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Abstract 
Green synthesis of silver nanoparticles using plant extracts is popular because of its ease, simplicity and wide applications. 
Here we report the synthesis of silver nanoparticles (AgNPs) by Caesalpinia pulcherrima leaf extract. Optimization of 
various parameters like boiling time for plant extract preparation, concentration of plant extract and silver nitrate, pH and 
incubation time of reaction mixture were standardized. AgNPs were synthesized using standardized and optimized param‑
eters. The characterization of synthesized AgNPs was done by various spectroscopic methods. UV–Vis spectroscopy showed 
characteristic peak at 410 nm, FTIR analysis indicated the presence of alcohols, carboxylic acids, esters and ethers. XRD 
confirmed the crystalline nature of AgNPs while TEM revealed the particles to be spherical in shape with an average size 
of 9 nm. The synthesized AgNPs showed good antimicrobial activity especially more against Gram negative bacteria. The 
cytotoxicity effect was dose dependent and genotoxic study revealed non toxic nature at lower concentration.
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1 Introduction

Nanotechnology is an exciting and important interdisci‑
plinary science which brings together diverse scientific 
disciplines such as biology, chemistry, material science 
and physics. It is the most revolutionary technological 
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innovations of twenty‑first century. Particles with size 
up to 100 nm are considered as nanoparticles; they have 
unique physical and chemical properties because of their 
high surface area to volume ratio. They exhibit entirely 
new properties other than that of the bulk material of 
which they are made up of. Their unique optical, elec‑
tronic, mechanical, magnetic and chemical properties are 
significantly different from those of bulk materials. Nano‑
particles can be synthesized from various metals like gold, 
silver, zinc, copper, palladium, titanium, etc. but silver 
nanoparticles have received much attention due to its wide 
applications even in ionic and atomic states.

Silver nanoparticles (AgNPs) can be synthesized by dif‑
ferent physical, chemical and biological methods. Some 
of the physical and chemical methods are microwave 
irradiation [1], reversed micelle processes [2], electro‑
chemical reduction [3], radiation [4], Langmuir–Blodg‑
ett [5], etc. They are numerous in number but there are 
many disadvantages for eg. They are expensive, com‑
plex, time consuming, make use of expensive and toxic 
chemicals, require vigorous processing, not environmen‑
tal friendly, produce hazardous by products which add to 
pollution, require expensive and highly complex equip‑
ments, requires addition of reducing and stabilizing agents 
and hence not much favoured. The alternative and much 
favoured method is biological method which makes use 
of plants and microorganisms. It is simple cost effective, 
eco‑friendly and does not require high pressure, energy, 
temperature or toxic chemical reagents; on the other hand, 
requires very low maintenance and natural phytochemi‑
cals present in various parts of the plants like enzymes, 
proteins, phenols, flavonoids, act as reducing and stabiliz‑
ing agents, and produce highly biocaompatible and stable 
nanoparticles [6].

Silver nanoparticles have been synthesized using leaves 
of different plants for eg. Saccharum officinarum [7], Doli-
chos lablab [8], Berberis vulgaris [9], Dodonaea viscose 
[10], Eriobotrya japonica [11], Tragopogon collinus, [12], 
etc. Because of their unique properties, AgNPs find many 
applications like in medical devices, health care, diagnos‑
tic and drug delivery, cosmetics, electronic and house hold 
appliances, catalysis, waste water treatment, bio sensing, 
agriculture, etc. [13, 14]. Silver nanoparticles possess 
properties like antiproliferative [15], wound healing [16], 
antidiabetic [17], antimycotic [18], antileishmanial [19], 
hepatoprotective activity [20], anticancer [21], antioxi‑
dant ( [22], larvicidal [23], photocatalytic [24], etc. The 
antibacterial property of AgNPs have been reported by 
many researchers. Qidwai et al. [25] synthesized AgNPs 
from Phoenix sylvestris seed extract which showed high 
antibacterial activity with high time‑kill kinetics against 
P. acnes and S. epidermidis while seed extract of Pisum 
sativum showed good antimicrobial activity against 

Escherichia coli and Candida albicans [26]. Golabiazar 
et al., [27] synthesized AgNPs using Pistacia atlantica 
leaf extract as a reductant, stabilizer, and capping agent 
which showed antibacterial activity against Gram negative 
(Escherichia coli, Klebsiella pneumonia, Pseudomonas 
aeruginosa and Salmonella paratyphi B) and Gram posi‑
tive (Staphylococcus aureus and Streptococcus pyogenes) 
bacterial strains. Siddiqi et al., [28] reported antibacte‑
rial activity of AgNPs against nine bacterial strains syn‑
thesized from dried leaf extract of Diospyros montana. 
Maximum activity of AgNPs was against K. pneuomoniae 
and E. coli while moderate efficacy was against S. mutans, 
S. aureus, S. pyrogenes, S. viridians, P. aeruginosa, C. 
diphtheriae and C. xerosis. Ajitha et al. [29] synthesized 
stable flower‑shaped AgNPs which showed prominent bac‑
tericidal activity against Escherichia coli, Pseudomonas 
spp., Bacillus spp. and Staphylococcus spp. and fungicidal 
activity against Aspergillus niger, Aspergillus flavus and 
Penicillium spp.

The increased emergence of multi drug‑resistant microbes 
and incidence of various types of cancer has become an 
increased cause of worry and stands as major burning 
problems worldwide affecting people to a great extent. The 
earlier treatments which were effective, have now become 
useless. The existing antibiotics are not able to bring relief 
from infectious menace. Cancer is a deadly disease affecting 
people in developing and developed countries and is one of 
the major health burden in the world. There are many syn‑
thetic chemotherapeutics to treat cancer but are associated 
with many disadvantages and best cure is still from nature. 
Majority of the anticancer drugs in use are derived from 
medicinal plants. The need of the hour is new ways and 
novel approaches to combat this life threatening diseases. 
Recently the attention has turned towards green synthesized 
metal nanoparticles especially AgNPs which showed prom‑
ising anticancer activity. Apparently, nanobiotechnology 
has been a boon and novel strategy for the treatment and 
diagnosis of cancer. In vitro anticancer activity of AgNPs 
has been reported against an array of cell lines such as HeLa 
(cervical cancer cell line), MCF‑7 (breast cancer cell line), 
COLO‑205 (colon ceancer cell line), A‑549 (lung cancer 
cell line) PC‑3 (prostrate cancer cell line), A‑431 (epidermal 
cancer cell line), Hep‑G2 (hepatic cancer cell line), etc. [13].

Caesalpinia pulcherrima (Linn.) SW. is an ornamen‑
tal plant belonging to Caesalpinaceae family with several 
medicinal properties. The leaves are reported for antimicro‑
bial, antioxidant, antiulcer properties [30–32]. However, the 
efficacy of C. pulcherrima leaves to synthesize AgNPs is yet 
to be studied. Hence, the aim of the present investigation was 
(i) to synthesize AgNPs using C. pulcherrima leaf extract 
as a bioreductant and stabilizing agent, (ii) characterization 
of green synthesized AgNPs by various spectral techniques 
(iii) evaluation of antimicrobial potential of synthesized 
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AgNPs (iv) evaluation of cytotoxic potential and genotoxic 
properties.

2  Materials and Methods

2.1  Plant Extract Preparation

The fresh leaves of C. pulcherrima were collected from 
Rajkot, Gujarat, India. They were thoroughly washed with 
tap water, followed by double distilled water and cut into 
small pieces. Five grams of cut leaves were boiled in 100 ml 
ultra pure water and filtered through Whatmann No. 1 filter 
paper. The filtrate was cooled to room temperature and used 
as bioreductant for the synthesis of AgNPs.

2.2  Biosynthesis of Silver Nanoparticles

The general procedure for AgNPs synthesis was as follows: 
3 ml of leaf extract was added to 40 ml of aqueous  AgNO3 
(1 mM) solution at room temperature (25 °C + 2 °C); the 
colourless solution turned to brown indicating the formation 
of AgNPs. This solution was incubated in dark for 24 h. The 
nanoparticles solution was purified by repeated centrifuga‑
tion at 10,000 rpm for 10 min followed by redispersion of 
the pellet of nanoparticles in acetone. They were air dried 
and then stored at 4 °C for further analysis. Various param‑
eters like boiling time of plant extract, extract amount, con‑
centration of silver nitrate, pH (6–10), and incubation time 
were optimized and finally AgNPs were synthesized using 
optimized parameters.

2.3  Optimization of Different Parameters

AgNPs were synthesized using C. pulcherrima leaf aqueous 
extract. The reduction of the silver ions in solution was mon‑
itored by UV–Vis spectrophotometer (Shimadzu UV‑1601, 
Shimadzu Corporation, Kyoto, Japan) in 350–700  nm 
range operated at an interval of 10 nm. Various param‑
eters optimized were boiling time of plant extract (5 min, 
10 min, and 15 min), extract amount (1.5 ml, 3 ml, 6 ml, 
9 ml, and 12 ml), concentration of silver nitrate (0.5 mM, 
1 mM, 1.5 mM, and 2 mM), pH (6–10), and incubation time 
(0 min–24 h).

2.4  Characterization Techniques

2.4.1  UV–Visible Spectroscopy

Synthesis of silver nanoparticles was observed by UV–Vis‑ 
spectroscopy. The reduction of the Ag + ions in solution 

was monitored by periodic sampling of aqueous compo‑
nent and measuring the UV–Vis spectra of the solution. 
UV–Vis spectra of these aliquots were monitored as a func‑
tion of time of reaction on a spectrophotometer (Shimadzu 
UV‑1601) in 400–700 nm range operated at a resolution of 
10 nm.

2.4.2  FTIR Analysis

The FTIR spectrum was recorded in the range of 
400–4000 cm−1 Nicolet IS10 (Thermo Scientific, Waltham, 
MA). Various modes of vibrations were identified and 
assigned to determine the different functional groups present 
in C. pulcherrima leaf extract.

2.4.3  XRD Analysis

The structure and composition of synthesizd AgNPs was 
analyzed by XRD. The formation of AgNPs was determined 
by an X’Pert Pro X‑ray diffractometer (PAN analytical BV) 
operated at a voltage of 40 kV and a current of 30 mA 
with Cu Kα radiation in θ–2θ configurations. The crystal‑
lite domain size was calculated from the width of the XRD 
peaks, assuming that they are free from non‑uniform strains, 
using the Scherrer formula. D¼0.94 λ/ β cos θ, where D 
is the average crystallite domain size perpendicular to the 
reflecting planes, λ is the X‑ray wavelength, β is the full 
width at half maximum (FWHM), and θ is the diffraction 
angle.

2.4.4  Thermal Gravimetric Analysis

Thermal stability and surface weight loss of AgNPs was 
determined by Thermogravemeteric (TGA) analysis using 
DTG‑60H instrument (Shimadzu Corporation, Kyoto, 
Japan). TGA spectra was recorded under a nitrogen gas flow 
of 100.0 ml min−1 and at heating rate of 10 °C min −1 to 
1000 °C.

2.5  TEM Analysis

TEM analysis was done to visualize the shape as well as to 
measure the size of green synthesized AgNPs. The sample 
was dispersed in double distilled water and a drop of thin 
dispersion was placed on a “staining mat”. Carbon coated 
copper grid was inserted into the drop for 10 min, air dried 
and then screened in JEOL JEM 2100 Transmission Electron 
Microscope (JOEL Corp, Tokyo, Japan).
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2.5.1  Biological Activity of Synthesized Silver 
Nanoparticles

The green synthesized AgNPs were evaluated for their anti‑
microbial, cytotoxic and genotoxic potential. The antimi‑
crobial activity was measured by measuring the minimum 
inhibitory concentration (MIC) and Minimum bactericidal 
concentration (MBC) of AgNPs [33, 34] and growth curve 
assay [35] against eleven microorganisms. The cytotoxic 
activity was evaluated by MTT assay against HeLa cell line. 
The genotoxicity was evaluated by comet assay. The proce‑
dure followed is as described earlier [36].

3  Results and Siscussion

3.1  Optimization of Different Parameters

Silver nanoparticles formation in the reaction mixture is 
easily detected by the change in colour from pale yellow to 
dark brown which is due to excitation of surface plasmon 
vibration of the silver nanoparticles as also reported by other 
researchers [37, 38]. UV–Vis spectroscopy is a fundamental 
technique to determine the formation of metal nanoparti‑
cles in aqueous medium. Boiling time of plant extract, plant 
extract concentration, silver nitrate concentration and pH of 
reaction mixture are some of the key factors that determine 
the formation and size of synthesized AgNPs. It is gener‑
ally reported that the UV absorption peak reflects the size 
of the nanoparticles i.e. larger particles show broader peak 
and smaller particles show narrow absorption peak and the 
absorption intensity directly indicates the number of nano‑
particles formed [39]. Thus, this criterion was used for selec‑
tion of the correct parameter for synthesis of AgNPs.

In order to evaluate the effect of boiling time for the 
leaf extract preparation, the leaves were boiled for 5, 10 
and 15 min. AgNP formation was faster when 5 min boiled 
leaf extract was added than when 10 and 15 min boiled leaf 
extract was added (Fig. 1a). The absorption intensity was 
also slightly higher in 5 min boiled leaf extract as compared 
to 10 and 15 min boiled leaf extract. Hence, 5 min boiling 
time was finalized for the preparation of the leaf extract.

In order to evaluate the effect of leaf extract concentration 
for the formation of AgNPs, different aliquots (1.5, 3, 6, 9 
and 12 ml) of 5 min boiled leaf extract was added to 40 ml 
1 mM  AgNO3 solution. The synthesis of particles occurred 
faster when 6 ml extract amount was added to the reac‑
tion mixture than when 1.5, 3, 9, 12 ml extract was added 
(Fig. 1b). The narrow absorption peak indicates the smaller 
size [40] and increase in absorption peak indicates forma‑
tion of more AgNPs [41]. When 6 ml extract was added, the 
absorption peak was narrow and absorption intensity was 

high. Hence, addition of 6 ml extract was finalized for the 
synthesis of AgNPs.

In order to evaluate the effect of silver nitrate concentra‑
tion for the formation of AgNPs, 6 ml 5 min boiled leaf 
extract was added to 40 ml different concentration of silver 
nitrate solution (0.5, 1, 1.5, 2 mM). 0.5 mM  AgNO3 contain‑
ing reaction mixture developed light brown color while 1.0, 
1.5 and 2.0 mM  AgNO3 containing reaction mixtures devel‑
oped darker brown colour. 1 mM of  AgNO3 concentration 
supported rapid formation of dark brown colour for AgNPs 
(Fig. 1c). Hence, 1 mM  AgNO3 concentration was finalized 
for the synthesis of AgNPs. Upon increasing the concentra‑
tion of  AgNO3, the intensity of the SPR bands increased due 
to the enhancement in the nuclei formation indicating larger 
particle size [42, 43].

In order to evaluate the effect of pH for the formation 
of AgNPs, 6 ml 5 min boiled leaf extract and 40 ml 1 mM 
silver nitrate reaction mixture was adjusted with different pH 
(6, 7, 8, 9, 10). At pH 6 and pH 7, the absorbance band was 
broad indicating formation of larger nanoparticles (Fig. 1d). 
At pH 8 absorbance band was narrow as compared to pH 9 
and pH 10. Hence, pH 8 was finalized for the synthesis of 
AgNPs. As already stated above, narrow SPR band indicates 
smaller particles size while broad SPR band indicates large 
particles size. Use of alkaline pH for synthesis of AgNPs is 
also reported by Ganesh Kumar and Poornachandra [44] and 
Verma and Mehata [45].

The UV–Vis spectra were recorded at different time 
intervals (30 min, 60 min, 2 h, 24 h); however no change 
in peak intensity was found (Fig. 1e). The absorption max‑
ima peak was observed at 410 nm which is due to surface 
plasmon vibrations. The AgNPs synthesized using bagasse 
extract also showed an absorption peak at 410 nm [46] 
while AgNPs synthesized using apple peel and grape fruits 
extracts showed an absorption peak at 420 nm [24]. There‑
fore optimum conditions for green synthesis of AgNPs by 
C. pulcherrima leaf extract was 5 min boiling time for leaf 
extract preparation, 6 ml leaf extract addition to reaction 
medium, 1 mM silver nitrate concentration, pH 8 of reaction 
medium and reaction time for synthesis of AgNPs was 24 h. 
AgNPs were synthesized using above optimized conditions. 
Seifipour et al. [12], also optimized various parameters for 
AgNPs synthesis.

3.2  FTIR Analysis

FTIR analysis is generally done to recognize the func‑
tional groups involved in silver nanoparticles for‑
mation. FTIR spectrum of AgNPs, recorded in the 
range of 500–4000  cm−1, showed prominent peaks at 
3512.37, 2891.30, 1591.27, 1323.17, 1147.65, 983.70 
and 704.02 cm−1 (Fig. 2a). The peak at 3512.37 cm−1 
corresponds to O–H stretch of alcohols and phenols. 
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2891.30 cm−1 peak is due to the C–H stretch of alkanes 
while 1591.27 cm−1 peak is due to N–H bend of primary 
amines. 1323.17 corresponds to N–O symmetric stretch 
of nitro compounds. 1147.65 cm−1 is assigned to the C–N 
stretching of aliphatic amines. 983.70 cm−1 indicate the 
C–H bend of alkenes group while 704.02 cm−1 is assigned 
to the C–Cl stretching of alkyl halides. Similar peaks were 
reported by other researchers. 3419 cm−1 corresponds to 
O–H stretching of alcohols and phenols and 1648 cm−1 
corresponds to N–H bend of primary amines [47]. 
2886 cm−1 is due to C–H stretching of alkanes [48] while 
1384 cm−1 is due to nitro N–O bending [49], 1218 cm−1 
stretching vibrations is of C–N of aliphatic amines [50]. 
821.96 cm−1 is assigned to C–Cl stretching of alkyl hal‑
ides [51]. It is suggested that different functional groups 
such as alcohols, carboxylic acids, esters, ethers etc. are 

responsible for reduction of silver ions and also prevent 
the agglomeration of AgNPs.

3.3  TGA Analysis

The TGA curve of green synthesized AgNPs is shown in 
Fig. 2b. The initial weight loss of about 4% at the tempera‑
ture of 100 °C was due to loss of water molecules adsorbed 
on the surface of AgNPs. The second weight loss of about 
34% was in the temperature range of 300–400 °C and third 
weight loss was about 51% in the temperature range of 
500–600 °C. This weight loss is attributed to the degrada‑
tion of bioorganic molecules biocapped on the surface of the 
nanoparticles. At the temperature above 800 °C there was 
no weight loss in TGA curve, indicating that the synthesized 
AgNPs were stable within this temperature range. Similar 
decomposition of AgNPs was reported by Ahmad et al. [52]. 

Fig. 1  a Effect of boiling time. 
b Effect of extract amount. c 
Effect of silver nitrate concen‑
tration. d Effect of pH. e UV–
Vis spectra at different time 
interval
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Further there was no weight gain which is an indication that 
the synthesized AgNPs remained intact without any oxida‑
tion because of inert nitrogen atmosphere. Yallappa et al. 
[53] reported similar behavior of AgNPs synthesized from 
J. sambac leaf extract.

3.4  XRD Analysis

The crystalline nature of synthesized AgNPs was confirmed 
by X‑ray diffraction (XRD) analysis (Fig. 2c). The observed 

peaks clearly demonstrated the crystalline nature of syn‑
thesized AgNPs. Five prominent diffraction peaks were 
obtained 21.71°, 38.29°, 44.08°, 64.64° and 78.69° which 
represent (100), (111), (200), (220) and (311) planes of a 
face center cubic (fcc) lattice of silver crystal (Fig. 2c). The 
observed XRD pattern was compared and matched with the 
JCPDS data file No. 4.0783. The XRD pattern found in the 
present study are similar to those reported for other AgNPs 
[25, 27].

Fig. 2  a FTIR spectrum of AgNPs. b TG curve of AgNPs. c XRD spectrum of AgNPs. d TEM images of AgNPs. e SAED patterns of the 
AgNPs
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3.5  TEM Analysis

Morphology and particle size of AgNPs was characterized 
using TEM (Fig. 2d). TEM images revealed the shape of the 
particles to be spherical and the size ranged from 2 to 24 nm; 
average size was 9 nm. The AgNPs synthesized from S. vul-
gare and L. chinensis also possessed average particle size 
of 10 nm [54, 55] while those synthesized from leaf extract 
of D. montana possessed an average size of 11.65 nm [28]. 
Rautela et al. [56] synthesized AgNPs from Tectona grandis 
seed extract and their size was in the range of 10–30 nm. The 
selected area electron diffraction (SAED) pattern of AgNPs 
suggests the crystalline nature of AgNPs (Fig. 2e) which is 
in good agreement with the XRD results. The characteristic 
bright circular fringes can be indexed to (111), (200), (220) 
and (311) of the pure face centered cubic (fcc) lattice struc‑
ture [57]. Presence of no other peak than silver suggests the 
purity of the green synthesized AgNPs. Similar results are 
reported by Roy et al., [58] in Petroselinum crispum leaf 
extract synthesized AgNPs.

3.6  Antimicrobial Activity of Silver Nanoparticles

The antimicrobial potential of green synthesized AgNPs 
was evaluated by determining their MIC and MBC values 
and growth curve studies. The MIC and MBC of synthe‑
sized AgNPs was evaluated against four Gram positive, 
four Gram negative and three fungi using different concen‑
trations (0.019–10 mg/ml) by Resazurin assay (Table 1). 
Chloramphenicol and Amphotericin B antibiotics were 
used as positive control for bacteria and fungi respectively. 
Different microorganisms showed different level of MIC 
and MBC values. The MIC values ranged from 0.078 mg/
ml to 1.25 mg/ml while MBC values ranged from 1.25 mg/
ml to 10  mg/ml. The MIC value of standard antibiotic 

Chloramphenicol ranged from 1.25 to 5 mg/ml while MBC 
values ranged from 5 mg/ml to 10 mg/ml. The MIC and 
MBC values of the antifungal antibiotic Amphotericin B 
was > 10 mg/ml. The lowest MIC value was found against 
K. pneumonia (0.078 mg/ml) followed by E. coli (0.156 mg/
ml). Both these organisms had lowest MBC values. K. pneu-
monia was the most susceptible organism. It’s MIC and 
MBC values were less than that of standard antibiotic.

AgNPs synthesized using Avicennia marina seed extract 
showed antibacterial activity against K. pneumoniae (ATCC 
700,603), E. coli (ATCC 35,218), S. aureus (ATCC 43,300), 
E. faecalis (ATCC 5129), and P. aeruginosa (ATCC 27,853). 
E. coli was the most sensitive strain with MIC value of 
6.25 μg/mL followed by K. pneumoniae and P. aeruginosa 
(MIC 12.5 μg/mL) while E. faecalis was the resistant strain 
[38]. Arnebia hispidissima mediated synthesized AgNPs 
showed strong anti‑microbial activity against Staphylococ-
cus aureus, Enterococcus faecalis, Klebsiella pneumonia, 
Escherichia coli, Candida albicans, Candida tropicalis and 
Geotrichum candidum [59]. Antibacterial activity against 
B. subtilis, B. vallismortis and E. coli by AgNPs synthe‑
sized using plant extract of Salvia spinosa is reported by 
Pirtarighat et al. [60]. Bagherzade et al. [61] reported that 
biosynthesized Ag NPs using Crocus sativus wastages 
showed significant antibacterial effect against Escherichia 
coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Shi-
gella flexneri and Bacillus subtilis.

The green synthesized AgNPs showed better antimicro‑
bial activity against Gram negative bacteria than Gram posi‑
tive bacteria. This is in agreement with previous studies [28, 
62] wherein Gram positive bacteria were less susceptible 
than Gram negative bacteria. This is attributed to change 
in cell wall composition of both these bacterial strains. The 
simple reason may be the peptidoglycan cell wall nature of 
the Gram negative bacteria. The Gram negative bacteria 

Table 1  MIC and MBC values (mg/ml) of AgNPs against Gram positive, Gram negative bacteria and fungi

Microorganisms MIC of AgNPs MBC of AgNPs MIC of chloram‑
phenicol

MBC of chloram‑
phenicol

MIC of ampho‑
tericin B

MBC of 
ampho‑
tericin B

B. cereus 1.25 5 1.25 5 NA NA
B. subtilis 0.625 10 1.25 5 NA NA
S. aureus 0.625 10 1.25 5 NA NA
C. rubrum 1.25 10 2.5 10 NA NA
E. coli 0.156 1.25 2.5 10 NA NA
P. aeruginosa 0.625 5 2.5 10 NA NA
S. typhimurium 0.312 2.5 1.25 5 NA NA
K. pneumoniae 0.078 1.25 2.5 10 NA NA
C. albicans 1.25 5 NA NA  > 10  > 10
C. glabrata 1.25 5 NA NA  > 10  > 10
C. neoformans 1.25 5 NA NA  > 10  > 10
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has thin peptidoglycan layer while Gram positive bacteria 
possesses a thick and rigid peptidoglycan layer. This differ‑
ence hinders the penetration of AgNPs easily into the cell 
wall. The AgNPs can easily penetrate the thin peptidoglycan 
layer of Gram negative bacteria while prevent the entry of 
AgNPs in to the cell wall of Gram positive bacteria. Fur‑
ther it can be stated, that the positively charged AgNPs are 
greatly attracted to negatively charged Gram negative bac‑
teria and rupture the cell wall which will destabilize the cell 
and plasma membrane which leads to depletion of intra‑
cellular ATP [63]. However there are reports where green 
synthesized AgNPs showed better activity against Gram 
positive bacteria [36, 43]. Thus, AgNPs have the potential 
to inhibit the growth of both Gram positive and Gram nega‑
tive bacteria.

3.7  Growth Curve of Silver Nanoparticles

The growth curve assay was used to determine the micro‑
organisms viability and to define the minimum time neces‑
sary to reach an inhibitory or bactericidal effect. AgNPs 
inhibitory effect was carried out against four Gram posi‑
tive, four Gram negative and three fungi using the growth 
curves under AgNPs concentration equal to 1 × MIC. 
For negative control only microorganisms were used and 
antibiotics Chloramphenicol and Amphotericin B were 
used as a positive control. The optical density at 600 nm 
(OD600) was measured at different time intervals to 
monitor the bacterial and fungal growth. Growth curve of 

synthesized AgNPs, Chloramphenicol and Amphotericin 
B showed similar antimicrobial trend that was observed 
in MIC results. AgNPs and Chloramphenicol treated 
culture showed suppressed growth of all the four Gram 
positive bacteria with respect to negative control (Fig. 3). 
The optical density was almost same over the time while 
in the negative control (only bacteria) the optical density 
increased with respect to time. All the four Gram posi‑
tive bacteria exposed to AgNPs, showed complete growth 
inhibition over a period of time (24 h). The antibiotic 
Chloramphenicol also showed similar results i.e. complete 
growth inhibition. A slightly different trend was observed 
with the growth of Gram negative bacteria exposed to 
AgNPs. The green synthesized AgNPs inhibited the Gram 
negative bacteria more than that of positive control Chlo‑
ramphenicol (Fig. 4). Chloramphenicol treated organisms 
reached stationary growth phase after 6 h while AgNPs 
treated organisms showed suppressed growth till 24 h; i.e. 
growth inhibition of Gram negative bacteria was better 
than that of positive control.

Growth curve of AgNPs and Amphotericin B against 
three fungi C. albicans, C. glabrata and C. neoformans is 
given in Fig. 5. All the three fungi, showed a remarkable 
growth inhibition effect; even better than that of positive 
control (Amphotericin B). Amphotericin B treated organ‑
isms reached stationary growth phase after 8 h while AgNPs 
treated organisms showed suppressed growth till 48 h like 
that of Gram negative bacteria. The optical density of all 
the three fungal cultures was almost same and steady with 

Fig. 3  Growth curve assay of 
AgNPs and chloramphenicol 
against a B. cereus (BC), b B. 
subtilis (BS), c S.aureus (SA) 
and d C. rubrum (CR)
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respect to time indicating complete inhibition of fungal 
growth. Antimicrobial effect of synthesized AgNPs was 
clearly envisaged. Dose and time dependant growth curve 
study against E. coli and S. aureus is also reported by He 

et al. [64] and Das et al. [65],while complete inhibition or 
suppressed growth against E. coli and S. aureus is reported 
by Elbeshehy et al. [66] and Wang et al. [67].

Fig. 4  Growth curve assay of 
AgNPs and chloramphenicol 
against a E. coli (EC), b P. 
aeruginosa (PA), c K. pneumo-
niae (KP) and d S. typhymurium 
(ST)
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Fig. 5  Growth curve assay of 
AgNPs and Amphotericin B 
against a C. albicans (CA), b C. 
glabrata (CG) and c C. neofor-
mans (CN)
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3.8  Cytotoxicity Analysis of Silver Nanoparticles 
on Hela Cell Lines

In the present study, MTT assay was used to assess the effect 
of different concentrations of AgNPs (2 μg, 10 μg, 30 μg, 
50 μg, 100 μg, 150 μg, 200 μg) on HeLa cell lines (Fig. 6). 
The cancer cell viability decreased with increasing concen‑
tration of AgNPs. At low concentration, 100% cell viability 
was found while at 50 µg/ml concentration, cell viability 
was 73% and at 200 µg/ml concentration, the cell viability 
was reduced to 34% i.e. a clear dose dependent effect was 
observed. Farah et al. [68] found  IC50 value of 217 µg/ml of 
A. obesum leaves extract synthesized AgNPs against MCF‑7 
cells, while in the present work, a much lower  IC50 value 
was found (70 µg/ml). AgNPs synthesized using aqueous 
root extract of Arnebia hispidissima showed dose‑dependent 
cytotoxicity against HeLa cells  (IC50 = 4.44 mg/mL) and 
were non‑toxic towards normal L20 B cells (non‑malignant 
mouse cell line) ( [59]. Vivek et al. [69] synthesized spheri‑
cal shaped Ag NPs with 20–100 nm size, using leaf extract 
of Annona squamosa for treatment of human breast cancer 
cell (MCF‑7)  IC50 value was 50 = g/ml after 24 h. Datura 
inoxia leaf extract mediated synthesized AgNPs inhibited 
proliferation of human breast cancer cell line MCF7 with an 
 IC50 of 20 mg/ml at 24 h incubation [70]. Andrographis pan-
iculata mediated synthesized AgNPs also showed anticancer 
activity against activity against HepG2 cells (27.01 μg/ ml) 
and PC3 cells (32.15 μg/ ml) [71]. Green synthesized AgNPs 
using Artemisia turcomanica leaf extract induced apoptosis 
and showed a cytotoxic and anti‑cancer effect against gas‑
tric cancer cell lines in a dose‑ and time‑dependent manner 

[72]. The observed cytotoxic effect may be via generation 
of reactive oxygen species via intracellular oxidative stress 
resulting in damage to cellular components like lipids, DNA 
and proteins which finally lead to cell death [73, 74]. Thus, 
the present study implicates that green synthesized AgNPs 
has good cytotoxic effect and it can be used as an alternative 
source for cancer chemotherapy.

3.9  Genotoxicity Analysis

The genotoxicity of AgNPs to damage DNA in the lym‑
phocyte culture was evaluated by alkaline comet assay. The 
comet assay is a simple and reliable method to detect DNA 
damage and also used for assessment of DNA repair [75]. 
Lymphocyte culture was treated with three different con‑
centrations of AgNPs (2 µg, 50 µg, 200 µg) and DNA dam‑
age was measured according to comet length or tail length 
(Fig. 7). In negative control, halo surrounding nuclei was 
clearly found (Fig. 7a). In positive control, cells were treated 
with Mitomycin C drug (Fig. 7b). 2 µg and 50 µg AgNPs 
treated cells showed intact and round nuclei without any 
fragmented DNA (Fig. 7 c, d) while 200 µg treated cells 
showed fragmented DNA (Fig. 7e). The comet tail length 
increased in a dose dependent manner and maximum length 
was with highest concentration of AgNPs (200 µg/ml) but 
it was less than that of positive control (Fig. 7f). The dose 
dependent genotoxicity is also reported in A549 cell line 
[76] and Swiss albino mice [77].

4  Conclusion

In this study, we report for the first time the antimicrobial, 
anticancer and genotoxic effect of silver nanoparticles syn‑
thesized from C. pulcherrima leaves extract. AgNPs showed 
characteristic peak at 410 nm. The green synthesized nano‑
particles were spherical in shape and average size was 9 nm 
and exhibited excellent antimicrobial activity and higher 
effectiveness was found against Gram negative bacteria. The 
AgNPs also showed potential cytotoxicity on HeLa cancer 
cell line. In vivo genotoxic study demonstrated not toxic 
nature of AgNPs at lower concentration. The results sug‑
gest that green synthesized AgNPs can be used as a natural 
antimicrobial agent and also in cancer treatment.
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