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Abstract This micro-review shows how a simple but

powerful organometallic C–H activation could be made

very useful for the construction of a large variety of stars,

dendritic cores, dendrons and dendrimers of variable sizes

including giant dendrimers and gold-nanoparticle-cored

dendrimers. The synthesis of ferrocenyl-terminated

dendrimers was then achieved by reactions of chlorocar-

bonylferrocene with polyamino dendrimers, ferroce-

nylsilylation of polyolefin dendrons and dendrimers

and ‘‘click’’ reactions of ferrocenyl acetylene with azido-

terminated dendrimers. The functions of these metallo-

dendrimers include molecular electronics (molecular

batteries), molecular redox recognition and sensing and

catalysis using dendritic stabilization of nanoparticle

catalysts.

Keywords Dendrimer � ‘‘Click’’ reaction � Ferrocene �
Sensor � Catalysis � Nanoparticle

1 Introduction

Macromolecules bearing stable redox systems have

potential for applications involving molecular electronics,

sensors and catalysis [1]. What are the advantages of

dendrimers [2] over polymers? They are perfectly defined

macromolecules, i.e. their polydispersity is 1.00, a number

of dendritic generations can be constructed for a given

series [2], and they have a globular shape resulting in

formidable encapsulation properties [3]. In a word, their

supramolecular properties [4] are specific and well defined

due to flexible design, and they allows them to achieve

precise functions that are not accessible with polymers.

This short review will illustrate these points and show how

dendrimer design can lead to functions such as molecular

recognition, catalysis and molecular electronics. Being

originally hard-core organometallic chemists, our entry

into the dendrimer field was serendipitous before the

nanoscience fashion, and due to the discovery of a simple

C–H activation system.

2 The Serendipitous Discovery of an Extremely Easy

and Useful C–H Activation System

In 1979, we disclosed a family of stable 19-electron

sandwich complexes [FeICp(g6-arene)], Cp = g5-C5H5

that we called ‘‘Electron-reservoir’’ systems [5] because

they are the most electron-rich neutral molecules (lowest

known ionization potential values) [6] and both the FeI and

FeII forms are stable. The C–H activation at a benzylic

arene position results from contact with air within seconds

at a temperature as low as -78 �C, producing the 18-

electron FeII cyclohexadienyl complex bearing an exocy-

clic doubly bonded CH2 group. If the reaction is carried out

in an EPR tube, the intermediacy of superoxyde anion, O2
�-

is observed, which indicates that FeI has transferred an

electron to O2, leaving the 18-electron intermediate cation

[FeIICp(g6-arene)]+, with O2
�- as the counter anion. This

mechanism is confirmed by the use of KO2 in the presence
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of 18-crown-6 ether to deprotonate the PF6
- salt of this

cation; and many standard bases such as t-BuOK and KOH

do the same. The CH2 group of the C–H activated product

rapidly reacts as a mild nucleophile with a wide range of

electrophiles under ambient conditions (Scheme 1) [7].

Moreover, we immediately found that when excess of

t-BuOK and CH3I were added to [FeIICp(g6-C6Me6)]
+[PF6]

-

in THF at room temperature, the deprotonation–alkylation

sequence was iterated six times in situ within a minute to

quantitatively yield the complex in which all the six groups had

undergone the deprotonation–methylation sequence to

[FeIICp(g6-C6Et6)]
+[PF6]

- (Scheme 2) [5, 8].

It was exactly at the same time that Fritz Vögtle in Bonn

reported the first dendritic iteration from a diamine to an

octa-amine using the Michaël addition-hydride reduction

sequence [9]. Upon similar allylation or benzylation the

hexamethylbenzene complex [FeIICp(g6-C6Me6)]+[PF6]-

directly leads to a large family of star-shaped mole-

cules that can provide useful, recyclable star-shaped

hexa-ligands and their catalytically extremely efficient

palladium complexes (Scheme 3).

The same reaction with the mesitylene complex

[FeIICp(g6-1,3,5-C6H3Me3)]+[PF6]- with excess allyl bro-

mide and KOH at room temperature quantitatively yields

the nona-allyl complex resulting from the deprotonation–

allylation sequence of all the nine benzylic C–H bonds due

to the absence of steric inhibition around the arene ligand

(Scheme 4) [10].

This chemistry has become extremely useful in dendri-

mer synthesis, because the complexes [FeIICp(g6-

arene)]+[PF6]- are very robust and easy to handle in air. In

addition, the arene complexes are very easy to make in

large scales in high yields by reaction of ferrocene with a

large variety of arenes [11]. The perallylation and perb-

enzylation reactions of these complexes in the presence of

excess KOH and organic halide are so easy as well under

ambient conditions in large scales and essentially quanti-

tative. These perfunctionalized arene iron complexes
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undergo quantitative decomplexation upon visible-light

irradiation, readily providing organic star- and dendrimer

cores [12].

3 From Simple C–H Activation to an easy and Efficient

Dendrimer Construction

A challenge was to extend this activation system to func-

tional arene complexes, and in particular the perallylation

of the ethoxytoluene complex using allyl bromide and

t-BuOK in THF under sub-ambient conditions provided the

very useful ‘‘phenoltriallyl’’ dendron in up to 60% yield

[13]. Interestingly, t-BuOK plays three roles, first that of a

base, then that of nucleophile cleaving the exocyclic ether

C–O bond, then finally acting as an electron transfer

reagent generating the transient 19-electron FeI species that

immediately collapses, due to the presence of the exocyclic

oxygen atom that rapidly displaces the arene ligand to give

the final iron-free arene dendron [14]. Although the inter-

mediate triallylated arylether and phenolate complexes

were both isolated, the aryl ether cleavage step cannot

proceed using t-BuOK alone, because it is too weak of a

nucleophile. It is KBr, formed in the first step and heter-

ogeneously activating the C–O bond, that allows this step

to proceed, and the action of KBr can be replaced by added

NaCl as well (Scheme 5) [14b].

With a nona-allyl arene core and the ‘‘phenoltriallyl’’

brick, dendrimers containing 3n + 2 terminal allyl tethers

(n = generation number) could be constructed [15] using

the 1 ? 3 C connectivity pioneered by Newkome with

arborols [16] by a series of hydrosilylation–Williamson

reactions. The hydrosilylation was carried out using chlo-

romethyldimethylsilane [17] and Karsted catalyst at 40 �C

whereas the Williamson step was performed between the

chloromethyl-terminated dendrimers and phenoltriallyl

using a catalytic amount of NaI and K2CO3 in DMF at

80 �C. Each step was checked by 1H, 13C and 29Si NMR

and gave virtually pure dendrimers at the accuracy of

NMR. MALDI TOF mass spectra show, however, that if

the molecular peak largely predominates for the second

generation 81-allyl dendrimer, the defects predominate in

the spectrum of the 3rd generation 243-allyl dendrimer and

the molecular peak is not even seen in that of the 4th

generation 729-allyl dendrimer, which shows massifs near

the molecular peak (Scheme 6).

The dendrimers were characterized by size exclu-

sion chromatography until generation five showing a
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Note the three roles of t-BuOK: base, then activated nucleophile, then

electron-transfer reagent
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polydispersity between 1.00 and 1.02, atomic force

microscopy showing the progression of the height of the

monolayer from the first to the 9th generation and trans-

mission electron microscopy of the polyiodo derivative of

the last generation. Although the number of defects becomes

larger and larger as the generation number increases, it may

be estimated that the last generation reaches a number of

terminal tethers of the order of 105. Beyond generation 5

(theoretical number: 37 = 2187 terminal tethers), it is

compulsory that further dendritic construction reactions

occur inside the dendrimers interior because the small ter-

mini must back-fold toward the center in order to avoid the
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Scheme 6 Construction of

giant dendrimers starting from

ferrocene with 3n + 2 terminal

tethers (n = generation

number) until G9 (theoretical

number of 311 terminal tethers).

Each dendrimer along the

construction was characterized

by 1H, 13C and 29Si NMR (till

G9), MALDI TOF mass

spectrometry (till G4), SEC

(PI = 1.00 to 1.02 till G5), TEM

and AFM (till G9) showing the

steady size increase
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bulk at the periphery and fill the interior cavities. Thus the

dendrimer construction becomes limited by the volume

rather than by the surface. The reactions become slower and

slower and the yields are lower as the generation number

increases beyond generation 5 [15].

Thus the next challenge is the synthesis of large den-

drimers with peripheral functional groups that will be

reported shortly. Another challenge is the one-pot synthesis

of dendrimers using such a strategy [18]. This was shown

to be possible if chlorodimethylsilane [19] was used

instead of chloromethyldimethylsilane in the construction

scheme. Indeed, the terminal Si–Cl bonds formed at the

periphery of the dendrimer subsequent to hydrosilylation

are much more reactive in the Williamson reaction with

phenolates than the chloromethylsilyl termini, which

permits the one-pot synthesis of up to the 243-allyl

G3 dendrimer. The Si-phenolate link is less robust than the

Si–CH2-phenolate link, but is stable enough for extensive

characterization. Such fragile dendrimers might be useful

for applications requiring the decomposition of the den-

drimer interior after using it as a template, for instance in

materials chemistry (Scheme 7) [18].

Si

Si

Si

Si

Si

Si
Si

Si

Si

O

O
O

O

O

O

O
O

O

Si

Si

Si

Si
Si

Si

Si

Si
Si

Cl

Cl

Cl

Cl
Cl

Cl

Cl
Cl

Cl

Si

Si

Si

Si

Si

Si
Si

O O

O
Si Si

Cl
Si

Cl
Si

Cl

O

Si

Cl

Si

Cl

Si
Cl

O

Si Cl

Si Cl

Si
Cl

Si

Cl

Si

Cl

Si

Cl

Si

O

Si
Cl

Si
Cl Si

Cl

O

OSiCl

SiCl

SiCl

O

Si

Cl

Si
Cl

Si
Cl

Si

Cl

Si

Cl

Si

Cl
Si

ClSi

Cl
Si

Cl

Si

Si

Si

Si

Si

Si

Si

O O

O
Si Si

O

Si

OSi

O

O

iS

O

iS

O

Si
O

O

Si O

Si O

Si
O

Si

O

Si

O

Si

O

Si

O

Si
O

Si
O Si

O

O

OSiO

SiO

SiO

O

Si

O

Si
O

Si
O

iS

O

Si

O

Si

O

Si

OSi

O
Si

O

4

Si

Si

Si

Si

Si

Si

Si

O O

O
Si Si

O

Si

OSi

O

O

Si

O

Si

O

Si
O

O

Si O

Si O

Si
O

Si

O

Si

O

Si

O

Si

O

Si
O

Si
O Si

O

O

OSiO

SiO

SiO

O

Si

O

Si
O

Si
O

Si

O

Si

O

Si

O

Si

OSi

O
Si

O

Si
O

Si O

Si O

Si O

Si O
Si

O
Si

O
Si

O
Si

O
Si

OSi

OSi

O
Si

O
Si

O
Si

O

Si O
Si

O
Si

O
Si

OSi
OSi

OSi
OSi

OSi

O
Si

O
Si

O
Si

O
Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si
O

Si
O

Si
O

Si
O

Si
O

Si
O

SiO

SiO

SiO

SiO

SiO
Si

O
Si

O
Si

O
Si

O Si
O Si

O Si

O Si

O
Si

O
Si

O
Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

ether, RT, 5 min.

Na+ -O

ether, RT, 5 min.

Na+ -O

FE

FE= η5-CpFe+, PF6
-

(i) CH2=CHCH2Br
KOH, DME, RT, 3d

(ii) hνvis, MeCN

HSi(CH3)2Cl,

ether, RT, 13h

Karsted catalyst

HSi(CH3)2Cl,

ether, RT, 13h

Karsted catalyst

(i) HSi(CH3)2Cl,

ether, RT, 13h
Karsted catalyst

(ii) ether , RT, 5 min.

Na+ -O

Scheme 7 One-pot synthesis

of polyolefin dendrimers till G3

(35 = 243 terminal allyl

groups) using the silane

HSiMe2Cl

8 J Inorg Organomet Polym (2008) 18:4–17

123



4 Ferrocenyl Dendrimers

The first ferrocenyl dendrimers designed for func-

tion were synthesized by reaction of amine-

terminated dendrimers with ferrocenoyl chloride, which

yielded amidoferrocenyl dendrimers that were redox

exo-receptors of oxo-anions [20]. It was subse-

quently found that silylferrocenylation of polyolefin

dendrimers yielded polysilylferrocenyl dendrimers

(Scheme 8).

Likewise, the silylferrocenylation of the ‘‘phenoltiallyl’’

brick yielded triferrocenyl dendrons that could be con-

densed onto a polyhalogeno core to form polyferrocenyl

dendrimers (Scheme 9) [21].

With gold-nanoparticle-cored dendrimers, it was found

that the silyl group was an excellent alternative to the
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amido group when it was attached to the ferrocenyl

termini for the recognition of oxo-anions including

ATP [22]. The factors involved in the redox recognition

are the electrostatic attraction between the anion and the

ferrocenium cation upon anodic oxidation and the supra-

molecular bonding between the amido group (hydrogen

bonding) of the silyl group (Si hyper valence). The

amidoferrocenyl or silylferrocenyl monomers do not show

any effect, however. Therefore, the dendrimer topology is

important for recognition of oxo-anions. The appropriate

encapsulation of the anionic host between the dendritic

tethers is a key factor that very much increases the

interaction between the functional ferrocenyl termini and

the guest (Scheme 10).
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the synthesis of ferrocenyl-

terminated dendrimers

S
O

iS

iS

iS

O

O

O

iS

iS

iS

iS

iS

iS

iS

iS

iS
O

iS
iS

iS

O

O

O

iS
iS

iS

iS

iS

iS
iS

iS

S

iS

O

iS

iS

iS

O

O

O

iS

iS

iS

iS

iS

iS

iS

iS

iS

S

O

iSiS
iS

O

O
O

iSiS
iS

iS
iS

iS
iS

iS

S

S
O

iS

iS

iS

O

O

O

iS

iS

iS

iS

iS

iS

iS

iS

iS

O

iS

iS

iS

O

O

O

iS

iS

iS

iS

iS

iS

iS

iS

iS

S

O

iSiS
iS

O

O
O

iSiS
iS

iS
iS

iS

iS
iS

iS

S

O

iS
iS

iS

O

O

O

iS
iS

iS

iS

iS

iS
iS

iS

S

OPO

O

O

P

HO

O

P

HO

O

HCOO 2 O

HO

N

N

N

N

OH

NH2

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

S SS S

S
S

S
S

S
S

S
S

eFeF

S
S
S
S

eFeF

eFeF

S
S
S
S

S
S

S
S

S
S

S
S

eFeF

SS SS

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

eFeF

gnisneSPTA

Scheme 10 Gold-nanoparticle-

cored dendrimer terminated by

ferrocenylsilyl group that

recognize and sense oxo-anions

such as H2PO4
- and ATP

10 J Inorg Organomet Polym (2008) 18:4–17

123



5 Engineering the Dendrimer Family with Peripheral

Ferrocenyltriazole Ligands: ‘‘Click’’ Dendrimers and

Metallodendrimers for Oxo-anion and Transition-

metal Cation Sensing

The 1,2,3-triazole is an ideal choice for the interaction with

many substrates that have Brönsted or Lewis acid proper-

ties including transition metals and their complexes. Thus

the encapsulation of such guests should prove feasible by

introducing such triazole groups on the dendrimer tethers.

The 1,2,3-triazole group is readily formed by ‘‘click’’

chemistry recently reported by Sharpless to catalyze with

CuI the regioselective Huisgens reaction between azido

derivatives and terminal alkynes [23]. We used the den-

drimer family that was constructed as indicated above and

substituted the terminal halogeno group by azido upon

reaction with NaN3. These azido-terminated dendrimers

were engaged in reactions with ferrocenyl acetylene in

order to locate the redox sensor directly on the triazole ring

for adequate sensing of the interaction of guests with the

triazole heterocycle by perturbation of the redox potential

of the ferrocenyl system (Scheme 11).

Ferrocenyl terminated dendrimers are known as very

good sensors of oxo-anions with positive dendritic effects,

i.e. the magnitude of the recognition effect increases

together with generation number, because the dendrimer

topology of higher generations involves narrower channels

for a better interaction with the dendritic site on the tethers.

Thus oxo-anions including ATP, a DNA fragment, are well

recognized by the ‘‘click’’ ferrocenyltriazolyl dendrimers.

The additional electron density brought by the oxo-anions

makes the ferrocenyl oxidation easier, i.e. at less positive

oxidations potentials. On the other hand, the interaction

with acetonitrile complexes of several transition metals

(CuI, CuII, PdII, PtII) withdraws electron density from the

ferrocenyltriazolyl system, the ferrocenyl oxidation is

rendered more difficult, and its wave is found at more

positive potentials (Scheme 12) [24].

6 The Click Reaction as a Useful Iterative Method for

Dendrimer Construction

In the preceding example, the ‘‘click’’ reaction was used for

peripheral dendrimer functionalization. We then addressed

the challenge of using the ‘‘click’’ reaction iteratively for

divergent dendrimer construction. For this purpose, the

‘‘phenoltriallyl’’ brick used above was propargylated at the

focal point before ‘‘click’’ reaction with an azido-terminated

dendritic core as above. After the ‘‘click’’ reaction, the

polyolefin dendrimer formed in which the number of terminal

tethers has been multiplied by three is submitted to hydrosi-

lylation with chloromethyldimethylsilane as in our classic

dendrimer construction, then the terminal chloro groups are

substituted by azido groups for further iteration of the ‘‘click’’

reaction with the propargylated dendron (Scheme 13) [25].

7 Dendrimers Containing Triazole Ligands and

Ferrocenyl Termini as Useful Templates for

Transition-metal Ions and Transition-metal

Nanoparticles

The triazole ligands were introduced in these dendrimers in

order to bind transition-metal cations before their reduction

to metal (0) to form nanoparticles that are either stabilized

inside the dendrimer or, if the dendrimer is too small, that

are stabilized by the dendrimer without encapsulation. The

ferrocenyl groups located at the dendrimer periphery just

near the triazole rings allow titrating the metal cations that

interact herewith. Palladium (II) was coordinated to the

triazole ligands in the dendrimer interior using Pd(OAc)2,

then reduced to Pd(0) using NaBH4 or methanol. The

coordination of Pd(OAc)2 onto the triazole ligands was

monitored by cyclic voltammetry, showing the appearance

of a new wave corresponding to the ferrocenyl groups

attached to Pd(II)-coordinated triazoles. The outcome was

a one-to-one stoichiometry that allowed designing a given
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number of Pd atoms in the Pd nanoparticles if the dendri-

mer is large enough for nanoparticle encapsulation. This

point is very important for applications (Scheme 14) [25].

8 Application in Catalysis of ‘‘Click’’ Dendrimers

and Dendrimer-Stabilized Nanoparticles

Nanoparticles are attracting increasing attention as cata-

lysts from both the homogeneous- and heterogeneous

catalysis communities, because they are ‘‘ligandless’’ cat-

alyst avoiding toxic phosphines, and show remarkable

activities and selectivities [26]. Nanoparticles can be sta-

bilized by an extremely large variety of supports from

organic to inorganic [27]. Polymers have been among the

most popular supports for nanoparticle catalysts [28], thus

dendrimers also stabilize them, and dendrimer stabilization

can proceed either by encapsulation [29] or, if the den-

drimer is too small, by peripheral stabilization of the

nanoparticle surrounded by a number of dendrimers [30].
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Scheme 14 Coordination of the triazole ligand by Pd(OAc)2 mon-

itored by ferrocenyl redox sensing followed by Pd(II) reduction to

dendrimer-encapsulated Pd (0) nanoparticles used further in catalysis.

The variety of nanoparticle sizes obtained with this strategy is crucial

for catalyst optimization and mechanistic investigation
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Thus commercial polyamidoamine and polypropylene

imine have been extensively used to stabilize nanoparticle

catalysts [31].

Click-dendrimer-stabilized nanoparticles are a new

family of dendrimer-stabilized nanoparticles that is par-

ticularly suitable for catalytic studies [25, 32]. Different Pd

nanoparticles were synthesized from the dendrimers of

generations 0 (9 tethers) to 2 (81 tethers). Transmission

electron microscopy shows that generations G1 and G2

form dendrimer-encapsulated nanoparticles whose sizes

correspond to Pd nanoparticles that contain the same

number of Pd0 atoms as that of PdII ions initially coordi-

nated to the triazoles inside the dendrimer, whereas G0 is

too small to encapsulate the nanoparticle formed. In this

case, the nanoparticle is surrounded by a number of den-

drimers that provide stabilization (Scheme 15).

The collection of different nanoparticles having differ-

ent designed sizes is crucial to the study of the mechanisms

in nanoparticle catalysis. These ‘‘click’’ dendrimer-stabi-

lized nanoparticles are efficient catalysts for selective

olefin hydrogenation under ambient conditions, and the

turnover frequencies, turnover numbers and yields depend

on the nanoparticle size. The smallest nanoparticles (from

G1) are the most active ones, in agreement with a classic

hydrogenation mechanism entirely proceeding at the

nanoparticle surface [32]. On the other hand, the turnover

numbers, turnover frequencies and yields are independent

on the type of nanoparticle stabilization and sizes of the

nanoparticles for the Suzuki cross coupling reaction

between chlobenzene or bromobenzene and PhB(OH)2.

Moreover, the TON increases when the amount of nano-

particle catalyst is decreased or when the solution is diluted.
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The efficiency reaches 54% yield using 1 ppm Pd nano-

particles, i.e. the amount of nanoparticle catalyst is

homeopathic. On the other hand, with high loading of cat-

alyst, the yield is not quantitative, reaching only 70% at 1%

Pd atom catalyst. These phenomena are taken into account

by a leaching mechanism whereby one or two Pd atoms

escape from the nanoparticle surface subsequent to the

oxidative addition of the aryl halide onto the nanoparticle

surface, then become extremely active in solution until it is

quenched by the mother nanoparticle [32]. A similar

mechanism had been proposed earlier by de Vries for the

Heck reaction at high temperature (150–170 �C) [33].

9 Conclusion and Outlook

The simple organometallic activation of benzylic C–H

bonds by air in extremely facile conditions (-78 �C) led us

to efficient constructions of nanoarchitectures for func-

tions. The synthesis of a variety of ferrocenyl-terminated

dendrimers then provided the opportunity to reveal the

compared performances of the functional groups attached

the peripheral ferrocenyl groups as exo-receptors. Indeed,

the reversibility of the ferrocenyl wave could be largely

used in redox molecular recognition of oxo-anions

including ATP. The derivatization of large ferrocenyl

dendrimers easily yields stable modified electrodes that are

very useful. Sensing is strongly dependent on the type of

supramolecular interaction localized near by the ferrocenyl

redox center. With the most recent ‘‘click’’ dendrimers with

which the recognition can be achieved for both oxo-anions

and transition-metal cations, redox recognition was very

useful to determine the number of PdII ions coordinated

into the dendrimer on the triazole ligands. The precise sizes

of Pd nanoparticles designed in this way led to delineation

of mechanistic experiments and catalyst optimization that

significantly contributes to the knowledge and performance

of Pd nanoparticle catalysis. Studies along these lines are

ongoing.
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