]. Given novel photoconductance switch materials 
constructed via integrating photosensitive and conduct-
ing characters into single crystalline devices, S-containing 
ligand 2,5-thiophenedicarboxylic acid (TDC) and TPT 
molecules are used to build new D–A based photoelectric 
sensitive systems.

Herein, a MOF based photoconductance switch 
 [Zn2(TDC)2(TPT)]·H2O (1) is prepared via the zinc-
ligands coordination assemblies with 2,5-thiophenedicar-
boxylic acid (TDC) and 2,4,6-tri-(4-pyridyl)-s-triazine 

(TPT) as the electron donors and acceptors respectively. 
In the three-fold interpenetrating close-packing structure, 
TDC and the N-heterocyclic moiety (triazine) of TPT stack 
in an offset mode, satisfying the requirement of electron 
transfer between the D–A units. Its reversible photochro-
mic behaviors featuring from pale-yellow to green upon 
light stimuli are coupled with the photoconductance char-
acters showing conductivity from 4.3 ×  10–9 to 1.9 ×  10–9 S 
 cm−1. As evidenced by X-ray photoelectron spectroscopy 
(XPS) and electron spin-resonance spectroscopy (ESR) 
data, it is interesting to observe that the photo-induced 
electrons not only hop from traditional carboxylate groups 
in TDC to electron-deficient TPT, but also transfers from 
electron-rich thienyl-S to acceptor TPT, which decreases 
the conductivity of 1. And this builds a fascinating single 
crystalline photoconductance switch with color indication.

2  Experimental Section

2.1  Synthesis of  [Zn2(TDC)2(TPT)]·H2O (1)

[Zn2(TDC)2(TPT)]·H2O (1) was solvent-thermally synthe-
sized utilizing a 25.0 mL Parr Teflon lined stainless steel 
reactor. Zn(NO3)2·6H2O (150.0 mg, 0.50 mmol), 2,5-thio-
phenedicarboxylic acid (TDC, 51.60 mg, 0.30 mmol), TPT 
(62.0 mg, 0.20 mmol),  H2O (4.0 mL) and 2-Ethoxyetha-
nol (6.0 mL) was allowed to go through a static reaction 
at 125 °C for 48 h before it was gradually cooled to room 
temperature in 1000 min. Pale yellow prism crystals, 1, were 
separated by filtration and washed with DI water and EtOH 
several times to give about 59.30% yield (95.0 mg, based 
on TPT). Anal. Calcd. (found, %) for  C30H18N6O9S2Zn2 (fw. 
801.36), C: 44.96 (45.18); N: 10.48 (10.25); S: 8.00 (7.93); 
H: 2.26 (1.37).

2.2  Structure Determinations

Single crystals of 1 before and after light-irradiation (the 
samples were irradiated by Xe lamp for 20 min to ensure 
sufficient discoloration) were selected under an optical 
microscope and data collection was performed on an Agi-
lent SuperNova diffractometer with a graphite monochro-
matic Mo/Kα radiation (λ = 0.71073 Å) at 150 K. Empirical 
absorption correction was applied for the data sets that was 
made with the MUTI-SCAN program for 1. The structure 
was solved by direct methods using SHELXS-2014 and 
refined on F2 by full-matrix least-squares techniques using 
SHELXL-2014. All non-hydrogen atoms were located from 
iterative examination of difference F-maps following least 
squares refinements of the earlier models and treated aniso-
tropically. The positions of hydrogen atoms were generated 
geometrically. The solvent water molecule is disordered over 
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three positions with 0.5, 0.3 and 0.2 respectively. The struc-
ture was examined using the Addsym subroutine PLATON 
to assure that no additional symmetry could be applied to the 
models. More details on crystallographic information have 
been deposited in the cif format as CCDC-2035073 (before) 
and 2054909 (after) in the Cambridge Crystallographic Data 
Centre.

2.3  Optical Absorption Spectrum and Conductivity 
Measurement

UV–Vis spectral measurements were carried out using a 
HITACHI U-3010 spectrometer, and a  BaSO4 plate was 
used as a 100% reflectance standard. A Xenon lamp (CEL-
TCX250, 250 W, 290–800 nm, light intensity 400 mW  cm−2) 
was used as the light-irradiation source, and UV–vis spectral 
changes of the compound were collected after the powder 
samples irradiated at different times (viz. 30 s, 1 min, 2 min, 
4 min and 6 min) by Xe lamp.

A homemade device was used to test the electrical con-
ductivities of the single crystal. Two 125 μm Ag wires were 
pasted on both sides of the prism-like single crystal with Ag 
glue, and the device was placed in a shielding box during the 
measurement. Temperature-dependent electrical conductivi-
ties and I–V curves were measured on a single crystal sample 
with an appropriate size of 0.60 × 0.32 × 0.32 mm (l × w × h) 
by the two-probe method in a Keithley 2636B sourcemeter 
with a hot plate (MR Hei-Tec, Heidolph) as the heat source.

The conductivities (σ) were calculated through Eqs. (1) 
and (2). The active energy (Ea) was obtained by linear fitting 
of 1/kT vs. lnσ curve with Arrhenius formula, Eq. (3).

where σ is Conductivity; A is the pre-exponential factor; 
Ea is Activation energy; k is Boltzmann constant; T is the 
temperature (K). Note: unit conversion 1kT = 25 meV, when 
T = 300 K.

3  Result and Discussion

Pale-yellow prism-like crystals of 1 are obtained by a sol-
vent-thermal reaction of Zn(NO3)2·6H2O, TDC and TPT 
with the molar ratio of 5:3:2. Phase purity of the as-pre-
pared crystalline materials is approved by powder X-ray 

(1)R =
U

I

(2)� =
l

Rwh

(3)ln (�) = ln (A) −
E
a

kT

diffraction (PXRD), infrared spectrum (IR) and elemental 
analysis (EA) (Figs. S1, S2). Single crystal X-ray diffraction 
analysis reveals that 1 is crystallized in the monoclinic P21/c 
space group, which is an isostructural compound reported 
by our group and others [30, 31]. As shown in Fig. 1a, there 
are two independent Zn centers (Zn1 and Zn2) bridged by 
TPT and TDC molecules. The 5-coordinated Zn1 center 
lies in a pyramid geometry, coordinated with four oxygen 
atoms from four separated TDC molecules and one nitro-
gen atom from the pyridyl of TPT ligand. Adjacent zinc 
ions (Zn1) are connected by four carboxyl groups from four 
TDC ligands generating a paddle-wheel unit  [Zn2(COO)4]. 
The Zn2 center is 6-coordinated with four oxygen atoms of 
two TDC molecules and two nitrogen atoms of two TPT 
molecules in a highly distorted triangular prism environ-
ment. The connections of TPT and TDC ligands with the 
Zn centers extend the structural motif to a 2D sheet along 
the ab plane (Fig. 1b). Another TDC ligand acting as a pillar 
further connects the 2D layer to a robust 3D framework with 
a topologic type of 3,4,6T32 (Fig. 1c). The void space of the 
3D framework is filled with three independent equivalent 
frameworks giving rise to a triply-interpenetrated structure. 
This structural arrangement helps to shorten the distance 
between triazine moiety in TPT and the thienyl group in 
TDC. As shown in Fig. 1d, the molecules packing mode of 
the triazine group of TPT and the thiophene ring of TDC is 
a typical offset stacked configuration with a centroid–cen-
troid interplanar distance of 4.083 Å. The nearest distance 
between the oxygen donor of TDC and the nitrogen atom of 
electron-deficient TPT is 3.627 Å, and the distance between 
the electron-rich sulfur atom and the nitrogen atom of TPT 
is 3.713 Å. All these D–A distance values satisfy the require-
ment for intermolecular electron transfer [32], indicating that 

Fig. 1  View of a asymmetric units, b 2D network composed by TPT 
and S1-TDC, c tri-interpenetrating topological structure, and d π–π 
interaction between TPT and TDC in compound 1 
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electrons can hop from either S or O donors to N acceptors 
upon external stimuli.

Solid state UV–vis spectrum of pale-yellow 1 displays 
two main absorption bands centered at ~ 320 and ~ 400 nm, 
corresponding to π–π* and n–π* transition of the aro-
matic rings (viz. triazine, pyridine and thiophene moieties) 
(Fig. 2). Upon light irradiation, the color of 1 changes from 
pale-yellow to green. A broad absorption peak ranging 
from ~ 520 to 800 nm centered at 600 nm emerges at the 
same time and gradually rises to the maximum in 4 min con-
tinuous irradiation. Green compound 1 can bleach revers-
ibly by storing in the dark under ambient atmosphere after 
5 cycles (Fig. 3). To illustrate the structural stability, the 
PXRD and IR spectra of 1 have been done after 5 cycles 
of reversible switching. As shown in Figures S1a and S2b, 
those spectra remain unchanged compared with the pris-
tine one. It indicates that stimuli-response systems 1 do not 
show any structural or configurational changes, due to its 
rigid crystalline framework. Additionally, the generation of 
organic radicals is verified by the ESR measurement with a 
g value of 2.0087 (Fig. 4) [33].

XPS analysis reveals that electron-rich thienyl and car-
boxyl groups are electron donors and electron deficient tria-
zine group of TPT is electron acceptor, approving well with 
the result of single crystal structure analysis. As shown in 
Figs. 5 and S4, XPS spectra of 1 before and after colora-
tion are employed to verify the D–A mechanism of electron 
transfer. N 1s peak is deconvoluted into two peaks, which 
are referred to as pyridinic N and triazinic N respectively 
[34, 35]. After irradiation, the binding energy of pyridinic 
N remains unchanged (398.6 eV). In contrast, triazinic N 
yields a negative shift from 399.4 to 399.2 eV suggesting it 
is electron acceptor. To assess the role of S atoms of TDC 
during the photochromic changes, curve fitting of high-
resolution S 2p peaks is performed. The S 2p spectrum of 
pale-yellow 1 shows only one peak at 163.6 eV, which can 
be resolved into two peaks with the binding energy located 
at 163.5 and 164.8 eV, corresponding to C–S–C 2p3/2 and 
C–S–C 2p1/2 respectively [36]. By comparison, a new peak 
emerges at 167.6 eV in the full spectrum of the green one 
after irradiation. This peak can be ascribed to high-valence-
state sulfur, e.g.  SOx (x = 1, 2, 3), sulfonium (C–S+–C) [37]. 
As no obvious change in the crystal phase and composition 
of 1 after irradiation, the new binding energy peak should 

Fig. 2  UV–vis diffuse-reflectance spectral changes of 1 upon light 
irradiation (Xenon lamp CEL-TCX250, 290–800 nm)

Fig. 3  UV–Vis absorbance a 
changes at 610 nm, and b 
selected spectral changes of 
compound 1 on alternate irra-
diation and bleached in the dark 
under ambient atmosphere over 
five cycles
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be corresponding to sulfonium, which also can be deconvo-
luted into two peaks, viz. C–S+–C 2p3/2 and C–S+–C 2p1/2. 
These results confirm that the thienyl unit in TDC acts as 
the electron donor in the electron transfer reaction. For the 
binding energy of O 1s, the peak upshifts by ~ 0.4 eV after 
irradiation, indicating that electron dissociation occurred on 
O atoms of TDC during light-stimuli [38]. Thus, the car-
boxylate group also involves in electron transfer as donor.

Furthermore, the single-crystal XRD data after light irra-
diation was collected to intuitively confirm the mechanism 
of electron transfer. As shown in Fig. 6, and Tables S2 & 
S3, in comparison with the pristine one, the S1-C22 bond 
length in the crystal data of 1 after colorization is elongated 
by 0.022 Å, whereas the other bond distances, viz. C23-O1 
and C-N in triazine, change slightly. It can be explained as 

follows. First, for the C23-O1 bond, the moiety of C23, O1 
and O2 are disordered, which have been split into two parts. 
Therefore, no change in bond lengths is observed. Second, 
for the C-N bond in triazine, due to the conjugated effect, 
the C-N bond lengths in TPT tend to average out. Third, the 
obvious elongation in S1-C22 bond suggests that S atoms 
lose electrons which weakens the bond. Combining other 
characterizations (XPS, XRD and IR), it is concluded that 
photo-induced electrons hop from carboxylate groups / elec-
tron-rich thienyl-S in TDC to electron-deficient TPT.

The conductive behavior of 1 is investigated by single 
crystal conductivity measurements in a two-probe con-
figuration. Pale-yellow 1 displays intrinsic conductivity of 
4.3 ×  10–9 S  cm−1, which decreases to 1.9 ×  10–9 S  cm−1 after 
light irradiation (Fig. 7), showing a photoconductive switch-
ing mode [4]. The calculated activation energy (Ea) also 
changes from 0.343 to 0.381 eV. As its value of conductivity 
is also coupled with the photochromic process, it gives out 
an interesting reversible photo-switchable conductance with 
color indication. This phenomenon can be interpreted by the 
structure and property relationships. Close packing structure 
of 1 with triply interpenetrated mode contributes to generat-
ing π–π interactions between D–A units, that trigger effec-
tive charge delocalization [4, 39, 40]. After irradiation, the 
photoexcited electron transfer from TDC to TPT decreases 
the electron density of the coordination chains, which sub-
stantially reduces the conductivity [4, 41]. The calculated 
charge-state density map of TDC based on single-crystal 
data indicates that the function values of S1 slightly decrease 

Fig. 5  N 1s peak and the peak 
fitting results of 1 a before, and 
b after the color change; S 2p 
peak and the peak fitting results 
of 1 c before, and d after the 
color change

Fig. 6  View of asymmetric units of 1 a before and b after light irra-
diation
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from 33.53 to 32.93 e Å−3 after light irradiation (Figure S6). 
It agrees with the XPS analysis result that the electron den-
sity of TDC decreases after the photo-coloration. XRD and 
thermogravimetric analysis (TGA) indicate that compound 
1 remains in its crystalline form until 300 °C (Figs. S1b, 
S7). The good agreement of the peaks in the PXRD pat-
terns before and after irradiation confirms that its framework 
structure keeps intact during the electron transfer reaction.

4  Conclusion

In summary, a single crystalline photoconducting switch 
with color indication is built based on the thienyl contain-
ing photosensitive zinc organic framework. Different from 
most reported single carboxyl group donors, a unique elec-
tron transfer phenomenon is observed in this study that both 
the thienyl group and carboxyl group involve in the electron 
transfer reaction as electron donors if their packing satisfies the 
requirement of D–A distance. The coupling with photochro-
mic reaction decreases the electron density of TDC, creating 
a bifunctional photoactive device. It provides an effective way 
for designing visible photoconducting switches by the crystal 
engineering strategy.
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