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Abstract
In this paper, we proposed the synthesis of CoFe nanoparticles (NPs) which have been deposited on carbon nanofibers (CNFs) 
with a facile electrospinning route followed by thermal reduction. The performance of obtained CNF supercapacitors are 
improved from 51 to 190 F/g (247 mF/cm2) at 0.5 A/g with the combination of CoFe NPs and graphitized carbon layers 
The device possessed an energy and power density of 6.6 Wh/kg and 125 W/kg, respectively. Furthermore, the capacitance 
retention can still maintain about 96.6% after 10,000 cycle test and it is worth noting that the cycling stability is ultrahigh. 
This research proves that bimetallic nanoparticles embedded in CNFs can elucidate new insights into the development new 
nanofiber electrode materials for the next generation of symmetric supercapacitors.
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1  Introduction

As next-generation novel energy sources, supercapacitors 
(SCs) are receiving growing attention because of their ultra 
high charge rate and excellent power density compared to 

the traditional capacitors [1–3]. With respect to their charge 
storage principle, they are categorized into two groups based 
on the electrode material: electric double layer capacitors 
(EDLCs) and pseudocapacitors (PCs). In EDLC, capacitance 
is generated from the charge separation at the interfaces 
between a porous electrode material and an electrolyte with-
out any electron transfer whereas PCs utilize faradic reac-
tions. Carbonaceous materials are regarded as typical EDLC 
materials while metal oxides and conducting polymers are 
typical pseudocapacitive materials that have relatively good 
capacitance [4–6]. Among carbonaceous materials, carbon 
nanofibers (CNFs) especially have received more and more 
interest from researchers since they have excellent charac-
teristics such as high porosity and good chemical durability 
but challenges still remain because of the low capacitance 
of CNFs thus the electrochemical properties of CNFs need 
to be improved. CNFs can be fabricated by numerous meth-
ods including chemical vapor deposition or laser process but 
these techniques can be sometimes difficult and high cost. 
Alternatively, the electrospinning technique is the most used 
method since it is easy and economic for the preparation of 
nanofibers [7]. Metal oxides including RuO2, MnOx, and 
Co3O4 combining with carbon materials have received more 
attention by scientists for electrochemical capacitors [8, 9]. 
Because the development of newly electrode materials with 
high capacitance is strongly desirable. On the other hand, 
various papers have been reported the combination of CoFe 
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nanoparticles with carbon materials for different applica-
tions. For instances, hierarchical CoFe-carbon nanosheets 
using templates by Li et al. and it exhibited an excellent elec-
trocatalytic performance [10]. In other study, various bime-
tallic NPs embedded in CNFs were fabricated and tested for 
glucose detection [11]. Yang et al. fabricated CoFe-CNFs 
and the rapid and sensitive sensing has been achieved [12]. 
In addition, Cai et al. prepared CoFe alloy NPs impregnated 
with the carbon nanotubes. When they used for a Zn-air bat-
tery application, a high power density of 150 mW cm−2 was 
found [13]. Core–shell CoFe@C particles were encapsulated 
in polydopamine-derived carbon nanocages by Wang et al. 
and they found that the obtained sample displayed superiour 
microwave absorption performance [14]. These results indi-
cated that synthesis of CoFe NPs combination with carbon 
could greatly change the properties of CNFs by the introduc-
tion of electro-active materials. Hence, inspired by these 
studies, we attempted to the synthesis of CoFe NPs in the 
CNF with a simple electrospun followed by calcination for 
supercapacitor application. To the best of our knowledge, 
CoFe NPs combined with CNF has not been reported for 
the supercapacitor applications in the existing literature. The 
CoFe@CNF electrode material was synthesized and charac-
terized and supercapacitor application of CoFe@CNF was 
described for the first time here and it exhibited an effective 
capacitive behaviour and ultra-high cycling stability.

2 � Experimental

2.1 � Chemicals

Polyacrylonitrile (PAN, Mw = 150,000 g/mol) was obtained 
from Sigma-Aldrich. Dimethylformamide (DMF), cobalt(II) 
acetlyacetonate (Co(acac)2) and iron nitrate hexahydrate 
(Fe(NO3)3⋅9H2O) were obtained from Merck and used as 
received.

2.2 � Fabrication of CoFe@CNF Papers

All nanofibers were fabricated with our home-made elec-
trospinning system followed by stabilization and carboni-
zation. The concentration of PAN was adjusted as 8 wt% 
and the total amount of salt with respect to PAN was as 
9.4 wt%. Firstly, 0.8 g of PAN was dissolved in 9.2 g of 
DMF for 2 h at 80 °C and an appropriate amount of salts 
was added slowly into the solution. It was stirred until a 
viscous solution was formed. Then, the precursor solution 
was electrospun. The needle was held at 17 kV with a high 
power suply. The syringe pump was at the speed of 0.75 ml/h 

and a distance of 20 cm between the needle and metal col-
lector was adjusted. The CNFs were collected approximately 
5 h later and dried at 60 °C in vacuum. The dried fibers 
were further annealed in air at 280 (5 °C/min) for 2.5 h and 
carbonized up to 800 °C (2 °C/min) in N2 for 2 h. For com-
parative study, pure CNFs were also prepared without any 
metallic salts.

2.3 � Characterization

In order to confirm the chemical bonds broken and formed 
in the CNFs, the samples were subjected to a Fourier Trans-
formed-IR spectroscopy analysis with a Bruker instrument 
scanned from 4000 to 400 cm−1. To identify the crystal-
line structure of CNFs, Rigaku D/Max—IIIC was used. The 
surface morphology of the nanofibers was characterized by 
scanning electron microscope (JEOL JSM-7001F SEM). 
Brunauer Emmett Teller (BET, Quantachrome–Quadrasorb 
Evo 4) analyser was utilized to find the specific surface area 
and the total pore volume was estimated based on the Den-
sity Functional Theory (DFT).

2.4 � Electrochemical Studies

The electrochemical characterizations of CNFs have been 
analyzed by cycle voltammetry (CV) and electrochemical 
impedance spectroscopy (EIS) on a Gamry Interface 1010B 
potensiostat-galvanostat-ZRA. Galvonastatic charge–dis-
charge measurements (GCD) were done from 0.5 to 3 A/g 

Syringe Pump

High Voltage

Fig. 1   Schematic diagram for the fabrication of CoFe@CNFs
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current densities by using a 8 channel MTI battery analyzer 
(10 mA, up to 5 V). To realize commercial application, pure 
CNF and CoFe@CNF papers were directly used by cutting 
into self-supported electrodes and the supercapacitors were 
tested with a Swagelok-type cell in two-electrode system. 
The electrolyte solution was 1 M H2SO4 while the separator 
was whatman glass fiber (GF/D). Neither any binder nor 
conductive agents were needed (Fig. 1).

3 � Results and Discussion

3.1 � XRD Study

The XRD powder patterns of CNF and CoFe@CNF samples 
have been depicted in Fig. 2. As shown in Fig. 2, the diffrac-
tion peak located at 2θ = 22° was observed corresponding 
to the crystalline plane (002) plane of graphitic carbon [15, 
16]. The peaks located at 2θ = 31.4°, 44.9, 56°, 65.4° and 
80° correspond to the (100), (101), (111), (200) and (201) 
crystal planes of CoFe alloy (JCPDS file no. 96-900-4230) 
which are compatible with the other studies [11, 15–17]. It 
also proves that the metal species in CoFe@CNF are also 
present at 2θ = 45.1 as Co0.75Fe0.25 phase (JCPDS file no. 
96-152-4168). As a result, X-ray diffraction patterns con-
firmed the existence of well crystallized CoFe NPs with a 
cubic structure and improved the graphitization degree of 
CNFs by the addition metallic salts [18–20].

3.2 � Spectral Analysis

To investigate the chemical structures of as-synthesized sam-
ples, FT-IR was conducted. The FT-IR spectra of as-spun 

precursor nanofibers, CNF, and CoFe@CNF samples are 
shown in Fig. 3a–c. Figure 3b represents multiple peaks 
at 2242, 1653 and 1450 cm−1 correspond to PAN polymer 
functional groups of –C≡N, C=O, and CH2, respectively 
[16, 21]. Because of the cycling of nitrile groups in the stabi-
lization process, CNFs displayed the disapperance of various 
functional groups and produced graphitized structure dur-
ing carbonization. Two common peaks of CNFs at ~ 1100 
and 1556 cm−1 were seen which are ascribed to the strech-
ing modes of C–C and C=C bonds, respectively as seen in 
Fig. 3a [22, 23]. The peaks at 3500 cm−1 can arise from 
O–H stretching and weak bands appearing in spectrum were 
attributed to the stretching bands of metallic interactions in 
CNF at about 634 and 468 cm−1 in Fig. 3c. Additionally, as 
a comparison, the spectrum of the CoFe@CNF did not show 
any peak belongs to NO3

−, indicating that PAN nanofiber 
was completely carbonized (Fig. 3c).

3.3 � Surface Morphology

The SEM images and particle size distribution diagrams of 
the electrospun pure CNF and CoFe@CNF samples are pre-
sented in Fig. 4. The all products showed uniform bead-free 
nanofibers and high aspect ratios with a netlike structure. 
Pure CNFs have a diameter size of 211 ± 45 nm whereas an 
average size diameter of 243 ± 37 nm was seen for CoFe@
CNFs. It is clear that encapsulating CoFe alloy nanoparticles 
into CNFs caused an increase diameter of nanofibers. Our 
assumption is that while CoFe nanoparticles are formed with 
the leaving empty space behind in the CNF matrix result-
ing in increase of diameter of fibers which is in consistence 
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Fig. 4   Representative SEM 
images of the obtained a CNF 
and b CoFe@CNFs with 
various magnifications. c EDX 
spectrum of CoFe@CNFs
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with what has been seen in literature [24]. Further, the par-
ticle size distribution charts confirm that the diameters of 
the CoFe@CNFs changed uniformly compared to the pure 
CNFs resulting more regular nanofiber formation. As a 
result, all fibers are interconnected with each other which 
can need a continous pathway for electrolyte diffusion dur-
ing electrochemical process. The EDX spectrum of CoFe@
CNFs is shown in Fig. 4c. The EDX spectrum of CoFe@
CNFs shows the prominent peaks from Co, Fe, C, N and O 
elements which directly confirm the formation of CoFe@
CNFs. After stabilization and carbonization process the 
CoFe@CNFs includes totally 2,38 wt% Co and Fe elements.

3.4 � Electrochemical Studies

The CV measurements were done at different scan rates of 
1–100 mV/s (Fig. 5a). The electrodes of pure CNFs in super-
capacitors did not have any redox peaks, which is a typical 

feature of double layer. It showed a good linearity even at 
high scan rate of 100 mV/s suggesting a good rate capability 
of the device [25]. In the CV curve of CoFe@CNFs (35 μm 
electrode thickness), rectangular-like shape was observed, and 
the CV curves reserved their shape at all scan rates indicating 
rapid and efficient charge transfer (Fig. 5b). The galvanostatic 
charge–discharge (GCD) is an accurate technique to inves-
tigate the electrochemical performance of SCs. In two elec-
trode symmetric cell configuration, the specific capacitance 
for a single electrode (Csp) was calculated from galvanostatic 
charge–discharge curves from Eq. 1 [26–28]:

 where I(A) is the discharge currrent, t(s) is the discharge 
time, m(g) is the mass of single active electrode material and 
V(V) is the potential windows excluding internal resistance 
(IR) drop. The energy (E) and power (P) densities are also 

(1)Csp(F∕g) = (2 × I × Δt)∕(m × ΔV)
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very critical performance metrics of supercapacitors, which 
are found from their GCD curve with Eqs. 2 and 3 [29–31]:

Figure 5c, d show GCD curves of CNF and CoFe@
CNF based supercapacitor (SC) in the range of 0.5–3 A/g, 
respectively. The specific capacitance of the pure CNF elec-
trode is 51 F/g while CoFe@CNF based SC was 190 F/g at 
0.5 A/g which was 3.8 times higher specific capacitance. 
Even at a high discharge current density of 3 A/g, it had 
a specific capacitance of 168 F/g which is ascribed to the 
mesoporous structure. Additionally, the device exhibited 
an energy density of 6.6 Wh/kg with a power density of 

(2)E(Wh∕kg) = 1∕8 × Csp(−V)
2∕(3.6)

(3)P(W∕kg) = (3600 × E)∕ − t

125 W/kg at 0.5 A/g for CoFe@CNF based electrodes cal-
culated from the Eqs. 2 and 3. Besides, the device is uti-
lized at 3 A/g, its power density increased to 746 W/kg with 
5.8 Wh/kg remaining energy density, which are higher than 
those reported in the literature [32–36]. The surface area 
and the porosity of CoFe@CNF samples were analyzed with 
Brunauer Emmett Teller (BET) by the N2 adsorption–des-
orption isotherms at 77 K and compared with pure CNF 
(Figs. S1, S2). The obtained results showed that the surface 
area (184 m2/g) and Vt, total volume, (0.28 cm3/g) of the 
CoFe@CNF is gretater than pure CNF. We could infer that 
the CoFe alloy NPs created suitable pore structure on the 
surface of CNFs during stabilization and carbonization from 
these results. Thus, the existence of enough mesopores in the 
CNF electrode will ensure not only the enough free space 
for charge–discharge but also rapid transport for ions and 
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electrons [37–41]. The improved specific surface area along 
with mesoporous nature makes the CoFe@CNF hybrid 
nanoarchitectures more ideal materials for supercapacitors 
application.

As it can be seen from Fig. 6a, the CV rectangular area 
of the chemically deposited CoFe nanoparticles in CNF was 
much higher than pure CNFs, meaning a promotion of elec-
trochemical performance. This is attributed to the utiliza-
tion of the CoFe NPs for easier ionic charge transport [15, 
42–44]. Figure 6b demonstrates the GCD curves of CNF 
and CoFe@CNF based supercapacitor device at 1 A/g. Both 
GCD curves were symmetric triangular shapes but a rela-
tively big IR (internal resistance) was found for pure CNF. 
On the other hand, a small IR drop (inset of Fig. 6b) was 

seen for the corresponding curve of CoFe@CNF owing to 
an efficient transfer of the electrolyte to the electrode surface 
and an enhanced electrical conductivity.

Figure 7a represents the variation of specific capacitances 
of pure CNF and CoFe@CNF electrodes at 0.5–3 A/g cal-
culated according to the Eq. 1. The Csp decreased with the 
increasing current density for both pure CNF and CoFe@
CNF based supercapacitors. This can be explained by two 
reasons. First, the longer interaction time between electrode 
and electrolyte ions at low current density helps to store a 
large amount of charge in the electrode, allowing a higher 
specific capacitance. The other is that the required time is 
limited between electrode and electrolyte at high current 
density thus a lower specific capacitance is obtained. The 
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impedance Nyquist plots of the pure CNF and CoFe@CNF 
based supercapacitors were presented in Fig. 7b. The higher 
charge transfer resistance was observed which is attributed 
to the enhanced pseudocapacitive behaviour of the CoFe 
and a similar behaviour was also found in the literature [32, 
45, 46].

Figure 8a presents the cycling stability test of the CoFe@
CNF electrodes and it showed a good rate performance with 
96.6% retention even after 10,000 cycles at 1 A/g. Accord-
ingly, CoFe nanoparticles in CNF provided a good ion 
mobility resulting a stable structure of the carbon matrix 
during cycling process. The CV at 1st and after 10,000 
cycling stages is presented in Fig. 8b. The reduction in spe-
cific capacitance might be due to loss of elecrode material 
during cycling and such a low degradation of 3.4% demon-
strates the good electrochemical stability of electrode mate-
rial. Figure 8c represents CoFe nanoparticles doped CNF 
based supercapacitors possessed an energy density between 
~ 5.8 and ~ 6.6 Wh/kg, which was higher than that in previ-
ous reports [47–49].

4 � Conclusion

In summary, we fabricated bimetallic CoFe nanoparticles 
with a in-situ process on a carbon network and the result-
ing CoFe@CNFs electrode material can be used as a self-
standing and binder-free electrode for supercapacitors. The 
assembled symmetric supercapacitor cell delivered the 
higher capacitance of 190 F/g at 0.5 A/g, good rate ability 
(174 F/g at 3 A/g) and an excellent cycling stability (only 
3.4% loss in capacitance after 10,000 cycles) compared to 
the pure CNF supercapacitor. Besides, the fabricated CoFe@
CNFs supercapacitor delivered an energy and power density 
of 6.6 Wh/kg and 125 W/kg at 0.5 A/g, respectively. In addi-
tion, a energy density of 5.8 Wh/kg is retained when the 
power density increases to 746 W/kg. Better supercapacitor 
performance could be explained by the synergistic effect of 
bimetallic NPs and carbon material and high surface area. 
Therefore, in-situ preparation of CoFe NPs in CNF can elu-
cidate for the development of new electrode materials for 
various energy devices.
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