

Modification of Cu/Zn/Al₂O₃ Catalyst by Activated Carbon Based Metal Organic Frameworks as Precursor for Hydrogen Production

Ali Dehghani1 · Maryam Ranjbar1 · Ali Eliassi1

Received: 18 May 2017 / Accepted: 12 September 2017 / Published online: 10 January 2018 © Springer Science+Business Media, LLC 2018

Abstract

In this study, Cu/Zn/Al₂O₃-AC (AC = activated carbon) catalyst was synthesized and evaluated for dimethoxymethane (DMM) reformation to hydrogen. The Cu/Zn/Al₂O₃-AC catalyst was prepared using high surface area metal organic frameworks (MOFs) consisting of Cu₃(BTC)₂ (MOF-199) and Zn₄O(BDC)₃ (MOF-5) for Cu(II) and Zn(II) sources respectively, as precursors while γ-Al₂O₃ was applied as support. The synthesized catalyst was investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer–Emmett–Teller analysis (BET), Temperature programmed desorption (NH3-TPD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Complete DMM conversion was observed over Cu/Zn/Al₂O₃-AC catalyst (Cu:Zn:Al mole ratio of 6:3:2) under atmospheric pressure, T=533 K, GHSV=20 NL h⁻¹ g_{cat}^{-1} , N₂/H₂O/DMM=24/5/1 volume percent (vol%) with hydrogen productivity of 12.8 L H₂ h⁻¹ g_{cat}⁻¹ and 64% hydrogen concentration. Application of MOFs as precursors and modified activated carbon as an acidic component provided the catalyst with the porous structure and high specific surface area for the hydrolysis of DMM, subsequently, high selectivity and productivity of hydrogen was obtained.

Keywords Hydrogen production \cdot Cu/Zn/Al₂O₃ catalyst \cdot Dimethoxymethane \cdot Metal organic frameworks

1 Introduction

Fuel cells suggest great power and low weight density and are being considered for automotive and stationary power tenders $[1-3]$ $[1-3]$. A fuel cell is talented for portable applications with the advantages of cleanness; smallness and are con-sidered as other environmental sources of electricity [[3–](#page-8-1)[5\]](#page-8-2) which fuelled by H_2 .

Hydrogen is great excellence secondary energy carrier, not a primary fuel, and thus has to be made from primary energy sources such as electric power or thermal [[5\]](#page-8-2). Hydrogen can be produced from a variety of extensively available feed stocks, including various fossils and renewable energy sources [[4–](#page-8-3)[6\]](#page-8-4). Today almost 50% of hydrogen is produced by steam reforming, which for huge scale hydrogen production is the most economical way [[7\]](#page-8-5). The organic compounds reforming are the main H_2 fuel source for application in fuel cell [[6–](#page-8-4)[8](#page-8-6)]. Earlier, the methanol fuel disadvantage is high toxicity while dimethoxymethane (DMM) is danger less chemical. Nowadays, special attention is focused on the catalytic DMM steam reforming process expansion for the $H₂$ generation. It has been shown that these compounds, in contrast to hydrocarbons, can be steam reformed effortlessly and selectively to hydrogen-rich gas at relatively low temperatures [\[9](#page-8-7)[–11](#page-8-8)]. At standard conditions, DMM is liquid, so it can be easily kept and transported. It is worth emphasizing that DMM is a nontoxic, noncorrosive material with a wide possibility of usage $[11–13]$ $[11–13]$ $[11–13]$ and is used as a unique authoritative solvent for aerosols, pump sprays in pharmaceutical and perfume industries [[13–](#page-8-9)[16\]](#page-8-10).

The steam reforming of DMM is generally composed of the following steps [\[14](#page-8-11)]:

$$
CH3OCH2OCH3 + H2O \rightarrow 2CH3OH + CH2O
$$
 (1)

$$
CH3OH + H2O \rightarrow 3H2 + CO2
$$
 (2)

$$
CH2O + H2O \rightarrow 2H2 + CO2
$$
\n(3)

The general reaction can be stated as:

$$
CH3OCH2OCH3 + 4H2O \rightarrow 8H2 + 3CO2
$$
 (4)

 \boxtimes Maryam Ranjbar marandjbar@gmail.com

¹ Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran

Efficient CuO–CeO₂/γ-Al₂O₃ catalysts have been recommended for DMM steam reforming. These catalysts cover both the surface acid sites of γ -Al₂O₃ for DMM hydration and Cu-based type for methanol/formaldehyde steam reforming [\[15\]](#page-8-12). Nowadays, the Cu/Zn/Al₂O₃-40% H-CNF (H-CNF=acidic carbon nanofibers) as complex catalyst displayed active performance for the reforming of DMM. Since DMM hydrolysis generated ~33% formaldehyde which is reformed more quickly than methanol, therefore, the rate of H_2 making from the DMM reforming over a suitable composite catalyst might be ~33% better than that from the reforming of methanol over $Cu/Zn/Al_2O_3$ [\[14\]](#page-8-11).

MOFs are structures made up of inorganic nodes, which can either be single ions or clusters of ions, and organic linkers [\[17–](#page-8-13)[19\]](#page-8-14). They contain potential voids which can be used for gas storage and separation, catalysis or drug delivery [[19–](#page-8-14)[21\]](#page-8-15). A logical and apparently simple technique to avoid combinatorial searching for innovative materials is to link together molecular building blocks displaying the wanted property. To create a robust porous material one could envisage constructing the equivalent of a ''molecular scaffold'' by connecting rigid rod-like organic moieties with unbending inorganic clusters that act as joints [\[21](#page-8-15)[–24](#page-8-16)]. The plans used in the design of MOFs show crucial role in point of view of the wanted request. The foremost MOFs application is their catalytic activity. On the other hands, MOFs have been exploited as precursors for metal oxides nano structure fabrication [[25–](#page-8-17)[27\]](#page-8-18). Finding the anticipated morphologies will become conceivable by choosing appropriate MOFs precursors with special morphologies under appropriate operational conditions [\[18–](#page-8-19)[22](#page-8-20)]. As a result, MOF-199 and MOF-5 (due to the high specific surface area and simple preparation) as $Cu(II)$ and $Zn(II)$ precursors were synthesized while γ -Al₂O₃ (as catalyst support) was applied to synthesize $Cu/Zn/Al_2O_3$ -AC catalyst. The current work reports the outcomes of studies on DMM steam reforming to H_2 -rich gas over the most efficient Cu/Zn/Al₂O₃-AC catalyst.

2 Experimental

2.1 Materials and Apparatus

All chemicals used in this project were of analytical reagent grade and purchased from Merck Company without any purification. X-ray diffraction patterns were gained using a Philips-PW 17C diffractometer with Cu Kα radiation (Philips PW, The Netherlands). The surface analysis of Cu/Zn/Al₂O₃-AC was carried out using a Tescan Mira II FE-SEM. Brunauer–Emmett–Teller (BET) surface area measurements and pore volumes were performed by Belsorp mini II Bel (Japan). For all X-ray diffraction (XRD) patterns reported in this study, XRD was performed under atmospheric conditions with a Philips X-Pert. FTIR spectra were documented by a Bruker IFS-66 FT-IR Spectrophotometer (Karlsruhe, Germany). The elemental analysis of samples was achieved by Energy-dispersive X-ray spectroscopy (EDX) (30XL, Philips Company, Holland). Procedure for evaluation of the catalyst was achieved with a fixed bed reactor in a catalyst testing system which was employed in earlier work [[28\]](#page-8-21).

2.2 Synthesis of MOF‑5

Ultrasonic irradiation technique established in the literature was employed for MOF-5 fabrication [\[29\]](#page-8-22). At first, 1.21 g $Zn(NO_3)$ ²·6H₂O and 0.34 g H₂BDC (Terephthalic acid) were dissolved in 40 mL DMF accomplished by ultrasonic irradiation for 1 h with a high-density ultrasonic probe. Afterward, triethylamine (1.60 g) was added drop wise to the solution. Under ultrasonic irradiation for 1 h, a colorless precipitate was gained that was gathered by centrifugation at 13,000 rpm for 10 min. At last, the resultant product cleaned by DMF for numerous times and at 373 K for 12 h was dried.

2.3 Functionalization of Activated Carbon

In the parallel step, 1.0 g of activated carbon was mixed with 100 mL of 6 M $HNO₃$ into a round-bottom flask and refluxed for 3 h in order to enhance carboxylic acid contents on the activated carbon surface [\[30](#page-8-23)]. The oxidized material was consequently washed with distilled water until neutral pH, and subsequently dried for 24 h at 383 K.

2.4 Synthesis of Modified MOF‑199 with Activated Carbon

MOF-199 modification with activated carbon (MOF-199/ AC) was achieved under reflux condition by the reaction of 0.84 g of H_3BTC (benzene-1,3,5-tricarboxylic acid) and 1.75 g of $Cu(NO₃)₂·3H₂O$ in 50 mL of ethanol including 0.05 g AC similar described procedure for encapsulation of MOF-199 with $Fe₃O₄$ (magnetic MOF) [[31](#page-8-24)]. The mixture was cooled to room temperature after 48 h and the blue powder was recovered by filtration, washed with water and ethanol and dried under vacuum at 373 K for 12 h.

2.5 Cu/Zn/Al₂O₃ Catalyst Synthesis

By incipient wetness impregnation method, $Cu/Zn/Al₂O₃$ catalyst with Cu:Zn:Al mole ratio of 6:3:2 was fabricated [\[32](#page-8-25)]. An aqueous solution containing copper(II) and zinc(II) nitrates were added drop wise onto $γ$ -Al₂O₃ powder under vigorous stirring for 2 h. For drying, the mixture was evaporated at 373 K and then the achieved powder was calcined for 4 h at 673 K with 72% product yield.

2.6 Cu/Zn/Al₂O₃-AC Synthesis with MOF Precursor

As a new strategy, for the synthesis of $Cu/Zn/Al_2O_3-AC$ catalyst (with Cu:Zn:Al molar ratio of 6:3:2), the MOF-199/AC and MOF-5 aqueous solution was stirred vigorously for 2 h in order to attain a homogeneous light blue mixture. Then, this mixture was added drop wise onto $γ$ -Al₂O₃ powder to obtain a homogeneous mixture. The mixture stirred for 3 h and dried in an oven at 373 K. The resultant precipitate was calcined at 673 K for 4 h. The catalyst color was dark-brown with 54% product yield.

3 Results and Discussion

3.1 Catalysts Characterization by FT‑IR, SEM‑EDX, XRD, BET and NH3‑TPD Techniques

The MOF-5 FT-IR spectrum was recorded (Fig. [1](#page-2-0)). Samples are the collection of a KBr pellet spectrum of an aliquot of the powdered sample. The 1505 and 1580 cm−1 bands owing to the asymmetric stretching vibration of –COO while the 1335 and 1410 cm^{-1} bands are agreed with the symmetric –COO stretching vibration group. Then, the bands at 1150, 1120 and 1020 cm⁻¹ represent the in-plane bending vibration of C–H and the bands at 670, 740 and 830 cm−1 ascribed the out-of-plane bending vibration of C–H group. These bands proved the MOF-5 synthesis (Fig. [1a](#page-2-0)) [\[29](#page-8-22)].

The MOF-199 FT-IR spectra (Fig. [1b](#page-2-0)) presented a 3050 cm−1 band related to C–H stretching vibration of aromatic groups while the bands at 1540 and 1430 cm^{-1} due to asymmetric and symmetric starching vibrations of the O–C–O group [\[31\]](#page-8-24). Afterward, the broad bands at 1620 and 3100–3500 cm−1 owing to the attendance of carboxylate groups on activated carbon surface [\[30](#page-8-23)].

Finally, for Cu/Zn/Al₂O₃ and Cu/Zn/Al₂O₃-AC catalysts, the strong and broad absorption bands in the 450–950 cm^{-1} region correspond to the inorganic network (Cu–O, Zn–O, and Al–O) [[33](#page-8-26)]. The absorption bands at 1430, 1550 cm⁻¹ corresponding to C=C, 2950 cm⁻¹ to C–H aromatic, 1620 cm−1 to C=O attached to metallic ions and 3100–3500 cm−1 to O–H, while as whole, broad band implied the presence of activated carbon with carboxylate groups in the framework of $Cu/Zn/Al_2O_3$ -AC catalyst (Fig. [1c](#page-2-0)) [[30\]](#page-8-23).

The surface characterization results of $Cu/Zn/Al₂O₃$ and $Cu/Zn/Al_2O_3$ -AC morphology were achieved by SEM tech-nique. As shown in Fig. [2,](#page-3-0) The Cu/Zn/Al₂O₃ catalyst micrograph displayed a non-uniform disordered structure, while $Cu/Zn/Al_2O_3$ -AC has spherical nanoparticle morphology. The size distribution histogram of the Cu/Zn/Al₂O₃ and Cu/ Zn/Al_2O_3 -AC shows a comparatively uniform distribution with an average size of 120–130 and 50–60 nm respectively

Fig. 1 FT-IR spectrum of **a** MOF-5, **b** MOF-199, **c** Cu/Zn/Al₂O₃ (*a*) and Cu/Zn/Al₂O₃-AC (*b*)

and proved by using metal organic frameworks as a precursor, the catalyst particle size is reduced compared to the catalyst that was organized by metal salts.

For better catalysts investigation, EDX analysis was exploited (Fig. [3\)](#page-4-0). The EDX spectrum of $Cu/Zn/Al_2O_3$ catalyst demonstrates the presence of Al, Cu, Zn, and O while for Cu/Zn/Al₂O₃-AC catalyst, the elements of Al, Cu, Zn, O, and C was displayed (Table [1](#page-4-1)). This analysis indicates the purity of the product.

XRD as a rapid analytical technique principally was done for phase identification of a catalyst crystalline material and can afford information. Figure [4](#page-5-0) displays the XRD of MOFs powder pattern. The MOF-5 XRD pattern (Fig. [4](#page-5-0)a) illustrated high crystallinity with sharp reflection peaks in the range of 10–50°. The main characteristic peaks at $2\theta = 13.8$, 15.4, 17.9, 19.5, 20.5, 22.5, 24.7,

Fig. 2 SEM images of **a** Cu/Zn/Al₂O₃-AC, **b** Cu/Zn/Al₂O₃ and the size distribution histogram of the prepared catalysts

26.6, 29.8, 31.5, 34.7, 36.1 and 38.2 were the same as MOF-5 standard data and proves fruitful MOF-5 synthesis [\[29\]](#page-8-22). Figure [4](#page-5-0)b demonstrates the MOF-199/AC diffraction peaks in the range of 10–50°. All of the diffraction peaks displayed that the MOF sketch crystal is fine retained even after the modification with activated carbon which agrees with the previous report [[34\]](#page-8-27). Finally, the XRD pattern of Cu/Zn/Al₂O₃-AC and Cu/Zn/Al₂O₃ in the range of 30–80 $^{\circ}$ showed special peaks that related to CuO and ZnO phases as presented in Fig. [5](#page-5-1). All samples conserved their gross crystallinity after the incorporation of Cu(II) and Zn(II) (metal salts or MOF) onto the support matrix (γ -Al₂O₃). The crystalline phases of copper oxide and zinc oxide of the freshly organized catalysts were tenorite (CuO) and zincite (ZnO). Alumina and activated carbon are amorphous, so did not display any special peak in the patterns, but the intensity of the peaks reduced [[14,](#page-8-11) [32](#page-8-25)].

The BET analysis is usually employed for determining surface areas of catalysts. The isotherms of nitrogen adsorption–desorption accomplished by BJH pore size distributions for the Cu/Zn/Al₂O₃ and Cu/Zn/Al₂O₃-AC catalysts were shown in Fig. [6](#page-6-0). Based on BET analysis, the surface area of the obtained Cu/Zn/Al₂O₃ catalyst was 20 m²g⁻¹ with the total pore volume of $0.126 \text{ cm}^3 \text{g}^{-1}$ which were meaningfully lower than Cu/Zn/Al₂O₃-AC with 303 m²g⁻¹ surface area and total pore volume of 0.537 cm³g. The Cu/Zn/Al₂O₃ isotherm related to nonporous and non-wetting solids (type III) with the weak interaction between adsorbent and desorbent based on IUPAC cataloging. The Cu/Zn/Al₂O₃-AC isotherm agreed with type IV with an H_3 hysteresis loop, mesoporous morphologies characteristic with slit-shaped and non-rigid pores. The gained data established the more porous morphology and available active sites for Cu/Zn/ Al_2O_3 -AC compared to Cu/Zn/Al₂O₃ [\[35](#page-8-28), [36](#page-8-29)].

Fig. 3 EDAX spectrum of **a** Cu/Zn/Al₂O₃-AC and **b** Cu/Zn/Al₂O₃

 NH_{3} –TPD technique affords information on the strength and amount of acid sites by using $NH₃$ as a basic probe molecule. The peaks in the NH_3 –TPD profiles are classified to three acid sites types with different acid strengths. As shown in Fig. [7](#page-6-1), two catalysts show three desorption peaks located at 100–200, 300–500 and 600–800 °C, corresponding to weak, medium and strong surface acidity respectively [\[37](#page-8-30)] and Cu/

Table 1 EDX analysis of Cu/Zn/Al₂O₃ and Cu/Zn/Al₂O₃-AC catalysts

 Zn/Al_2O_3-AC catalyst has the higher amount of acidic sites as compared to Cu/Zn/Al₂O₃ catalyst (amount of desorbed $NH₃$ (mmol/g_{cat}) for Cu/Zn/Al₂O₃ and Cu/Zn/Al₂O₃-AC were 2.53 and 5.86 respectively).

3.2 Catalytic Performance Tests

The catalytic reactions for the hydrolysis and reforming of DMM were done in a fixed-bed reactor. For investigation of the performance of the synthesized catalyst, at each experiment, 1.0 g of the catalyst was loaded into the reactor with stainless steel grid at both ends. The catalysts were pre-reduced in situ at 553 K for 2 h using 5 vol% H_2 in N_2 and then the temperature was diminished to 473 K. The catalysts were exposed to the feed composed of N₂/H₂O/DMM with 24/5/1 ratio (vol%). The gas hourly space velocity (GHSV) was tuned to 20 NL h^{-1} g_{cat}^{-1} . The tests were completed at atmospheric pressure and 493, 513, 533, 553, 573 K temperature while the products were sent to GC analyzer (Teif-Gostar Co, Iran).

The steam reforming of DMM is generally composed of the following steps [\[14\]](#page-8-11):

$$
CH3OCH2OCH3 + H2O \rightarrow 2CH3OH + CH2O
$$
 (5)

$$
CH_3OH + H_2O \rightarrow 3H_2 + CO_2 \quad \Delta H_{298}^{\circ} = +49.4 \text{ kJ/mol}
$$
\n(6)

$$
CH2O + H2O \rightarrow 2H2 + CO2
$$
\n(7)

The general reaction can be stated as:

$$
CH3OCH2OCH3 + 4H2O \rightarrow 8H2 + 3CO2
$$
 (8)

The methanol steam reforming (MSR) (reaction [2](#page-0-0)) can be including as a combination of methanol decomposition and water–gas shift reactions:

$$
CH3OH \leftrightarrow CO + 2H2 \quad \Delta H298o = +92 \text{ kJ/mol}
$$
 (9)

Fig. 4 XRD patterns of (*a*) MOF-199 and (*b*) MOF-5

Fig. 5 XRD patterns of (*a*) Cu/Zn/Al₂O₃-AC and (*b*) Cu/Zn/Al₂O₃

 $CO + H_2O \leftrightarrow CO_2 + H_2 \quad \Delta H_{298}^{\circ} = -41.1 \text{ kJ/mol}$ (10)

Methanol decomposition reaction is a reversion of methanol production reaction from synthesis gas $(H₂$ and CO). According to the enthalpy of reaction, this is an endothermic reaction, therefore MSR reaction goes toward the production of carbon monoxide as temperature goes up (reaction [9](#page-4-2)) and cause the production of carbon monoxide as a by-product [[38](#page-8-31)]. Hence CO as the main byproduct was studied while the other byproducts were discarded.

Equations (11) (11) (11) – (14) (14) (14) were employed for DMM conversion, H_2 selectivity, H_2 yield and H_2 productivity (W_{H2}) calculations:

$$
DMM \text{ conversion } (\%) = \frac{mol (DMM_{in} - DMM_{out})}{mol (DMM_{in})} \times 100
$$
\n(11)

$$
H_2 \text{ selectivity } (\%) = \frac{mol \left(H_{2_{\text{out}}} \right)}{mol \left(H_{2_{\text{out}}} + \text{CO}_{\text{out}} \right)} \times 100 \tag{12}
$$

(13) Yield(%) = (DMM conversion \times H₂ selectivity) \times 100

$$
W_{H_2} (L g_{cat}^{-1} h^{-1}) = \frac{F \times C_{H_2}}{100 \times m_{cat}} \tag{14}
$$

where C_{H_2} is the outlet hydrogen concentration and F is the total flow rate of the inlet reaction mixture $(L h^{-1})$ [[39\]](#page-8-32).

The reaction temperature effect on the DMM conversion over $Cu/Zn/Al_2O_3$ and $Cu/Zn/Al_2O_3$ -AC catalysts was investigated. The H_2 is the main product of DMM conversion was monitored. The temperature has an important influence on the products distribution. As shown in Fig. [8](#page-7-0)a, the DMM conversion progressively increased for both catalysts with increasing temperature from 493 up to 573 K. Cu/Zn/Al₂O₃ displayed lower DMM conversion (82%), however, Cu/Zn/Al₂O₃-AC offered a 100% conversion due to more porous structure and acidic sites.

 $H₂$ and CO selectivity evolution were regularly decreased and increased respectively with the reac-tion temperature increasing (Fig. [8](#page-7-0)b, c). The highest H_2 selectivity was detected over $Cu/Zn/Al_2O_3$ -AC (97.3% at 493 K). Likewise, a high H_2 selectivity of 93.2% at 493 K was detected with $Cu/Zn/Al_2O_3$. On the other hand, the highest CO selectivity was obtained with Cu/Zn/Al₂O₃ (9.4% at 573 K) and Cu/Zn/Al₂O₃-AC catalyst showed lower CO selectivity (5.1% at 573 K).

In addition, $H₂$ yield as a catalytic performance indicator was assessed so that the H_2 yield enhances with the reaction temperature increases up to 533 K and then the yield of reaction remained constant with temperature increasing (Fig. [8d](#page-7-0)).

Figure [8e](#page-7-0) shows the reaction temperature effect on the H_2 concentration over Cu/Zn/Al₂O₃ and Cu/Zn/Al₂O₃-AC catalysts. As can be seen, H_2 concentration increases with the reaction temperature increase up to 533 K and reach to 64% and 53% for Cu/Zn/Al₂O₃-AC and Cu/Zn/ Al_2O_3 catalysts respectively and then the concentration of H_2 remained constant approximately with temperature increasing up to 573 K.

As a result, 533 K was the best temperature for the $H₂$ generation with high conversion of DMM and lower production of CO in compared with the higher temperatures. High DMM conversion and also, high selectivity and yield of $Cu/Zn/Al₂O₃$ -AC respect to H₂ production, can be related to its higher specific surface area and accessible acidic active sites in comparison with $Cu/Zn/Al₂O₃$.

Fig. 6 Nitrogen adsorption–desorption isotherms for the **a** Cu/Zn/Al₂O₃-AC and **b** Cu/Zn/Al₂O₃

Fig. 7 NH_3 –TPD profiles of (*a*) Cu/Zn/Al₂O₃-AC and (*b*) Cu/Zn/ $\mathrm{Al}_2\mathrm{O}_3$

These results showed that the activity of $Cu/Zn/Al_2O_3-AC$ catalyst was meaningfully better than $Cu/Zn/Al_2O_3$.

3.3 Effects of GHSV and H₂O to DMM Ratio

The effects of GHSV changes on DMM conversion was investigated in the domain of 25–35 NL h⁻¹ g_{cat}^{-1} at 533 K. Fig. [9a](#page-8-33) shows that DMM conversion was decreased by increasing GHSV for both catalysts. So that, for Cu/Zn/ Al_2O_3 -AC and Cu/Zn/Al₂O₃ catalysts with GHSV increasing, the conversion of DMM was decreased from 96% to 91% and 77% to 74% respectively.

The effect of H_2O/DMM ratios (1–5, v/v) on the conversion of DMM by Cu/Zn/Al₂O₃ and Cu/Zn/Al₂O₃-AC catalysts are shown in Fig. $9b$ $9b$ (T = 533 K). The DMM conversion slowly enhanced by $H₂O/DMM$ increasing up to 4 ratios, afterward, the DMM conversion remained constant up to 5 ratios. As can be seen, the same results were obtained for both catalysts.

4 Conclusion

As a novel approach, DMM can be successfully reformed to hydrogen on specially planned $Cu/Zn/Al_2O_3$ -AC multipart catalysts. In addition, MOF as porous precursor nanomaterial provides catalysts with the larger surface area available for DMM conversion for the DMM to access the substrate, which may improve the performance of the catalyst. In this work, exploited MOFs, (MOF-199 and MOF-5) as precursors, were afforded extensive surface area in order to prepare porous catalysts for gas phase selective conversion of DMM to H_2 and subsequently higher selectivity and productivity of H_2 . The addition of an acidic component with proper nature and strength can be a good proposal for the DMM reforming. Step by step

Fig. 8 Influence of reaction temperature on **a** DMM conversion, **b** H_2 selectivity, **c** CO selectivity, **d** H_2 yield and **e** H_2 concentration over Cu/Zn/Al₂O₃-AC (blue diamond) and Cu/Zn/Al₂O₃ (red square)

catalysts. Experimental conditions: GHSV = 20 NL h⁻¹ g⁻¹, N₂/H₂O/ DMM with 24/5/1 ratio (vol%). (Color figure online)

monitoring of synthesized catalysts was investigated by different methods and was confirmed $Cu/Zn/Al_2O_3$ -AC capability for DMM reformation. So that, this catalyst provides 100% DMM conversion with hydrogen productivity of 12.8 L H₂ h⁻¹ g_{cat} ⁻¹ and 64% hydrogen concentration at 533 K temperature and GHSV = 20 NL h⁻¹ g_{cat}^{-1} . According to the obtained results and on the fact that DMM is an environmentally friendly compound, we expect it can be a more proper fuel for movable and domestic H_2 sources.

Fig. 9 Influence of **a** GHSV and **b** H₂O to DMM mol ratio on DMM conversion over Cu/Zn/Al₂O₃-AC (blue diamond) and Cu/Zn/Al₂O₃ (red square). Experimental conditions: $T = 533$ K and GHSV = 20 NL h^{-1} g⁻¹ for H₂O to DMM mol ratio on DMM conversion. (Color figure online)

Acknowledgements We acknowledge the support of the Iranian Research Organization for Science and Technology, and Iranian National Science Foundation (INSF).

References

- 1. K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, F. Dumeignil, Catal. Sci. Technol. **6**, 958 (2016)
- 2. D. Franck, M. Capron, B. Katryniok, R. Wojcieszak, A. Löfberg, J.-S. Girardon, S. Desset, M. Araque-Marin, L. Jalowiecki-Duhamel, S. Paul, J. Jpn. Pet. Inst. **58**, 257 (2015)
- 3. P. Poizot, F. Dolhem, Energ. Environ. Sci. **4**, 2003 (2011)
- 4. WO Pat. 090294 (2008)
- 5. EP Pat. 1914293 (2008)
- 6. R. Chetty, K. Scott, J. Power Sour. **173**, 166 (2007)
- 7. F. Vigier, C. Coutanceau, J.M. Leger, J.L. Dubois, J. Power Sour. **175**, 82 (2008)
- 8. K. Thavornprasert, M. Capron, L. Duhamel, O. Gardoll, Appl Catal B Environ. **145**, 126 (2014)
- 9. J.C. Ball, C. Lapin, J. Buckingham, E. Frame, D. Yost, M. Gonzalez, E. Liney, M. Natarajan, J. Wallace, SAE Trans. Sect. **4**, 2176 (2001)
- 10. M.M. Maricq, R.E. Chase, D.H. Podsiadlik, W.O. Siegl, E.W. Kaiser, SAE Trans. Sect. **107**, 1504 (1998)
- 11. Y. Meng, T. Wang, S. Chen, Y. Zhao, X. Ma, J. Gong, Appl. Catal. B: Environ. **160**, 161 (2014)
- 12. S. Chen, Y. Meng, Y. Zhao, X. Ma, J. Gong, AIChE J. **59**, 2587 (2013)
- 13. J. Lojewska, J. Wasilewski, K. Terelak, T. Lojewski, A. Kolodziej, Catal. Commun. **9**, 1833 (2008)
- 14. Y. Fu, J. Shen, Chem. Commun. **21**, 2127 (2007)
- 15. A. Pechenkin, S. Badmaev, V. Belyaed, V. Sobyanin, Appl. Catal. B Environ. **166**, 166 (2014)
- 16. T. Kotbagi, D.L. Nguyen, C. Lancelot, C. Lamonier, K.A. Thavornprasert, Z. Wenli, M. Capron, L. Jalowiecki-Duhamel, S. Umbarkar, M. Dongare, F. Dumeignil, Chem. Sus. Chem. **5**, 1467 (2012)
- 17. T.A. Vu, H.L.G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong, T.V. Nguyen, G.D. Lee, RSC Adv. **78**, 41185 (2014)
- 18. J.L. Rowsell, O.M. Yaghi, Micropor. Mesopor. Mat. **73**, 3 (2004)
- 19. F. Maya, C. Palomino Cabello, J.M. Estela, V. Cerdà, G.T. Palomino, Anal. Chem. **87**, 7545 (2015)
- 20. R. Ricco, L. Malfatti, M. Takahashi, A.J. Hill, P. Falcaro, J. Mater. Chem. A **1**, 13033 (2013)
- 21. M.Y. Masoomi, S. Beheshti, A. Morsali, J. Mater. Chem. A **2**, 16863 (2014)
- 22. X. Zhang, X.H. Zang, J.T. Wang, C. Wang, Q.H. Wu, Z. Wang, Microchim. Acta **182**, 2353 (2015)
- 23. M.Y. Masoomi, M. Bagheri, A. Morsali, Ultrason. Sonochem. **33**, 54 (2016)
- 24. X. Liu, C. Wang, Z. Wang, Q. Wu, Z. Wang, Microchim. Acta **182**, 1903 (2015)
- 25. L. Aboutorabi, A. Morsali, Ultrason Sonochem. **28**, 240 (2016)
- 26. M.Y. Masoomi, A. Morsali, Coordin. Chem. Rev. **256**, 2921 (2012)
- 27. A. Corma, H. García, F.X. Llabrés i Xamena, Chem. Rev. **110**, 4606 (2010)
- 28. F. Raoof, M. Taghizadeh, A. Eliassi, F. Yaripour, Fuel **87**, 2967 (2008)
- 29. W. LiPing, X. Bin, W. Ying, Sci. China Chem. **54**, 1 (2011)
- 30. S. Lee, S. Park, Int. J. Hydrogen Energy **36**, 8381 (2011)
- 31. A. Bagheri, M. Taghizadeh, M. Behbahani, A. Asgharinezhad, M. Salarian, A. Dehghani, H. Ebrahimzadeh, M. Amini, Talanta **99**, 132 (2012)
- 32. T. Semelsberger, K. Ott, R. Borup, H. Greene, Appl. Catal. A **309**, 210 (2006)
- 33. M. Barrosoa, M. Gomeza, J. Gamboab, L. Arru, J. Phys. Chem. Solids **67**, 1583 (2006)
- 34. M. Sohrabi, Z. Matbouie, A. Asgharinezhad, A. Dehghani, Microchim Acta **180**, 589 (2013)
- 35. S.J. Gregg, K.S. Sing, *Adsorption, surface area, and porosity*, (Academic Press, New York, 1982)
- 36. J. Cai, Y. Fu, Q. Sun, M. Jia, J. Shen, Chin. J. Catal. **34**. 2110 (2013)
- 37. Z. P. Lu, H. B. Yin, A. L. Wang, J. Hu, W. P. Xue, H. X. Yin, S. X. Liu. J. Ind. Eng. Chem. **37**, 208 (2016)
- 38. L. Pettersson, K. SjÖStrÖM. Combust. Sci. Tech. **80**, 265 (1991)
- 39. S. Badmaev, A. Pechenkin, V. Belyaev, V. Sobyanin. Int. J. Hydrogen Energy **1**, 1 (2015)