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Abstract
Simple and cost-effective co-precipitation route was employed to prepare pure and transition metal ions doped CdS nano-
particles using 2-mercaptoethanol as surfactant. Doping of Ni, Co and Fe ions to CdS nanoparticles have been characterized 
adopting various techniques. X-ray diffraction confirmed CdS has single cubic phase with crystal size varying from 1 to 2 nm. 
UV–Vis spectroscopy analysis reveals an increase in absorption intensity upon doping. From Raman spectra, small shift in 
wave number is observed with inclusion of dopants which may be attributed to optical phonon confinement. Scanning electron 
microscopy confirmed agglomerated spherical morphology and Cd–S linkage along with other related functional groups 
was recorded by Fourier transform infrared spectroscopy. Photocatalytic measurements of undoped and doped CdS were 
studied by irradiating methylene blue solution under visible light. It was observed that Co doped CdS effectively bleaches 
out methylene blue than Ni and Fe doped CdS upon exposure of visible light. This report also highlights effect of prepared 
nanoparticles in degradation of methylene blue by catalytic agent NaBH4.
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1  Introduction

Around 100,000 kinds of dyes are produced annually with 
production rate of over 7 × 105 to 1 × 106 tons and utilized in 
numerous industries paper, textile, rubber, pigments, plastic, 
leather and paint [1]. Approximately 10–15% of used dyes 
discharged into water bodies and surrounding environment 
causing injurious diseases cancer, skin irritation, disfunction 

of liver, reproductive system and kidneys in humans [2]. 
One of the most widely used cationic dye is methylene blue 
(MB) which is injurious to human beings. This dye causes 
severe diseases like respiratory tract irritation, eye and skin 
irritation, permanent injury to conjunctiva and cornea in 
human beings and rabbit eyes [3]. Discharging of contami-
nated wastewater by MB per annum causes numerous envi-
ronmental problems such as increasing demand of chemical 
oxygen above the expected limit may cause death of the 
marine life [4, 5].

Various techniques chemical precipitation, conventional 
coagulation, electrolysis, reverses osmosis from compris-
ing, adsorption and photocatalytic degradation have been 
explored to purify industrial wastewater by removing dyes 
[6]. For the removal of dyes, photocatalytic degradation and 
adsorption are endorsed as environmentally efficient and 
cheap techniques for dyes removal [7]. Though, adsorption 
by low-cost materials is effective in dyes removal, however 
such procedures produce solid wastes substantially [8].

Semiconductor photocatalysis as a green technology 
for organic contaminants/wastewater treatment and green 
energy production has attracted substantial attention since 
Fujishima and Honda realized water splitting to produce 
hydrogen by TiO2 in 1972 [9, 10]. Hereafter, several 
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photocatalysts, composite structures [11, 12], transition 
metal oxides [13–15], metal sulfides [16, 17], doping mate-
rials [18, 19], heterojunctions [20, 21] have been synthesized 
to improve photocatalytic activities. But to synthesize high 
activity and low-cost photocatalysts owing to safety issues 

and non-secondary pollution to environment is still a chal-
lenge. Among hundreds of semiconductor materials known 
for photocatalytic activity, transition-metal elements are par-
ticularly promising materials due to significant optical and 
electronic properties. Among II–VI compound semiconduc-
tors, CdS has been investigated extensively and regarded as a 
unique photocatalyst [17, 22, 23]. Interestingly, CdS served 
as a promising candidate for detecting visible radiations [24] 
and conduction band is more negative relative to reduction 
potential of H+/H2 [25].

The efficacy of CdS for photodegradation is dependent 
on the integration with appropriate dopant elements. The 
dopant transition metals to CdS displayed outstanding opti-
cal, magnetic and electrical properties as single material [26, 
27]. In this study, synthesis of undoped and Fe, Co and Ni 
doped CdS using chemical precipitation method. These pre-
pared NPs were characterized deploying various analytical 
tools and utilized as photocatalyst on degradation of MB 
under visible light irradiation and catalysis in the presence 
of catalytic agent.

Fig. 1   Crystal structure of pure and doped CdS NPs

Fig. 2   SEM images of pristine CdS (a) and doped (Ni, Co, Fe) CdS (b–d)
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Fig. 3   EDX spectra of pristine CdS (a) and doped (Ni, Co, Fe) CdS (b–d)

Fig. 4   Absorption spectra (a) and corresponding bandgap spectra for pristine and doped (Ni, Co, Fe) CdS (b)
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2 � Experimental Details

2.1 � Materials

Cadmium chloride 2,5 hydrate (CdCl2·2,5H2O) as Cd 
source, sodium sulfide pentahydrate (Na2S·5H2O—98%) 
as a sulfur source, nickel(II) nitrate hexahydrate 
(Ni(NO3)2·6H2O—96%), cobalt(II) nitrate hexahydrate 
(Co(NO3)2·6H2O—96%) and iron(III) nitrate 9-hydrate 
(Fe(NO3)3·9H2O) as a dopant materials salts. Capping agent 
2-mercaptoethanol (HOCH2CH2SH) was acquired from 
AppliChem. Methylene blue (MB) and sodium borohydride 
(NaBH4—98.0%) were purchased from BDH Laboratories 
supplies and Sigma Aldrich, respectively.

2.2 � Synthesis of CdS Nanoparticles

Chemical precipitation technique was adopted to prepare 
pure and doped CdS NPs using 2-mercaptoethanol as a cap-
ping agent. 0.1 M solutions of CdCl2 and Na2S were pre-
pared separately under vigorous stirring in 50 ml deionized 
water (DIW) for 30 min. Later, Na2S solution was mixed 
dropwise in CdCl2 solution. Afterwards, 2.5 ml of 2-mer-
captoethanol (HOCH2CH2SH) solution was mixed slowly to 
above solution under vigorous stirring at 65 °C. Yellowish 
precipitates of CdS appeared during drop wise mixing of 
Na2S, these precipitates were washed with DIW, filtered and 
dried at 80 °C for 24 h to obtain nascent CdS. For doping, 
Ni2+, Co2+ and Fe2+ (5%) were mixed in CdCl2 solution 
using above-mentioned procedure.

2.3 � Photocatalytic Process

The photocatalytic measurements of prepared samples 
were tested by UV–Vis spectrophotometer (Genesys 10S 
spectrophotometer) under visible light irradiation at room 
temperature. The visible light was generated by a 400 W 
mercury lamp with principal wavelength of 400–700 nm. 
10 mg suspension of synthesized nanocatalysts was dis-
persed into 70 ml aqueous solution of dye. This suspended 
solution was stirred magnetically for 30 min in dark to attain 
adsorption–desorption equilibrium between MB and CdS. 
After a specified irradiation time interval of visible light 
exposure, 5 ml suspension was collected for the purpose of 
UV–Vis spectroscopy analysis. Concentration of MB was 
evaluated by monitoring changes in dye concentration with 
irradiation time in UV–Vis spectra.

2.4 � Catalytic Process

Sufficient amount of DIW was used to dilute 1 mM solu-
tion of MB in quartz cell and mixed 400 µl of NaBH4 solu-
tion. Subsequently, 300 µl of as-prepared NPs were added 
under agitation for 5 min. The dye decolorization signi-
fies reduction in colour upon reducing agent (NaBH4). 
The absorption spectrum was obtained at regular intervals 
with principal wavelength of 200–800 nm using UV–Vis 
spectrophotometer.

2.5 � Characterization

X-ray powder diffraction (XRD) PAN Analytical Xpert PRO 
X-ray diffraction was carried out to examine the different 
ions doped CdS samples with CuKα radiations at 40 kV. 

Fig. 5   FTIR spectra of pure and doped CdS NPs Fig. 6   Raman spectra of pure and doped CdS NPs
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The surface morphologies were investigated by Nova Nano 
SEM 450 with accelerating voltage of 20 kV. For optical 
analysis, UV–Vis spectrophotometer (Genesys 10S spec-
trophotometer) was used. Chemical structure was collected 
on Fourier Transform Infrared spectroscopy-FTIR (Perkin 
Elmer spectrometer). Raman spectra were measured with an 
excitation wavelength of 532 nm using DXR Raman micro-
scope (Thermo Scientific).

3 � Results and Discussion

To check the crystallinity, phase and crystal structure of 
prepared nanopowders, XRD was employed (Fig. 1). Three 
prominent peaks were observed at 26.5°, 43.5° and 51.6° 
corresponding to (111), (220) and (311) reflection planes of 
CdS respectively without impurity [25]. It is observed that 
diffraction peaks have identical positions and definite broad-
ening of peaks indicates nanometer range of as-prepared 

materials [24, 25, 28]. As radii of dopants ions are smaller 
than Cd (108 pm) ion, inclusion of dopants in CdS lattice 
will decrease lattice constants. Hence, diffraction peaks of 
doped NPs were observed shifted slightly towards higher 
angle. The average crystallite size of pristine and doped CdS 
was measured using Debye–Scherrer formula. The calcu-
lated crystallite size values 1.9, 2.01, 2.07 and 2.04 nm with 
standard deviation < 5% correspond to pure, Ni, Co and Fe 
dopants, respectively.

Figure 2a–d show SEM micrographs of synthesized pure 
and doped (Ni, Co, Fe) NPs. Figure 3a shows formation 
of highly agglomerated CdS nanoparticles. Upon doping, 
irregular growth of particles appeared due to Ostwald ripen-
ing [29, 30].

Figure 3 depicts EDAX analysis from corresponding to 
elements Cd, S, Ni, Co and Fe confirms the presence of 
NPs in polymer matrix which specify homogenous doping 
of impurity ions in CdS structure.

Fig. 7   Time-dependent UV–Vis spectra for reduction of MB. Dye with NaBH4 + CdS (a), dye with NaBH4 + Ni:CdS (b), Dye with 
NaBH4 + Co:ZnS (c), Dye with NaBH4 + Fe:ZnS
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Optical properties of nanopowders were explored using 
UV–Vis spectroscopy as shown in Fig. 4. Intensive absorp-
tion peak of pristine CdS was observed near 440 nm [25]. 
However, absorption intensity increased upon doping. This 
increase in absorption may be attributed to increase in carrier 

concentration by dopant ions incorporation and creation of 
defect levels in band gap. Compared to bulk CdS, blue shift 
in absorption edge appears, indicating that prepared NPs 
lie in nanometer range [31]. Energy band gap of NPs was 
measured using Tauc’s equation and found to be 2.4 eV of 

Fig. 8   Time-dependent UV–Vis absorption spectra for decolorization of methylene blue in the presence of pure and doped CdS (a–d)

Table 1   Comparison of current and reported studies of TM doped CdS NPs

Reported TM doped ZnS Synthesis techniques Particle size (nm) Band gap (eV) Photocatalysis

Junaid et al. (2019) [25] Fe (0–5%) doped CdS Co-precipitation 11.6–4.4 2.4–2.1 Significant increase in 
photocatalytic activity 
upon 5% Fe doping

Chauhan et al. (2013) [24] Fe (0, 3, 5 and 10%) doped 
CdS

Chemical route 2–3 2.3–2.2 3% Fe doped CdS NPs 
exhibit higher degrada-
tion efficiency.

Patel et al. (2015) [40] Ni (0, 10, 15 and 20%) 
doped CdS

Chemical synthesis 3–6 X X

Present study Ni, Co and Fe (5%) doped 
CdS

Co-precipitation 1–2 2.4–2.3 Photocatalytic measure-
ments reveal higher 
degradation rate for Co 
doped ZnS
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CdS which is well matched with reported [25] (Fig. 4b). A 
decrease in bandgap was observed with incorporation of Ni, 
Co and Fe dopants from 2.38 to 2.30 eV [24].

FTIR spectra of pristine and doped CdS were recorded in 
the range 4000 to 500 cm−1 as depicted in Fig. 5. Broad peak 
at 3434 cm−1 is associated to O–H group, confirms affin-
ity of water molecules towards CdS [32, 33]. Peaks around 
1544 cm−1 and 1627 cm−1 attributed to C–O and C=C 
stretching modes of carbonyl and carboxyl groups [28, 34, 
35]. During synthesis of NPs, adsorption of CO2 and H2O 
can contribute from atmosphere [33]. Moreover, shoulder at 
662 cm−1 depicts presence of Cd–S bond stretching seems 
very weak because of sample moisture [36]. Absorption 
peak around 2800–2900 cm−1 corresponds to C–H stretch-
ing [37]. Interestingly, no change in peak positions of matrix 
was observed with inclusion of dopants in CdS network. 
This confirms that dopants crystallites are formed without 
disturbing the continuous three-dimensional network of CdS 
and independent in chemical behavior [38].

Figure 6 depicts Raman spectra of NPs recorded at room 
temperature. Raman peaks appeared at 293 and 589 cm−1 
associated to 1LO (longitudinal optical) and 2LO phonon 
modes which show consistency with earlier reported values 
[25, 39, 40]. The Raman spectra of doped CdS NPs display a 
slight shift in wave number of 1LO and 2LO when compared 
with pristine CdS, which is accredited to smaller difference 
in ionic radii of dopants than Cd2+ [41].

Figure 7 shows catalytic reduction of MB using NaBH4 
with CdS NPs as nano-catalysts. The extracted results indicate 
that CdS shows successive decrease in concentration of dye 
within 45 min while doped nano-catalysts reveal enhanced 
degradation. Degradation efficiency of Ni and Co doped CdS 
is higher than Fe as these nano-catalysts reduced dye within 25 
and 20 min, respectively at peak intensity of ≈ 664 nm. Pure 
CdS shows slower reduction of dye, indicating superior cata-
lytic function of doped CdS. Hence, doped NPs were proved 
as promising catalysts on degradation of MB from industrial 
effluents.

Photocatalytic activity of CdS catalysts was subsequently 
evaluated under visible light irradiation by monitoring MB 
discoloration in aqueous solution. With increasing illumina-
tion time, peak maxima of MB absorbance spectra at 664 nm 
decreases gradually (Fig. 8) [42]. Successive MB degradation 
with prepared catalysts can be associated to crystal defects that 
behave as recombination centers to decrease photocatalytic 
performance [25]. Results reveal that MB photo degradation 
rate in Co doped CdS sample was higher in comparison of 
other CdS catalysts. This agrees well with an earlier study on 
metals doped CdS catalysts where faster degradation rate of 
MB with using Co doped CdS NPs was attributed to increase 
in defect sides generated by Co doping, and optical absorp-
tion is increased in visible region [43]. Reduction of dye was 
investigated spectrophotometrically by monitoring absorption 

maximum at 664 nm with definite time intervals. Additionally, 
CdS displayed inverse degradation in comparison of doped 
samples [24]. Table 1 shows comparison between recent and 
reported studies regarding various TM ions doped CdS NPs.

4 � Conclusion

In this study, pure and Ni, Co, Fe doped CdS NPs 
(Cd1−xTMxS where x = 0.05) were successfully prepared 
using co-precipitation method. XRD revealed that pure 
and doped NPs exhibit cubic phase with measure crys-
tallite sizes ranging from 1.9 to 2.07 nm. SEM images 
showed higher agglomeration in doped nanoparticles 
than ZnS and FTIR confirmed stretching vibrations of 
Cd–S around 662 cm−1 and other associated functional 
groups. The optical measurement of undoped and doped 
ZnS shows that absorption increased and corresponding 
measured band gap decreased upon doping from 2.38 to 
2.30 eV. Doped NPs are significant catalyst due to fast 
reduction of MB in the presence of reducing agent as com-
pared to CdS. Additionally, Co doped NPs showed higher 
photocatalytic activity than rest of samples. This novel 
approach of doped CdS NPs offers an efficient approach 
to tackle removal of dyes from wastewater and provide an 
economic route to environmental protection.
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