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Abstract
In this work, the potential of a novel and highly efficient composite of Eleocharis dulcis biochar with magnetite nanopar-
ticles and siltstone was explored for removing chromium from water. Characterization of the prepared biochar composite 
was carried out using thermal gravimetric analysis (TGA), X-ray photon spectroscopy (XPS), X-ray diffraction (XRD), 
Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy, point of zero charge and BET. XRD 
confirmed magnetite and quartz to be the main phases in biochar composite. TGA results showed higher thermal stability of 
the composite after the addition of siltstone. Batch adsorption mode was employed for studying the adsorption capacity of 
sample for the decontamination of chromium as a function of concentrations, time, temperatures and pHs. Kinetic modelling 
confirmed pseudo second order to fit best to the kinetic data for chromium adsorption on the composite biochar. An increase 
of adsorption was observed with the rise in temperature from 303 to 318 K showing the endothermic nature of the process 
whereas pH study showed higher removal efficiency of chromium in the acidic pH range. Langmuir model was applicable 
to the data with higher value of correlation. The thermodynamic parameter ΔH° (40.46 kJ mol−1) and negative but higher 
values of (ΔG°) shows the endothermic and spontaneous nature of the adsorption process respectively. Higher value of acti-
vation energy (15.08 kJ mol−1) confirmed the chemical nature of the process. Post adsorption FTIR and XPS confirmed the 
adsorption of chromium on the surface of the composite. The adsorption capacity obtained in the present study was found 
to be higher as compared to many other reported adsorbents used for chromium removal.
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1 Introduction

Rapid industrialization has adversely affected human health 
due to the direct discharge of chromium from industries into 
the water resources which are allocated for human drinking 
thereby making it a global challenge for scientists around 
the world [1]. The main sources responsible for discharge of 
chromium into water includes tanning, textile manufactur-
ing, steel manufacturing, paints and electroplating. Hexa-
valent chromium is much more hazardous than Cr(III) as 
it is mutagenic, carcinogenic and also responsible for lung 
cancer, diarrhea, vomiting, enzyme inhibition and leukemia 
[2, 3].

Of all the other techniques commonly used for heavy 
metals removal such as flocculation, reverse osmosis and 
coagulation etc., adsorption is an effective technique 
for removing Cr(VI) due to its high efficiency, simplic-
ity and cost [4–6]. Various adsorbents are used for the 
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decontamination of heavy metals such as, alumina, mag-
netic polypyrrole composite nanofibers, iron oxide, mxene/
alginate composites, zirconia, waste carton-derived nano-
composites, activated carbon, carbon nanotubes, C-4-hy-
droxy-3-methoxyphen-ylcalix resorcinarene, polypyrrole/
chitosan nanocomposite aerogel monolith [7–18], but most 
of these adsorbents are high in cost, involves complex 
methods of synthesis and cause secondary pollution [5].

The heterogeneous and porous structure of biochar 
have attracted researchers for its use as an adsorbent for 
the removal of heavy metals from water. However, pow-
dered biochar is difficult to be separated from the aqueous 
medium after adsorption. This arises the need to modify 
biochar for its easy separation from water after adsorp-
tion [19].

Similarly, magnetite iron oxide nanoparticles have also 
been extensively used for water decontamination due to 
their small size particles, easy magnetic separation, larger 
surface areas and reusability [20]. However, the use of iron 
oxide nanoparticles for water decontamination is limited 
on the ground of its eco-toxicity and safety which is still 
a matter of continuous investigation. Therefore the devel-
opment of composites of iron oxide with other materials 
combining the less reactive role of iron oxide nanoparti-
cles to avoid its eco-toxicity and hazardousness together 
with its easy magnetic separation from the water is better 
suited for application in water industry. Thus, compos-
ite of biochar with magnetite nanoparticles, to make it 
magnetic for its easy separation from aqueous medium 
using an external magnetic field, can be a good choice in 
this context. Still, the leaching of iron oxide nanoparticles 
back to the aqueous medium as a source of secondary pol-
lution during adsorption process is an issue of concern 
[21]. To overcome this limitation of magnetite biochar, 
another layer of a material that can retard the release of 
Fe ions is needed.

The present study therefore utilizes the potential of 
siltstone as an external protector for magnetite biochar to 
minimize its adverse effect on the environment. Siltstone 
mainly consists of quartz along with other minerals and 
it contains multifunctional groups which can efficiently 
uptake the dissolved metal ions. Moreover, siltstone con-
tains many pores and cavities on its surface [22] which 
maintains the adsorption capacity of biochar for heavy 
metals removal. The biochar for this composite is syn-
thesized from a locally available edible plant Eleocharis 
Dulcis which is used for the first time for chromium 
removal. This plant is commonly known as water chest-
nut and belongs to Cyperaceae family. To the best of our 
knowledge, the detailed applicability of magnetite biochar 
composites with siltstone for removal of chromium has not 
yet been explored and this study is first of its kind.

2  Experimental

2.1  Glassware and Solutions

The glassware used were rinsed with dilute nitric acid 
and washed with distilled water afterwards. Analytical 
grade chemicals were used for the preparation of samples/
solutions.

2.2  Preparation of Eleocharis dulcis Biochar (EDB)

Dust particles and impurities were removed from the bark 
of Eleocharis dulcis (ED) by washing three times with 
tap water. Then washing of the bark was accomplished 
by distilled water and then the bark was dried in the air. 
Then, the bark was boiled in water and dried at 105 °C for 
24 h in an oven. The sample was pyrolyzed in a furnace in 
the absence of oxygen. The temperature of the pyrolysis 
was increased with the heating speed of 8 °C min−1 until 
it reached upto 400 °C and held for 1 h. After that it was 
cooled. The synthesized EDB was finally ground to very 
fine particles and it was stored in plastic bags.

2.3  Preparation of Magnetic Nanoparticle (MNPs)

Magnetite nanoparticles were synthesized by a method 
reported elsewhere [10, 23]. To synthesize magnetite nan-
oparticles, 8 mL of 14% solution of  FeSO4.7H2O (Sigma-
Aldrich) and 4  mL of 13.5% solution of  FeCl3⋅6H2O 
(Sigma-Aldrich) were mixed thoroughly for 10 min and 
then mixture was titrated with 60 mL of 6% ammonia 
solution (Merck) with continous shaking. The color of the 
solution turned yellow by the addition of iron precursor 
and then gradually changed to dark black by the addition 
of ammonia solution showing the formation of magnetic 
iron oxide nanoparticle. The synthesized nanoparticles 
thus formed were kept in an oven at 100 °C for 36 h.

2.4  Preparation of Biochar Composite 
with Magnetite and Siltstone (EDB/MNPs/SS)

Composite (MBS) of EDB with MNPs and siltstone (a 
sedimentary rock) was synthesized by mixing with 0.7 g 
of finally divided powdered siltstone and 0.7 g of EDB in 
6 mL of 4% (w/v)  FeSO4⋅7H2O and 8 mL of 13.5% (w/v) 
 FeCl3⋅6H2O solution in beaker. The synthesized siltstone 
nanomagnetite biochar composite was filtered and then at 
100 °C, it was oven dried. Then the composite was cal-
cined for 60 min in a furnace at 300 °C and for its further 



1610 Journal of Inorganic and Organometallic Polymers and Materials (2021) 31:1608–1620

1 3

application to remove Cr from contaminated water, the 
composite was then stored in plastic bags.

2.5  Material Characterization

Infrared spectra of the biochar composite were recorded in 
between 400 and 4000 cm−1 by using 640 IR spectropho-
tometer for the structural and functional groups determina-
tion. For FTIR examination, potassium bromide (KBr) pellet 
method was applied. Analysis of the crystalline phase of the 
sample was performed by X-ray diffraction (XRD), by using 
Brauker D8 Advance diffractometer which was operational 
with CuKα radiation (λ = 1.5406 nm) and in the range of 
2θ from 10 to 60. Identification of phase was carried out 
by comparing it with standard cards using XPERT High 
Score software. Morphology of the sample was determined 
by using Scanning Electron Microscopy (SEM) JSM 6700S 
which works in a high vacuum at 5.0 kV with an emission 
current of 9000 nA and filament current of 0.00184 mA. 
Transmission electron microscope (JEOL JEM- 2100) was 
used to determine the size of the composite material. A his-
togram was plotted by Image J software and origin pro to 
find out the particle size using TEM images. X-ray pho-
ton spectroscopy was performed by using PHI 5100 series 
ESCA spectrometer for the analysis of oxidation state and 
composition of the composite. Thermal gravimetric analysis 
(TGA) and differential calorimetric (DSC) were recorded 
by using Shimadzu TGA-50 instrument to find out the ther-
mal stability of biochar composite. Heating was done from 
30 to 1000 °C and volumetric flow rate of nitrogen was 
40 mL min−1. PZC of biochar composite was calculated by 
a known method reported in literature [24]. Forty milliliter 
of 0.1 M NaC1 solutions were taken in different flasks and 
their initial pH was adjusted between pH 3.00 and 11.00 
by adding suitable amounts of 0.1 M HCI/NaOH solutions. 
0.1 g of the EDB composite was added to each flask and then 
continuous stirring was carried out for about 24 h by using 
shaker bath (GFL-1086) at room temperature. Final pH was 
recorded after 24 h of shaking and difference between final 
and initial pH was recorded. From the plot of ΔpH versus 
initial pH, PZC values were calculated.

2.6  Adsorption Studies of Chromium on Biochar 
Composite

Adsorption experiments of Cr(VI) on biochar composite 
was performed using batch mode. The effect of concen-
trations, pH and temperature was studied. MBS (0.1 g) 
was added to flasks containing 40 mL of Cr(VI) solutions 
in the concentration range of 10 to 100 mg L−1. In order 
to study the influence of temperature on the adsorption 
system, same concentration range and adsorbent dosage 
was used at temperature of 303 to 318 K. 70 mg L−1 of the 

Cr(VI) solutions were taken in different flasks and their 
initial pH was varied between 2 to 8 to study the effect of 
pH whereas the temperature of the system in the pH study 
was maintained at 303 K. 0.1 M NaOH/HNO3 was used 
to adjust the initial pH of flasks which were then kept in a 
shaker bath at 120 rpm for 24 h to achieve the equilibrium 
time. The final pH of the samples was recorded after they 
were taken out of the shaker bath, magnetically decanted 
and then by using Whatman filter paper, these solutions 
were filtered. After that, this filtrate was placed into bottles 
and concentration of residual chromium was analyzed by 
using atomic adsorption spectrophotometer.

2.7  Adsorption Kinetics

Kinetic study of adsorption of Cr(VI) ions on the biochar 
composite was studied using batch technique. Forty mL of 
70 mg L−1 of the corresponding metal solution was taken 
in different flasks and 0.1 g of adsorbent was taken in 
each flask. Then pH of these flasks was maintained at 0.7 
using 0.1 M NaOH/HNO3. These samples were afterwards 
shaken in a shaker bath at 120 rpm at temperatures of 
303, 308, 313 and 318 K. These samples were then taken 
out from the shaker bath after various intervals, magneti-
cally decanted and then filtered by using Whatman filter 
paper No. 43 after which their final pH was noted. These 
filtrate were then poured in bottles for onward analysis of 
residual chromium concentration using atomic adsorption 
spectrophotometer.
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3  Results and Discussion

3.1  X‑ray Diffraction Analysis (XRD) and BET

XRD pattern of biochar composite with magnetite and silt-
stone is shown in Fig. 1. The crystalline nature of biochar 
composite was confirmed by appearance of peaks in the 
XRD spectrum. The analysis of the XRD data using XPERT 
high score software showed quartz to be the major compo-
nent in the siltstone and it appeared along with magnetite in 
the biochar composite. The diffraction peaks at 2Ө = 30.0°, 
35.5°, 44.0°, 56.3° and 62.5° were indexed as (220), (311), 
(400), (422) and (440) respectively and these peaks matched 
with JCPDS card No 19-0619 for magnetite. Similarly, the 
peaks at 2Ө = 20.33o, 26.66°, 36.5°, 42.40°, 50.108° and 
50.642° with miller indices (010), (110), (011), (020), (211) 
and (300) respectively were confirmed for quartz according 
to JCPDS card No 41-1445. The crystallite size calculated 
using the well-known Scherer formula was 18.5 nm which 
lies well within the nano range.

The BET surface area for the composite of magnetite bio-
char composite with siltstone was found to be 62.31 m2 g−1.

3.2  Fourier Transform Infrared (FTIR) Analysis

The composite of magnetite biochar with siltstone was 
subjected to FTIR analysis in the range of 4000–400 cm−1 
(Fig. 2). Various bands in the spectra indicates the exist-
ence of different functional groups in the composite sam-
ple. The spectra showed a wide band at 3400–3500 cm−1 
indicating the adsorbed water molecule whereas peaks 
around 1725 cm−1 and 1642 cm−1 (Fig. 2a) are attributed 

to carbonyl and carboxyl C=O groups respectively [25]. 
The bands appearing at 1337 and 1399 cm−1 are assigned to 
aliphatic (C–H) folding. A narrow sharp peak at 2928 and 
3000 cm−1 shows the presence of aliphatic –CH stretch. The 
stretching vibrations of  COO− appeared at 1385 cm−1. The 
peak at 1432 cm−1 shows aromatic C=C stretch. A small 
peak at 1337 cm−1 was slightly shifted to a more clear peak 
at 1364 cm−1 (Fig. 2b) which shows the stretch of carboxy-
late ions [26–28]. The peak at 524 cm−1 shows the stretch of 
FeO which confirms the impregnation of magnetite on bio-
char surface. After coating with siltstone, the peak of FeO is 
also shifted from 524 to 585 cm−1 and became broader indi-
cating new interaction between iron and siltstone [29]. The 
stretching vibrations of Si–O appeared at 1045 cm−1 while 
the peak for silicon dioxide O–Si–O appeared at 800 cm−1 
[30].

3.3  Scanning Electron Microscopy (SEM)

Both magnetite biochar (MB) and composite of magnetite 
biochar with siltstone (MBS) were subjected to the SEM 
analysis and corresponding micrograph are shown in Fig. 3. 
The surfaces of both the samples appear to be rough and 
porous. The particles are irregular in shape and are aggre-
gated due to surface energies and magnetism. However, 
as can be seen from the Figure, the particles of MBS are 
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less aggregated as compared to MB particles. This reduced 
agglomeration of MBS particles as compared to MB par-
ticles can be attributed to the addition of siltstone which 
resulted in better dispersion in MBS. Similar decrease in 
aggregation of particles has been reported elsewhere [31].

3.4  Transmission Electron Microscopy (TEM)

TEM analysis of sample was carried out to calculate the 
particle size of the samples. TEM micrograph are shown in 
Fig. 4 which shows that the MBS particles are less aggre-
gated as compared to MB particles. The average size of the 
particles of the magnetite biochar composite with siltstone 
was measured from TEM micrographs using image J soft-
ware and was approximately 22 nm as shown in Fig. 5. This 
value of particle size is closer to the crystallite size of sam-
ple calculated using XRD data (18.5 nm).

3.5  X‑ray Photon Spectroscopy (XPS)

The XPS full survey scan of MBS in the range of 0–1200 eV 
is shown in Fig. 6a while the Fe 2p, C 1s, O 1s and Si 2p 
spectra are also shown in Fig. 6b to e. Those peaks that 
appeared on 710.6, 283.8, 531.2 and 102.5 eV shows bind-
ing energies of iron, carbon, oxygen and silicon respec-
tively (Fig. 6a). The peaks at 710.6 eV is broad and is fur-
ther deconvoluted into three peaks (Fig. 6b). Fe  2p3/2 and 
Fe  2p1/2 peaks appeared at 710.9 and 724.5 eV respectively 

and are the characteristics peaks of magnetite [32]. The 
peaks at 711.45 eV shows Fe(III) whereas Fe(II) appears 
at 719.86 eV. The peak of C 1s was observed at 283.8 eV 
(Fig. 6c). This peak was further deconvulated into four 
peaks. These peaks at 284.6 eV, 284.8 eV, 286.8 eV and 
288.8 eV are for C–H/C–C, C=C, hydroxyl, epoxy (C–O) 
and carboxylate (O=C–O) respectively [6, 32–34]. Peak at 
530 eV is of O 1s. The peaks appearing at 531.1 eV and 
532.3 eV (Fig. 6d) shows the C–O and  OH−1 groups respec-
tively which indicates that oxygen has captured electron in 
the empty spaces of biochar surface [35–38]. The broad 
peak at 102.5 eV (Fig. 6e) represents Si 2p scan and is fur-
ther deconvoluted into two peaks at 102.7 eV and 103.6 eV 
attributed to SiO and  SiO2 respectively. A narrow peak 
appearing at 99.6 eV is of silicon. The integrated areas of 
these curves clearly indicates that Si is successfully incor-
porated on the MB surface as 82%  SiO2, 13% SiO and 5% 
Si [39].

3.6  Thermal Gravimetric Analysis/Differential 
Scanning Calorimetry (TGA/DSC)

The thermal stability of MBS and MB was investigated 
using thermal gravimetric analysis and is shown in Fig. 7a, 
b. In the temperature ranges from 25 to 120 °C, initial 
weight loss of 3% was observed which was due to the 
vaporization of water absorbed as free bounded water. A 
second weight loss of 8% in the range of 200 to 480 °C was 
due to the vaporization of pore bounded water whereas a 
third weight loss of 20% up to 800 °C may be attributed to 
the loss of covalently bonded water [40]. Further weight 
loss after this temperature reaching up to a total of 25% of 
initial weight is attributed to the decomposition of lignin 

Fig. 4  TEM images of nanomagnetite biochar (a) and nanomagnetite 
biochar with siltstone (b)
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[41]. The total weight loss is supported by a broad DSC 
curve and the humps in the DSC curve exactly matches 
the pattern in the weight loss curve. A comparative look at 
the thermal stabilities of MB and MBS (Fig. 7a, b) shows 
higher thermal stability and lower weight loss of 25% for 
MBS as compared to MB with weight loss of 40% up to 
a temperature of 1000 °C. This shows higher thermal sta-
bility of magnetite biochar with the addition of siltstone.

3.7  Point of Zero Charge (PZC)

The pH at which adsorbent surface has zero charge is 
called point of zero charge (PZC). A plot of initial pH 
verses change of pH was plotted and the PZC was thereby 
calculated to be 6.77 as shown in Fig. 8 which is favorable 
for adsorption of anionic pollutants like chromium.
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3.8  Adsorption Kinetics of Chromium

3.8.1  Effect of Contact Time on Chromium Ions Adsorption

The adsorption of Cr(VI) ions as a function of time was stud-
ied with initial 70 mg L−1 concentration and at temperatures 
of 303 K, 308 K, 313 K and 318 K. The pH was maintained 
at 7 to represent the ground water pH. A graph of adsorbed 
Cr(VI) ions with contact time is shown in Fig. 9. As is clear 
from the graph, there was faster adsorption of chromium 
in the first 60 min after which the adsorption slows down 
significantly in later hours leading to equilibrium condition 
in 240 min. This faster adsorption in the initial 60 min is due 
to more available surface sites which later on decrease with 
time and the chromate ions have to compete for the remain-
ing lower number of sites in the later hours [37].

3.9  Kinetic Modelling

The linear form of pseudo first order is expressed as follows,

In this equation qt is the amount of metal ions adsorbed 
(mol g−1) at time t and qe is the amount of metal ions 
adsorbed (mol  g−1) at equilibrium while k is the pseudo 
first order rate constant. A graph of log (qe-qt) against time 
(t) gives a straight line (Fig. S1). The graph did not follow 
linearity which shows that chromium adsorption on mag-
netite biochar composite does not follow pseudo first order 
equation.

The kinetics data was then subjected to pseudo second 
order rate equation. The linearized form of pseudo second 
order rate equation is expressed as below:

(1)log (qe − qt) = log (qe) − k∕2.303t
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Here qe indicates equilibrium concentration of metal 
ions whereas  qt is the concentration of metal ions adsorbed 
at time t. Figure 10 indicates a plot of t/qt versus t for Cr 
(VI) ions adsorption on magnetite biochar composite and a 
straight line is obtained from the plot. Intercept and slope 
of the straight line were used to calculate the values of  k2 
and qe. Higher value of  R2 (= 0.99) shows that Cr (VI) 
ions adsorption on biochar composite is explained well 
by pseudo second order rate equation. The applicability of 
the pseudo second order model for Cr (VI) ions adsorption 
suggest the chemical nature of the process [42, 43].

(2)t∕qt = 1
/

k2q
2e+ t∕q

3.10  Effect of pH on Adsorption of Chromium

The effect of pH on the adsorption of chromium by compos-
ite of magnetite biochar with siltstone was studied in the pH 
range of 2 to 8 at an initial concentration of 70 mg L−1 and 
is shown in Fig. 11. The graph shows strong pH dependency 
of chromium ions on the surface of the adsorbent. Adsorp-
tion was noted to decrease with rise of pH which can be 
explained by the speciation of chromium(VI) under different 
conditions of pHs. Cr(VI) exist dominantly as  HCrO4

1− in 
the lower pH range which is converted into  CrO4

2− and 
 Cr2O7

2− with the increase of pH [42, 44]. Maximum adsorp-
tion was observed at pH 2 which may be due to the elec-
trostatic attraction between pre-PZC protonated surface of 
biochar composite and negatively charged chromium species 
 (HCrO4

1−). Increase of pH resulted in repulsion between 
negatively charged chromium ions  (CrO4

2−and  Cr2O7
2−) and 

the post PZC (> 6.7) surface of the composite. Moreover, 
competition between increasing  OH−1 and negative chro-
mium species for the surface of the adsorbent also have an 
additional reductive effect on the adsorption of chromium 
at higher pH. Similar trend of chromium adsorption with 
varying pH was also reported by other researchers [45–47].

3.11  Effect of Temperature on Adsorption 
of Chromium

The effect of temperature on chromium adsorption by bio-
char composite in the initial concentration range of 10 to 
100 mg L−1 and at pH 5 is shown in Fig. 12. Increased 
adsorption of chromium ions with the increase in the tem-
perature can be observed from the Figure which is due to 
increase of adsorbent sites due to bond breakage at edges. 
Moreover, increased diffusion of the chromium ions with the 
increase in temperature into the pores of the adsorbents also 
leads to enhanced adsorption of chromium on the surface 
of magnetite biochar composite with the siltstone. Similar 
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Fig. 10  Pseudo second order plot for chromium adsorption on nano-
magnetite biochar composite with siltstone at pH 7

2 3 4 5 6 7 8 9 10

-3

-2

-1

0

1

2
Change in pH
Chromium adsorbed

pHi

��
pH

3.5

4.0

4.5

X
x1

06
(m

ol
g-1

)

Fig. 11  Plots of ΔpH and chromium adsorbed vs pHi by composite 
of nanomagnetite with siltstone at 303 K and initial concentration of 
70 mg L−1

10

15

20

25

30

35

40

45

50

55

6 16 26 36 46 56 66 76 86 96

303K 308K 313K 318K

Ce x 105 (mol L-1)

X
 x

 1
05  (

m
ol

 g
-1

)

Fig. 12  Effect of temperature on the adsorption of chromium by com-
posite of nanomagnetite with siltstone at pH 5



1616 Journal of Inorganic and Organometallic Polymers and Materials (2021) 31:1608–1620

1 3

increase of chromium adsorption at higher temperature is 
reported elsewhere [48, 49].

3.12  Langmuir Equation

Langmuir adsorption assumes the adsorption to be mon-
olayer. The adsorption data was tested by the well-known 
Langmuir equation in its linearized form as follow

(3)
Ce

X
=

1

KbXm
+

Ce

Xm

where Ce shows the amount of adsorbate (mol L−1) remain-
ing in solution at equilibrium, X represents the amount of 
metal ions (mol g−1) adsorbed and binding energy constant 
is represented by Kb (L mol−1). The plot (Ce/X vs Ce) shows 
good linearity with higher values of  R2 (> 0.90) for all the 
temperatures under study (Fig. 13). Endothermic nature of 
the adsorption process was confirmed from the values of 
Xm (maximum adsorption capacity) which rises with rise of 
temperature as shown in Table 1. Same increase in binding 
energy with the increase in temperature was also observed. 
The Xm values are higher than the Xm values for different 
adsorbents (Table 2) reported in the literature [46, 50, 51].

3.13  Activation Energy

Linear form of Arrhenius equation can be used to calculate 
the energy of activation as shown below;

here A is the Arrhenius constant,  k2 is the rate constant 
for pseudo second order rate equation, R is the general gas 
constant and Ea is the activation energy for the adsorption 
of chromium ions.. Activation energy from the linear plot 
 (R2 = 0.991) of Arrhenius equation (Fig. S2) was calculated 
to be 15.08 kJ mol−1 which indicates the chemical nature of 
the process as it falls within the range (8.4–83.7 kJ mol−1) of 
chemisorption process [52]. Moreover, the transport of chro-
mate ions to the surface sites is controlled by the diffusion 

(4)lnk2 = lnA − Ea∕RT
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Fig. 13  Langmuir isotherm for chromium adsorption on nanomagnet-
ite biochar composite with siltstone at pH 5

Table 1  Langmuir parameters for Cr (VI) ions adsorption on nano-
magnetite biochar composite with siltstone at pH 5

Temp
(K)

Xm × 105

(mol g−1)
Kb × 10–5

(L mol−1)
R2

303 64.52 2439.32 0.822
308 65.35 3240.27 0.8892
313 65.78 4185.04 0.9188
318 66.22 5195.53 0.9858

Table 2  Comparison of the 
adsorption capacities of 
different adsorbents for Cr(VI)

Adsorbent Xm (mg g−1) References

Sun flower stem waste 4.9 [61]
Polyaniline-coated electro spun membrane 15.08 [62]
Zeolitic imidazolate framework-67 microcrystals 13.34 [63]
NiFe layered double hydroxide 26.78 [64]
Corn straw biochars 26.18 [65]
Mn-doped zirconium metal–organic framework as 32.77 [66]
Nanomagnetite biochar composite with siltstone 35.57 Present study

Table 3  Comparison of thermodynamic parameters for chromium 
adsorption on MBS

Temp (K) ΔG°
(kJ mol−1)

ΔH°
(kJ mol−1)

ΔS°
(J mol−1 K−1)

303 − 19.63
308 − 20.62 40.46 0.1983
313 − 21.62
318 − 22.61
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process as suggested by the range (˂ 42 kJ mol−1) of activa-
tion energy [53].

3.14  Thermodynamic Parameters

The thermodynamic parameters for chromium adsorption 
on MBS were evaluated by using Eqs. 5 and 6 and are 
listed in Table 3.

where R (8.314 × 10–3 J mol−1 K−1) is the general gas con-
stant, T(K) is the temperature and Kb (L  mol−1) is the bind-
ing energy constant obtained from Langmuir equation. The 
value of ΔH° is found to be positive for chromium ions 
adsorption on MBS as calculated from Fig S3. The positive 
enthalpic values shows the endothermic behavior of chro-
mium adsorption. The higher value of ΔH° (40.46 kJ mol−1) 
indicates that chemisorption may be responsible for the 
adsorption of chromium ions on the surface of MBS as 
enthalpy change for the chemisorption is > 29 kJ mol−1 [48, 
54, 55].

Similarly, the non-negative values of entropy (ΔS°) for 
chromium ion adsorption suggest increased randomness 
at solid liquid interface. The value of entropy change is 
greater than zero which suggest increased disorder and 
degree of freedom at solid liquid interface indicating that 
adsorption process produces structural changes [44, 56]. 
The Gibbs free energy (ΔG°) values are negative and their 
negative magnitude increases with the rise of tempera-
ture which shows that adsorption process for chromium 
is feasible and spontaneous and also indicates that higher 
temperature favours the adsorption process [56].

3.15  Spectroscopic Evidence for Adsorption 
Mechanism

Post adsorption FTIR of the MBS (Fig.  2c) showed 
adsorption of chromium due to the functional groups on 
the surface of MBS. The peaks at 1635 and 1385 cm−1 
for  COO− were suppressed which shows the involvement 
of carboxylate group in chromium adsorption and surface 
complexation and this result is in agreement with previ-
ous studies [57, 58]. In order to investigate the mechanism 
for the adsorption of hexavalent chromium pre and post 
adsorption XPS was performed (Fig. 14a, b). XPS analy-
sis showed the presence of both Cr(III) and Cr(VI) on the 
surface of MBS. The Cr 2p½ band was detected at binding 
energy of 587–588 eV whereas Cr 2p3/2 band appeared at 

(5)lnKb =
ΔS◦

R
−

ΔH◦

RT

(6)ΔG = ΔH◦ − TΔS◦

577–580 eV [59] which was used to determine the valance 
state of chromium as shown in Fig. 14b. Some trivalent 
chromium Cr(III) was present at 577.2 eV and 576.2 eV 
[57]. This suggest reduction of hexavalent chromium to the 
trivalent chromium Cr(III) which then subsequently may 
make complexes with the functional groups of MBS [55, 
59]. Similarly the hexavalent chromium peaks appeared 
at higher binding energy of 580.1 eV [60]. This suggests 
that positively charged surface of MBS (due to carboxylic, 
hydroxyl or alcohol) under strong acidic conditions have 
attracted the negatively charged Cr(VI) species [48]. Thus 
XPS results showed that MBS has effectively removed 
Cr(VI) with electrostatic attraction coupled with the reduc-
tion of Cr(VI) to Cr(III).

4  Conclusion

Composite of Eleocharis dulcis biochar (EDB) with nano-
magnetite and siltstone was used to remove chromium from 
water. The XRD confirmed magnetite and quartz to be the 
main phases in the sample. The adsorbent particle size was 
found to be in the nano-range (18.5 nm) which was sup-
ported by the particles size calculated using TEM data. TGA 
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studies showed nanomagnetite biochar composite with silt-
stone to be stable at higher temperatures as compared to the 
nanomagnetite biochar justifying the addition of siltstone to 
the composite. Furthermore, the FTIR confirmed magnetite 
and silicon to be in the sample by showing extra peaks in the 
spectra. The oxidation states of iron and oxygen in the XPS 
confirmed iron to be in the magnetite form whereas the peak 
for Si shows its oxides to be mainly in the  SiO2 form. Lower 
pH range was found to be favorable for chromium adsorp-
tion. Endothermic nature of the adsorption system under 
investigation was confirmed by the increases in adsorption 
with the increase in temperature. Pseudo second order equa-
tion for chromium was obeyed by kinetic data whereas the 
adsorption data followed Langmuir equation. The thermody-
namic parameters reveals the endothermicity and spontane-
ity of the adsorption process. The post XPS analysis showed 
that MBS has effectively removed Cr(VI) with electrostatic 
attraction coupled with the reduction of Cr(VI) to Cr(III).
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