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Abstract
Air pollution is a major environmental urban issue, particularly in fast-growing cities in 
developing countries. Reducing air pollution is thus a challenge while evaluating the eco-
nomic value of air quality is crucial for environmental policies made. However, few studies 
accurately estimate this value as they neglect the possible endogeneity issues, as well as 
the dynamic and heterogeneous effects of air pollution. Under the hedonic framework, we 
therefore assess the economic effect of fine particulate matter  (PM2.5) on housing prices in 
Beijing, China. We construct a panel based on resale apartment transactions matched with 
average quarterly  PM2.5 data between 2013 and 2019. To reduce the risk of an estimation 
bias, we apply an instrumental variable (IV) approach. Our results show that  PM2.5 is nega-
tively associated with housing prices. Households were willing to pay an extra 0.0852% 
per housing unit price for an average quarterly reduction in  PM2.5 of 1 µg/m3. Furthermore, 
we argue that high-income dwellers tend to pay more for clean air. The negative effects 
of  PM2.5 across regions are significant and different. Compared with that in the basic year 
2013, the negative effect increases in the first 3 years and then decreases in the last 3 years. 
Our findings enhance our comprehension of the economic impact of air quality and make 
a valuable contribution to the nuanced understanding of willingness to pay for air quality, 
which is beneficial in assessing and optimizing environmental regulations.
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Dynamic impact · Willingness to pay
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1 Introduction

Air pollution has provoked wide concern as it threatens human health (Landrigan et  al., 
2018) and hinders economic development (Dominici et al., 2014; He et al., 2016; Lichter 
et  al., 2017). Considerable efforts have been made to reduce air pollution, especially in 
fast-growing urban metropolises, such as Beijing, China. Since air is considered a common 
good and its pollution is a negative externality to other activities (e.g., labor productivity), 
it is difficult to judge who should be charged for pollution and what the price should be 
(Chang et al., 2019; Klingen & van Ommeren, 2020; Liu et al., 2020; Schulze et al., 1981). 
It is therefore important to have accurate estimates of the economic value of air quality as 
a key input for cost–benefit analyses of cleaner air and pollution regulation strategies for 
policymakers (Chay & Greenstone, 2005; Freeman III, 1974).

To date, several studies have estimated the economic value of air quality improvement 
on housing prices based on various approaches, such as hedonic price modelling and the 
avoidance behavior approach (Hitaj et al., 2018; Liu et al., 2018). In these, hedonic price 
models are used as a cost–benefit framework to estimate the benefits of air quality based 
on its causal impacts on housing prices. This strategy has been adopted widely in order to 
assess the value of environmental goods including air quality, noise and other pollutants 
(Anderson Jr & Crocker, 1971; Baranzini et al., 2010; Zabel & Guignet, 2012). Hedonic 
pricing enables us to capture the effect of air quality more accurately and objectively under 
stable, long-run yet dynamic conditions and further permits the assessment of residents’ 
marginal willingness to pay (MWTP) for clean air (Bednarz, 1977; Palmquist, 2005). The 
latter is important to devise efficient policy strategies to improve air quality.

The economic value of air quality as measured using a hedonic price model, has been 
researched in various developed countries, both across and within cities (Bajari et al., 2012; 
Hitaj et al., 2018; McCord et al., 2018; Won Kim et al., 2003). Recently, reducing air pollu-
tion has also gained a high priority in emerging and developing countries (Shiva Nagendra 
et al., 2021), particularly because industrialization accompanied by rapid urbanization has 
worsened air quality there (Ebenstein et al., 2015; Greenstone & Hanna, 2014). Although 
the body of literature focusing on the inter-city or regional level for developing countries, 
is increasing (Chen & Jin, 2019; Freeman et al., 2019; Zou, 2019), evidence at the within-
city level is largely lacking, mainly due to data constraints.

This lack of within-city evidence in developing countries constitutes a methodological 
challenge and enhances the problems created by omitted variable bias. First, the stand-
ard hedonic price model based on cross-sectional data typically results in biased estimates 
because housing attributes (both time-variant and time-invariant) that are correlated with 
air quality are easily overlooked, and the dynamic effects of air quality over time cannot be 
captured as well. Second, despite the fact that a panel analysis could correct for the effect 
of time-invariant variables with the help of fixed effects, endogeneity issues from corre-
lated time-varying variables still exist (Chay & Greenstone, 2005). Third, if there is hetero-
geneity across individuals in their preferences for clean air, then individuals may self-select 
into locations on the basis of these unobserved differences. In short, removing the bias 
from omitted variables is a crucial step to obtaining accurate estimated results.

To bridge these knowledge gaps, we took Beijing, the capital of China, as a case to 
assess the economic value of air quality within the city by applying a hedonic price frame-
work. With an instrumental variable (IV) approach, we assessed the influence of air pol-
lution on housing prices by adopting resale transaction data on residential apartments 
over the period 2013–2019, a period of worsening air pollution across China (Tilt, 2019). 
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Further, we tested the possible heterogeneous effects across regions and income levels and 
dynamic effects over time.

Our study contributes to literature in three ways. First, using quarterly air pollution data 
and econometric strategies, we provide a more accurate assessment of the effect of air pol-
lution on housing prices at an intra-urban level. Our quarterly panel data avoid the bias 
caused by cross-sectional data, and our use of fixed effects accounts for possible seasonal 
effects. Also, by adopting an instrumental variable (IV) approach, we address possible 
endogeneity issues, namely that air pollution is likely to be correlated with unobserved 
characteristics, allowing us to examine causal associations (Sullivan, 2016). Second, our 
research design allows us to explore heterogeneous responses to air pollution for house-
holds across regions and income groups. Considering the possible heterogeneous effects 
(Chen et al., 2018; Le Boennec & Salladarré, 2017), the analysis refines the effects of air 
pollution, and mitigates the risk of estimation bias as well. Lastly, we capture the dynamic 
change in air quality possibly affecting housing prices over time. Such a setting contributes 
to a better understanding of how housing prices respond to the change in air quality which 
may reflect the awareness of residents to air pollution (Lang, 2015).

2  Literature review

2.1  Estimation methods for the economic value of air quality

The literature on the economic value of air pollution is mostly concerned with estimating 
individuals’ marginal willingness to pay (MWTP) for clean air through behavioral changes. 
Three approaches have been put forward (Baranzini & Ramirez, 2006).

First, the “avoidance/defensive cost” approach assesses individuals’ MWTP by their 
defensive expenditures for avoiding the consequences of pollution—for example, through 
wearing face masks or using air purifiers (Ito & Zhang, 2020; Zhang & Mu, 2018). Never-
theless, such behavior is likely to lead to combined influences. Even if avoidance costs are 
expected to be lower than the costs of possible damages, people would pay to avoid those 
damages. Thus, using defensive expenditures as a proxy for welfare changes seems prob-
lematic when estimating the MWTP for air quality improvement.

Second, the “cognitive preference” adopts contingent valuation methods (CVMs), con-
joint analysis surveys, or choice experiments based on individuals’ subjective perceptions. 
For instance, Dong and Zeng (2018) used CVMs to gauge the public MWTP for haze miti-
gation in Beijing. They found that respondents were willing to pay 0.55–0.82% of their 
annual income to avoid smog. Strong underlying assumptions are that respondents are 
familiar with their personal preferences and that people’s true willingness to pay is stated 
objectively and accurately. Since these assumptions are possibly not fulfilled, the willing-
ness to pay for air quality improvement calculated by CVM is possibly biased.

Third, the hedonic pricing approach is frequently applied to determine the economic 
value of air quality based on its effect on housing prices, in which a non-market good such 
as air quality can in fact be traded in the housing markets (Freeman, 1981; Palmquist, 
2005). In this assumption, residents prefer to live in locations with cleaner air because they 
want to minimize the possible health hazards caused by air pollution, and more so as envi-
ronmental consciousness increases. Of course, housing with better air quality has a higher 
price. As a result, residents make a trade-off between higher housing prices and clean air. 
Through this technique, residents’ MWTP to air quality improvement can be calculated.
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The standard hedonic price model, when applied during the housing market valuation 
process, may also suffer from estimation bias. In cross-sectional data, the issue of endo-
geneity is often overlooked (Chen et al., 2018). In panel data, endogeneity arises from 
the fact that local economic activities are associated with air quality and housing prices, 
which may lead to a reduction in the accuracy of estimates (Chen & Jin, 2019). Further-
more, there may be heterogeneous effects across income groups, making it difficult to 
obtain an accurate explanation of the value of air quality from average estimates.

To overcome these issues, we adopted an instrumental variables (IV) approach with 
panel data to estimate the dynamic effect of air quality over time and its heterogeneity 
effect across regions and income groups. This approach allowed us to address the issue 
of endogeneity and minimize estimation bias, thereby providing more accurate esti-
mates of the economic value of air quality.

2.2  Housing prices and air pollution under a hedonic pricing approach

Recent studies in developed countries that applied hedonic models reported a negative 
association between housing prices and air pollutants. Most other studies at the within-
city level focused on US or European cities. Taking the St. Louis Metropolitan Area of 
(U.S.) as a study area, Nourse (1967) presented the first empirical estimates of air qual-
ity affecting housing prices. Bayer et al. (2009) found a greater MWTP for clean air in 
multiple US metro regions. McCord et al. (2018) used 2013–2018 housing sales in the 
UK to assess the implicit price of air pollution. However, due to contextual differences, 
it is problematic to transfer Western findings to developing countries (He et al., 2016).

As environmental conditions worsened in many developing countries, studies at 
an inter-urban level gained momentum. For instance, Chen and Jin (2019) examined 
inverse air pollution effects on housing prices in China’s 286 cities in 2005–2013, while 
Freeman et al. (2019) added regional migration costs to a residential sorting model to 
more accurately estimate the economic value of air quality in China for 2005. Both stud-
ies concluded that Chinese residents are willing to pay extra for clean air. Given that 
high migration costs do not apply to residents moving within a city, the mechanisms, 
and the willingness to pay to evade air pollution differ between the inter-urban and the 
intra-urban level.

Studies at the intra-urban level were mainly based on cross-sectional data. For 
instance, using data from Shanghai in 2010, Chen et al. (2018) found adverse effects of 
air pollution on urban housing prices: reducing concentrations of sulfur dioxide  (SO2) 
and  PM10 by 1  mg/m3 increased Shanghai’s housing prices, on average, by 0.6% and 
0.9% respectively (or 159  yuan/m2 and 238  yuan/m2). Based on the installation and 
operation of an air-purifying tower in the city of Xi’an, Lan et  al. (2020) adopted a 
quasi-experimental design, namely a difference-in-difference approach, to measure the 
tower’s ability to mitigate haze, and found that it increased housing prices by, on aver-
age, 4% across the affected area. He & Collins (2020) and Mei et al. (2020) found nega-
tive air pollution effects on housing prices across the metropolises of Guangzhou and 
Beijing through panel data. However, neither study took into account that dynamic and 
heterogeneity effects of air pollution with long time series are possible and that results 
may vary across different subgroups (He & Collins, 2020; Mei et al., 2020), likely bias-
ing the estimated economic value of clean air. These shortcomings are addressed in our 
study.
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3  Materials and methods

3.1  Study area

Beijing is China’s capital and political center. The incomes and living standards of its 21.54 
million residents are higher than those of people in other parts of the country. Because the 
northern part of China suffers from more severe air pollution than the south (Xu et al., 2019), 
its residents are likely to care more about their neighborhood environment (Aunan & Wang, 
2014). Therefore, Beijing represents an ideal case to explore the economic effect of clean air 
on housing prices.

Our study focused on the area within Beijing’s 6th ring road, as this encompasses the main 
urban areas (Fig. 1). The city’s ring roads have been designed to relieve central parts from the 
traffic induced by urban sprawl. Beijing’s six ring roads, which are centered on Tiananmen 
Square, enclose mainly residential areas, and divide the city into different functional areas (see 
Table 7 in the Appendix) (Gao et al., 2016). The population within the 3rd–6th ring roads 
accounts for 57% of Beijing’s total population (Beijing Statistical Publishing, 2019). Although 
a polycentric structure is slowly emerging in Beijing (Qin & Han, 2013), housing prices still 
gradually decline with increasing distance from the inner to the outer ring.

Fig. 1  The metropolitan area of Beijing
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3.2  Data

3.2.1  Housing data

Housing transactions between 2013 and 2019 on the existing stock were collected through 
web scraping from the Lianjia1 platform. The sample of 395,040 observations gathered 
excludes public housing programs, single detached dwellings, and government-subsidized 
housing. The data concerns only resale transactions, as opposed to newly built homes, as 
resales are more likely to reflect true market prices (Li et al., 2019). Per housing unit, we 
also obtained several structural characteristics including, for example, area, floor, orienta-
tion, and longitude and latitude (Table 1).

Based on these housing transactions, we calculated the average prices of each commu-
nity (i.e., residential quarter or unit consisting of many buildings with housing) and the 
average quarterly housing price within each ring road over time. Figure 2 shows the distri-
bution of the average price over the city, obtained by means of ordinary kriging interpola-
tion. The map indicates that housing prices roughly decline with increasing distance to 
the urban center. Figure 3, moreover, shows the average quarterly housing prices within 
each ring road. While the average quarterly housing price increased over time until 2017, 
a decrease is noticeable thereafter. The price within the inner ring is always higher than 
within the outer ring, which confirms the observations of Yang and Shen (2008).

In a first-stage regression, we obtained predicted unit prices in logarithms for each 
community in each quarter, using as explanatory variables the apartment area, the square 
of that area, floor, orientation, number of bedrooms, decoration, building style, and the 
presence of an elevator. Table 2 provides descriptive statistics per variable at housing and 
community levels. Since not all communities had continuous observations throughout the 
period, our final dataset forms a random sample out of the total possible universe of 7051 
communities’ times 24 quarters. It is a panel dataset of 2794 communities (with 33,538 
housing units) that are observed from the 4th quarter of 2013 to the 4th quarter of 2019.

3.2.2  Neighborhood data

We obtained data on public service amenities (e.g., schools and hospitals) and the popula-
tion density at the community level (i.e., housing blocks). Amenities for each sample year 
from 2013 to 2019 were gathered based on the points of interest extracted from Amap 
(https:// www. amap. com/). Their addresses were geocoded, with an accuracy of 100%. 
A population density raster surface with a spatial resolution of 1 km was obtained from 
WorldPop (https:// www. world pop. org/).

In hedonic price theory (Rosen, 1974), not only housing structural attributes, accessibil-
ity (i.e., location) and neighbourhood quality are key influences on housing prices. Thus, 
for each community, we determined the street distance to the nearest city centre/subcenter 
(i.e., Tiananmen Square, Jianguomen central business district (CBD), Beijing Financial 
Street, the technology hub of Zhongguancun Science Park, and the Olympic Park) (Qin & 
Han, 2013), and to the nearest school, hospital, city park, shopping mall, farmers’ market, 
bus stops and metro stations. We also determined for each separate year the number of 

1 Lianjia is the largest real estate trading platform in China, covering the sale of new and pre-owned hous-
ing sales, and a realtor and housing renovation business (https:// bj. lianj ia. com/).

https://www.amap.com/
https://www.worldpop.org/
https://bj.lianjia.com/
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basic services (e.g., post office, laundry) and leisure facilities (e.g., museum, gym) within 
1000 m (Table 1).2

3.2.3  Air pollution and meteorological data

We extracted air pollution data at 35 fixed monitoring stations (Fig.  1) as hourly meas-
urements collected from the Beijing Municipal Environmental Monitoring Center (http:// 
www. bjmemc. com. cn/). We calculated quarterly averages of particulate matter with an aer-
odynamic diameter of < 2.5 μm, commonly called  PM2.5.  PM2.5 is a mixture of solid parti-
cles and liquid droplets in the air, which causes smog or hazy conditions. The air pollution 
in Beijing is caused by not only local emissions (Zhang et al., 2016) but also the spillover 
of pollution from neighboring cities, such as Tianjin, Langfang, and Tangshan (Yue et al., 
2019) (Fig. 1). Reducing  PM2.5 concentrations is a mandatory target in the “Air Pollution 
Prevention Action Plan” for the Beijing–Tianjin–Hebei region (Zhang & Mu, 2018).

For robustness checks, we also obtained the quarterly averages of China’s ambient air 
quality index (AQI) alongside  PM2.5. The AQI is a composite measure comprising six 
pollutants, namely sulfur dioxide  (SO2), carbon monoxide (CO), nitrogen dioxide  (NO2), 
 PM10, ozone  (O3), and  PM2.5. We interpolated these variables across the study area on a 
20 × 20 m grid using ordinary kriging (Anselin & Le Gallo, 2006; Kuntz & Helbich, 2014).

A dataset on thermal inversions was obtained from the Climate Data Store (https:// 
cds. clima te. coper nicus. eu/ cdsapp# !/ datas et/ reana lysis- era5- press ure- levels? tab= overv 
iew). We used the gridded ERA5, which divides the earth by 0.25° × 0.25° (approximately 
25 km × 25 km), and records the 1-h air temperature at 37 layers, ranging from 1000 to 
1 hPa. Within each 1-h period, we calculated the temperature difference between the sec-
ond layer (975 hPa) and the first layer (1000 hPa). A positive difference refers to a thermal 
inversion. The difference measures the inversion strength. We coded a negative difference 
as zero. We then averaged the inversion strength across all 1-h lapses within each 1-quarter 
period.

3.3  Model specifications

3.3.1  Model at the housing level

To assemble panel data at the community level, we fitted an ordinary least squares (OLS) 
regression model at the housing level to estimate the value per community price with fixed 
quarter and community effects:

where lnHPij0t
 is the logged transaction unit price of apartment i in residential community 

j in quarter t, t belongs to the time range from the 4th quarter of 2013 (2013:Q4) to the 
4th quarter of 2019 (2019:Q4). Note that 2017:Q4, 2018:Q3, and 2018:Q4 were excluded 
due to missing data in these periods.Sij0t is a vector of structural features of apartment i in 
community j and quarter t, α are the coefficients, lnCPjt is the logged price of residential 

(1)lnHPijt = � + �Sijt + lnCPjt + �t + �ijt

2 A distance threshold of 1000 m was chosen because it corresponds with 15-min’ walking distance, which 
is frequently used in community planning.

http://www.bjmemc.com.cn/
http://www.bjmemc.com.cn/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
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Fig. 2  Distribution of average community prices based on pooled data

Fig. 3  Average housing price within each ring road over time
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community j in quarter t. θt is to control the quarter effect and �ij0t is the error term. The 
regression results for this first stage are shown in Table 8 of the Appendix.

3.3.2  OLS model at the community level

To test the influence of air pollution on housing prices, we first specified a benchmark 
model (i.e., pooled OLS model) using a semi-log specification at the community level:

where lnCPj is the logged price of residential community j. Aj, Nj, and PM2.5j refer to the 
accessibility, neighborhood variables, and PM2.5 at the community level. β is the constant, 
γ, χ, and κ are the estimated coefficients, and εj is an error term.

3.3.3  Fixed effects model

To eliminate the correlation between unobserved factors and PM2.5 and to obtain an unbi-
ased estimate of the implicit price of air quality, we then proceed to a fixed effects model 
(FE), with time and individual dummies (a so-called two-way FE specification)3:

where a year-fixed effect θy controls for time-varying economic shocks (e.g., policy 
changes in the housing market) and a community-fixed effect �j controls for time-invariant 
characteristics across communities.

3.3.4  Fixed effects two‑stage least squares (FE2sls) model

Endogeneity remains an issue under the FE (or random effects model) specification if 
time-varying unobserved factors affect both air pollution and housing prices (Bajari et al., 
2012). To ensure more accurate estimates compared to the OLS model, we calculate the 
relationship between the estimated prices and air pollution by instrumenting  PM2.5 with 
the logarithm of the number of inversions and that of inversion strength. Other studies con-
firmed that such thermal inversion partly reduces air pollutants (Chen et al., 2022). These 
two IVs satisfy the basic conditions, namely instrument relevance (i.e., corr (Z, X) ≠ 0) and 
instrument exogeneity (i.e., corr (Z, ε) = 0), where X is the endogenous variable  PM2.5 and 
ε is the random perturbed variable. Our first-stage IV equation is:

and the second-stage IV equation is:

where PM
2.5jt is the predicted ambient  PM2.5 concentration in community j in quarter t. 

The other variables and coefficients are similar to those in Eq. (3).

(2)lnCPj = � + � lnAj + � lnNj + �PM
2.5j + �j

(3)FE ∶ lnCPjt = � + � lnAjt + � lnNjt + �PM
2.5jt + �y + �j + �jt

(4)PM
2.5jt = � + v

1
ln tinumjt + v

2
ln tistrjt + � lnA�jt + � lnN�jt + �y + �j + �jt

(5)lnCPjt = v + � lnA
��

jt
+ � lnN

��

jt
+ kPM

2.5jt + �y + �j + wjt

3 The Hausman test was significant (p = 0.00), indicating that the fixed effects model fits better than a ran-
dom effects model.
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3.3.5  Dynamic effects

To assess whether and how residents’ MWTP for air quality improvement changes over 
time, we further explored the dynamic effects of air pollution on housing prices by add-
ing  PM2.5 × year interaction terms:

where the year 2013 is set as the base period, and the dummy variable Yeary equals 1 in 
the year y and 0 otherwise, giving us separate values of ky for 2014–2019, which show the 
change in the effect of air pollution on housing prices compared with the base period 2013.

4  Results and discussion

4.1  Benchmark regression results

Table 3 reports the results of pooled OLS, two-way FE, and FE2SLS regressions. Given 
that the variance inflation factors (VIF) of the independent variables reached a maxi-
mum of 1.08—which is far below the critical value of 10—multicollinearity was not 
an issue in our models. Estimated coefficients for  PM2.5 were, as expected, negative 
and significant at least at the 5% level, showing that pronounced  PM2.5 levels are likely 
to reduce housing prices across three models. Among them, The IV estimates were 
larger due to relieving the endogeneity, compared with the FE estimates and the OLS 
estimates.

In the IV regression, the results of the F-statistic exceeded 10 in the first stage, indi-
cating that the IVs were suitably correlated with the endogenous variable. The Sargan 
test statistic was significant (p = 0.0058), indicating that overidentification for the IVs is 
not an issue. The effect of  PM2.5 according to the IV estimation implied that a 1 µg/m3 
increase in  PM2.5 concentration causes a 0.0852% reduction in the housing unit price. 
This decrease was smaller compared with findings reported for other major Chinese 
cities, including in earlier cross-sectional studies in Qingdao (Chen & Chen, 2012), 
Shanghai (Chen et  al., 2018), and Beijing (Mei et  al., 2020). This difference is prob-
ably related to our stronger analysis design (i.e., cross-sectional vs. panel data, annual 
vs. quarterly panel data), but could also be attributed to environmental improvements in 
Beijing.

Some estimates for the control variables (e.g., accessibility and neighborhood char-
acteristics) were significant in the OLS but not in FE and FE2sls models; their signs 
were, however, in line with expectations and largely consistent with earlier studies (Qin 
& Han, 2013; Yuan et  al., 2018). Since the distance to the nearest urban center/sub-
center for each community point does not change over time, coefficients for D_CBD 
were not estimated in the FE and FE2sls models. Based on the FE2sls results, none of 
the additional control variables (except for distance to the nearest bus stop) displayed 
a statistically significant marginal covariation with housing prices during the period of 
study. This may be because of correlations with the estimated prices at the community 
level or other confounding factors.

(6)lnCPjt = � + � lnAjt + � lnNjt + k
0
PM

2.5jt + ky
(

PM
2.5jt × Yeary

)

+ �y + �j + �jt
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4.2  Robustness check

To evaluate the robustness of our result for  PM2.5, we re-estimated the OLS, FE, and 
FE2sls models with the AQI as an alternative proxy for air pollution. Again, the coef-
ficients were negative and statistically significant (Table 9 in the Appendix). Except for 
the FE model, the signs and magnitudes of AQI coefficients were in keeping with those 
of  PM2.5 in corresponding models. These results imply that our estimates for  PM2.5 were 
robust. Besides, to examine the potential measurement errors caused by the spatial vari-
ation of air pollution, we extracted the subsample of housing communities which are 
within 3 km of the air stations to test the effect of air pollution. The estimate coefficients 
of  PM2.5 and AQI are significantly negative, confirming the robustness of our models 
(Table 10 of the Appendix).

4.3  Effects of  PM2.5 across income levels

Moreover, following the empirical work of Chen et al. (2018) and Cai and Gao (2022), we 
conducted a quantile regression with IVs to explore the possible heterogeneous effects of 
air quality impact on housing prices across different income levels by dividing houses in 
our sample into quartiles (low, middle-low, middle-high, and high). Table 4 shows the esti-
mated coefficients of  PM2.5 with other variables being controlled. The significantly nega-
tive coefficients for housing prices in Q25 (− 0.0141), Q50 (− 0.0151), Q75 (− 0.0168), and 
Q90 (− 0.0189) indicate that housing prices would be discounted by air quality with more 
significant discounts observed in higher-priced housing group. That is, dwellers purchasing 
higher-priced houses care more about air quality, which is consistent with the findings of 
Chen et al. (2018) for Shanghai.

4.4  Effects of  PM2.5 across regions

Further, we tested the heterogeneous effects of  PM2.5 across regions. Thus, we ran stratified 
analyses based on ring roads 2–6. The estimation results for  PM2.5 across ring roads using 
FE2sls regressions are shown in Table 5. The  PM2.5 estimates for all rings are significant 
and negative at the 1% level, thus confirming the negative influence of  PM2.5 on housing 
prices across regions within ring roads. However, the magnitude of the estimates gradually 
decreases with increasing distance from the core city: a 1 µg/m3 increase in  PM2.5 leads to 
an average reduction in the housing price of 0.1113% and 0.0867% within rings 2–3, and 
0.1037%, 0.0774%, and 0.0622% within rings 4–6. It can be seen that the coefficients of 
 PM2.5 within each ring road are significantly different. However, the estimates are not sta-
tistically significant when we compare their difference (see Fig. 4 in the Appendix). This 
suggests that we cannot compare the magnitudes of the estimated coefficients for the ring 
roads statistically.

4.5  Dynamic effects

Taking 2013 as a baseline, the differences in the estimated  PM2.5 effect between per year 
(2014–2019) and 2013 are presented in Table 6. The Chow test statistic testing their joint 
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difference showed that the coefficients of  PM2.5 are significantly different over time, 
excluding between 2018 and 2019 (Table 11 in the Appendix). The coefficient for 2013 
was − 0.00232 and statistically significant at the 1% level. Compared with 2013, the esti-
mated coefficient decreased by − 0.00329 in 2014, by − 0.00341 in 2015, and by − 0.00217 
in 2016, indicating that the negative effect of  PM2.5 intensified over time. However, the 
estimated coefficient increased by 0.00078 in 2016, 0.000134 in 2017, and 0.00014 in 2019 
(insignificant), relative to 2013, implying the  PM2.5 negative effects reduced slightly over 
the last 3 years.

Table 3  Regression results

Heteroskedasticity-robust standard errors clustered at the community 
level. Standard errors in parentheses. Significance levels in all tables: 
*p < 0.1, **p < 0.05, ***p < 0.01

(1) (2) (4)
OLS FE FE2sls

PM2.5 − 0.000740*** − 0.000104*** − 0.000852***
(0.0000564) (0.0000183) (0.0000489)

School 0.00109 − 0.000500 − 0.000619
(0.00152) (0.000621) (0.000639)

Hospital 0.00259 0.00000956 − 0.0000938
(0.00193) (0.00149) (0.00153)

Park − 0.00214 − 0.000844 − 0.000768
(0.00207) (0.00128) (0.00132)

Shopping mall 0.00255 − 0.000897 − 0.000798
(0.00236) (0.00117) (0.00120)

Farmer’s market 0.000310 0.000366 0.000478
(0.00185) (0.000826) (0.000850)

Leisure facilities 0.0113*** − 0.00154* − 0.00136
(0.00195) (0.000812) (0.000834)

Basic services 0.00384** 0.000859 0.000895
(0.00185) (0.000733) (0.000753)

Population 0.190*** − 0.00397 − 0.00410
(0.00186) (0.00439) (0.00452)

D_Bus stop 0.00146 − 0.00187* − 0.00200*
(0.00195) (0.00108) (0.00111)

D_Metro station 0.00111 − 0.000214 − 0.000120
(0.00239) (0.00229) (0.00235)

D_CBD − 0.0162*** 0 0
(0.00241) (.) (.)

Constant − 1.873*** 0.300*** 0.364***
(0.0410) (0.0491) (0.0506)

Community effect # Yes Yes
Year-fixed effect Yes Yes Yes
N 33,538 33,538 33,538
Adjusted  R2 0.458 0.839 0.830
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Our results suggest that  PM2.5 had a stronger influence on housing prices after the 
severe smog in 2013 (Mei et al., 2020), but that recently the effect has weakened to a minor 
extent. This may be due to air quality improvements across Beijing over time as a result 
of various environmental policies, such as the Clean Air Action Plan 2013–2017 (Zhang 
et al., 2016). In 2017, the concentration was < 60 µg/m3 and met the targets outlined in Bei-
jing’s Clean Air Action Plan 2013–2017.

5  Conclusions

Considering the endogeneity issues and potential heterogeneity effect across space–time, 
this study provides more precise and comprehensive evidence of the value of air quality 
on housing prices by taking thermal inversions as IVs. By using resale transaction prices 
of residential apartments in Beijing from 2013 to 2019, we evaluate the economic effect of 
air quality  (PM2.5) as a whole and how its effects vary across regions, income groups, and 
over time.

In keeping with most previous studies in both developed and developing countries 
(Chasco & Le Gallo, 2015; Hitaj et  al., 2018; Tian et  al., 2017), our results of Beijing 
confirm that  PM2.5 is negatively associated with housing prices. We found that households 
are willing to pay 0.0852% of the housing unit price for a reduction of 1 µg/m3 in  PM2.5 
concentrations. This result indicates that the MWTP in Beijing is relatively moderate com-
pared to that in developed countries (Bajari et al., 2012), and in other major Chinese cities 
such as Shanghai and Qingdao (Chen et al., 2018; Chen & Chen, 2012).

Quantile regression with IVs showed the heterogenous effects of  PM2.5 across income 
levels, high-income households are willing to pay more for clean air than low-income 
groups, echoing the results of prior studies (Chen et al., 2018). It seems that the rich care 
more about the health risks attributed to air pollution and thus tend to pay extra for good 
air quality, while monetary costs exclude the poor from this amenity since they have to 
spend their money on fixed costs and living essentials (Dong & Zeng, 2018). Based on 
our findings, it seems reasonable to tax high-income households to a larger degree when 
air pollution funds are set up. Policymakers should be aware that supporting households 
with low incomes might be a way to compensate for their lost welfare as a result of the 
spatial inequality of air quality in the city. Besides, spatially stratified models showed that 

Table 4  Heterogeneous effects: 
results of quantile regression 
with IVs

Q25 Q50 Q75 Q90

PM2.5 − 0.0141*** − 0.0151*** − 0.0168*** − 0.0189***
(0.00039) (0.00033) (0.00028) (0.00031)

Table 5  Heterogeneous effects: estimators based on the ring roads (FE2sls)

Ring2 Ring3 Ring4 Ring5 Ring6

PM2.5 − 0.00111*** − 0.000867*** − 0.00104*** − 0.000774*** − 0.000622***
(0.000176) (0.0000932) (0.000106) (0.000124) (0.0000809)



900 Y. Cai et al.

1 3

the significantly negative influence of  PM2.5 is different across ring roads. In this case, envi-
ronmental regulation should account for these regional differences rather than a ‘one size 
in all’ approach.

Finally, we examined whether the  PM2.5 effect varies temporally relative to the year 
2013. We found that the negative impact gradually increased in 2014 and 2015; in 2016 it 
also increased but to a minor extent compared to the first 2 years. This could mean that the 
public became increasingly aware of health-threatening impacts owing to exposure to air 
pollutants in 2013. However, relative to 2013, the effect in 2017, 2018 and 2019 decreases. 
However, the difference did not reach statistical significance between 2018 and 2019. On 
the whole, the negative effect mainly declined in the last 3 years. This decline may be asso-
ciated with pollution control actions like the Clean Air Action Plan 2013–2017. In fact, 
the measured concentration levels of  PM2.5 in 2017 and 2019 met the targets of that action 
plan (Zhang et al., 2016). Hence, the dynamic effects also implicitly provide evidence for 
the effectiveness of Beijing’s environmental regulation actions. Further research is needed 
to determine whether it is the current reduction in pollution or future government commit-
ments to improve air quality that impact the current willingness to pay.

Our study had several limitations that must be considered when interpreting our find-
ings. First, we incorporated only average quarterly  PM2.5 concentrations as a proxy for air 
pollution rather than daily measurements. Though indirectly considered in our sensitiv-
ity tests with the AQI, we cannot exclude those other pollutants (e.g.,  SO2,  NO2,  PM10) 
that may affect housing prices differently. More pollutant indicators could be considered 
in future work. Second, air pollutant data stemmed from a restricted number of official 
monitoring stations that are unevenly distributed across space. While our air pollution data 
facilitated the incorporation of spatiotemporal trends in  PM2.5, small-scale variations are 
likely to have been unrecognized. Whether and, if so, to what extent this limitation affected 
our estimates needs to be addressed in the future using high-resolution air pollution data. 
Finally, because we used a hedonic model specification, we only indirectly evaluated the 
willingness to pay for clean air based on the housing market conditions, without obtaining 
people’s perceptions directly. Future research is advised to combine subjective and objec-
tive measures to comprehensively explore the effect of air pollution.

Appendix

See Fig. 4 and Tables 7, 8, 9, 10 and 11.

Table 6  Changes in the  PM2.5 estimates compared with 2013

Year 2013 (Base-
line)

2014 2015 2016 2017 2018 2019

PM2.5 − 0.00232*** − 0.00329*** − 0.00341*** − 0.00217*** 0.000780*** 0.000134** 0.000140**
(0.000041) (0.000039) (0.000041) (0.00005) (0.000048) (0.00006) (0.000071)
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Fig. 4  Comparation between the regression coefficients of  PM2.5 across ring roads

Table 7  Overview of areas within each of Beijing’s ring roads

Ring road Construction  
period

Areas connected Functions of the area 
inside each ring

Ring #1 1920s–1950s Boundary does not exist anymore; Tianan-
men, Forbidden City, and Di’an men

Historical areas

Ring #2 1980s–1990s Dongcheng Qu (Eastern Urban Precinct), 
Xicheng Qu (Western Urban Precinct), 
Xuanwu Precinct and Chongwen Precinct

Old city

Ring #3 1980s–1990s Beijing’s CBD (Guandongdian) and diplo-
matic communities (Dongzhimenwai/Liang-
maqiao, Jianguomenwai)

Central business district 
(CBD), as well as an 
important residential 
area for the local 
population

Ring #4 Completed in 2001 Connects the Zhongguancun technology hub, 
western Beijing, the Fengtai District, and 
eastern Beijing

Economic development 
zones, but also an 
important residential 
area for the local 
population

Ring #5 Completed in 2003 Located approximately 10 km from central 
Beijing, and links the suburban areas of 
Huantie, Shigezhuang, Dingfuzhuang, etc. 
Also passes through the Beijing Develop-
ment Area

Residential area for 
immigrant population

Ring #6 2001–09 Shunyi District, Tongzhou District, Chang-
ping District, and Daxing District

Suburban districts



902 Y. Cai et al.

1 3

Table 8  Regression results of 
housing prices in the first stage

Heteroskedasticity-robust standard errors clustered at community 
level, and standard errors in parentheses. Significance levels: *p < 0.1, 
**p < 0.05, ***p < 0.01

Variables Coefficients Variables Coefficients

Floor area − 0.00179*** Floor1 − 0.0324***
(0.0000294) (0.00853)

Age1 # Floor2 0.00618
# (0.00849)

Age2 0.0431*** Floor3 0.0110
(0.00245) (0.00849)

Age3 0.0492*** Floor4 0.00149
(0.00269) (0.00852)

Age4 0.0631*** Floor5 0.0131
(0.00306) (0.00861)

Age2 0.0336*** Bedroom number 0.0207***
(0.00445) (0.000884)

Elevator − 0.0210*** Orientation 0.0220***
(0.00132) (0.000616)

Dec1 0.0214*** Constant 10.86***
(0.00112) (0.00897)

Dec2 − 0.00185
(0.00113)

Dec3 − 0.0157***
(0.00185)

Community effect Yes
Quarter-fixed effect Yes
N 333,269
Adjusted R2 0.925
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Table 9  Robustness check for 
air quality: Regression estimates 
for AQI

Heteroskedasticity-robust standard errors clustered at community 
level, and standard errors in parentheses. Significance levels: *p < 0.1, 
**p < 0.05, ***p < 0.01

(1) (2) (3)
OLS FE FE2sls

AQI − 0.000415*** − 0.000184*** − 0.00117***
(0.0000661) (0.0000221) (0.0000779)

School 0.00111 − 0.000475 − 0.000552
(0.00152) (0.000621) (0.000659)

Hospital 0.00262 0.0000264 − 0.000113
(0.00193) (0.00149) (0.00158)

Park − 0.00224 − 0.000873 − 0.000770
(0.00208) (0.00128) (0.00136)

Shopping mall 0.00244 − 0.000918 − 0.000873
(0.00237) (0.00117) (0.00124)

Farmer’s market 0.000272 0.000334 0.000444
(0.00185) (0.000825) (0.000877)

Leisure facilities 0.0112*** − 0.00157* − 0.00145*
(0.00196) (0.000811) (0.000860)

Basic services 0.00372** 0.000822 0.000985
(0.00185) (0.000732) (0.000776)

Population 0.191*** − 0.00392 − 0.00387
(0.00187) (0.00439) (0.00466)

D_Bus stop 0.00143 − 0.00182* − 0.00196*
(0.00196) (0.00108) (0.00114)

D_Metro station 0.00106 − 0.000220 − 0.000283
(0.00240) (0.00229) (0.00242)

D_CBD − 0.0162*** 0 0
(0.00241) (.) (.)

Constant − 1.956*** 0.268*** 0.435***
(0.0410) (0.0491) (0.0528)

Community effect Yes Yes Yes
Year-Fixed effect Yes Yes Yes
N 33,538 33,538 33,538
R2 0.455 0.839 0.819
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Table 10  Robustness check for air quality: Regression estimates for subsample within 3 km distance from 
any air monitoring station

Standard errors in parentheses Significance levels: *p < 0.1, **p < 0.05, ***p < 0.01

(1) (2) (3) (4)
OLS FE FE2sls

PM2.5 − 0.000717*** − 0.0000975*** − 0.000832***
(0.0000853) (0.0000257) (0.0000729)

AQI − 0.00117***
(0.000114)

School − 0.00165 − 0.00180** − 0.00175* − 0.00172*
(0.00230) (0.000885) (0.000911) (0.000939)

Hospital 0.00256 − 0.000151 − 0.0000701 0.0000255
(0.00286) (0.00229) (0.00236) (0.00243)

Park − 0.00305 − 0.000518 − 0.000300 − 0.000374
(0.00289) (0.00170) (0.00175) (0.00180)

Shopping mall − 0.00260 − 0.00185 − 0.00171 − 0.00181
(0.00355) (0.00163) (0.00168) (0.00173)

Farmer’s market − 0.00509* − 0.000803 − 0.000657 − 0.000750
(0.00267) (0.00115) (0.00119) (0.00123)

Leisure facilities 0.00914*** − 0.00170 − 0.00172 − 0.00174
(0.00299) (0.00119) (0.00123) (0.00127)

Basic services 0.0141*** 0.00156 0.00134 0.00149
(0.00280) (0.00107) (0.00110) (0.00113)

Population 0.233*** 0.00111 0.0000220 0.00131
(0.00326) (0.00624) (0.00642) (0.00662)

D_Bus stop − 0.00194 − 0.00205 − 0.00243 − 0.00232
(0.00301) (0.00154) (0.00158) (0.00163)

D_Metro station 0.0333*** − 0.000692 − 0.000271 − 0.000280
(0.00361) (0.00311) (0.00319) (0.00329)

D_CBD − 0.0287*** 0 0 0
(0.00362) (.) (.) (.)

Constant − 2.276*** 0.370*** 0.439*** 0.504***
(0.0633) (0.0706) (0.0729) (0.0761)

Community effect Yes Yes Yes Yes
Year-fixed effect Yes Yes Yes Yes
N 15,656 15,656 15,656 15,656
R2 0.450 0.852 0.843 0.833



905Economic effects of air quality on housing prices: evidence…

1 3

Acknowledgements We would like to thank Dr. Chong Liu for offering the raw data on air pollutants and 
helping calculate the indicators as instructive variables in our paper. Also, Prof. Carolina Castaldi, Prof. 
Pieter Hooimeijer, Dr. Jinlong Gao and Dr. Zhiqiang Hu are thanked for their helpful comments on earlier 
versions of this paper. Yuanyuan Cai would like to thank Prof. Carolina Castaldi again for her encourage-
ment and coordination in this collaboration. The majority of her work on this article was conducted at UU.

Author contributions YC: Conceptualization, methodology, software, data curation, visualization, inves-
tigation, writing—original draft preparation, review and editing. MS: Software, visualization, validation, 
review and editing. MH: Writing—review and editing.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are included in the 
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adamowicz, W., Louviere, J., & Williams, M. (1994). Combining revealed and stated preference methods 
for valuing environmental amenities. Journal of Environmental Economics and Management, 26, 
271–292.

Adamowicz, W., Swait, J., Boxall, P., Louviere, J., & Williams, M. (1997). Perceptions versus objective 
measures of environmental quality in combined revealed and stated preference models of environmen-
tal valuation. Journal of Environmental Economics and Management, 32, 65–84.

Anas, A., Arnott, R., & Small, K. A. (1998). Urban spatial structure. Journal of Economic Literature, 36, 
1426–1464.

Anderson, R. J., Jr., & Crocker, T. D. (1971). Air pollution and residential property values. Urban Studies, 
8(3), 171–180.

Anselin, L., & Le Gallo, J. (2006). Interpolation of air quality measures in hedonic house price models: Spa-
tial aspects. Spatial Economic Analysis, 1(1), 31–52.

Aunan, K., & Wang, S. (2014). Internal migration and urbanization in China: Impacts on population expo-
sure to household air pollution (2000–2010). Science of the Total Environment, 481, 186–195.

Table 11  Chow test for the joint difference in the results of dynamic effect of  PM2.5

Significance levels: *p < 0.1, **p < 0.05, ***p < 0.01

Chow-test 2013PM2.5 2014PM2.5 2015PM2.5 2016PM2.5 2017PM2.5 2018PM2.5 2019PM2.5

2013PM2.5

2014PM2.5 968.49***
2015PM2.5 1258.95*** 31.96***
2016PM2.5 16.51*** 1802.54*** 3459.31***
2017PM2.5 7371.72*** 21,697.31*** 36,889.20*** 18,740.29***
2018PM2.5 3010.20*** 8652.71*** 13,240.83*** 7152.10*** 568.12***
2019PM2.5 2290.72*** 6245.21*** 8576.02*** 4934.82*** 352.83*** 0.04 –

http://creativecommons.org/licenses/by/4.0/


906 Y. Cai et al.

1 3

Bajari, P., Fruehwirth, J. C., Kim, K. I., & Timmins, C. (2012). A rational expectations approach to hedonic 
price regressions with time-varying unobserved product attributes: The price of pollution. American 
Economic Review, 102(5), 1898–1926.

Baranzini, A., & Ramirez, J. V. (2006). Paying for quietness: The impact of noise on Geneva rents. Urban 
Studies, 42(4), 633–646.

Baranzini, A., Schaerer, C., & Thalmann, P. (2010). Using measured instead of perceived noise in hedonic 
models. Transportation Research Part D Transport and Environment, 15(8), 473–482.

Bayer, P., Keohane, N., & Timmins, C. (2009). Migration and hedonic valuation: The case of air quality. 
Journal of Environmental Economics and Management, 58, 1–14.

Bednarz, R. (1977). Pollution, property value, and air quality control strategies. Environment and Plan-
ning A, 9(11), 1307–1314.

Beijing Statistical Publishing. (2019). Beijing statistical yearbook. Beijing statistical yearbook.
Black, C., Ntani, G., Kenny, R., Tinati, T., Jarman, M., Lawrence, W., Barker, M., Inskip, H., Cooper, 

C., Moon, G., & Baird, J. (2012). Variety and quality of healthy foods differ according to neigh-
bourhood deprivation. Health and Place, 18, 1292–1299.

Brasington, D. M., & Hite, D. (2005). Demand for environmental quality: A spatial hedonic analysis. 
Regional Science and Urban Economics, 35, 57–82.

Cai, Y., & Gao, J. (2022). Unearthing the value of wet markets from urban housing prices: Evidence from 
Beijing, China. Habitat International, 122, 102532.

Chang, T. Y., Graff Zivin, J., Gross, T., & Neidell, M. (2019). The effect of pollution on worker produc-
tivity: Evidence from call center workers in China. American Economic Journal: Applied Econom-
ics, 11(1), 151–172.

Chasco, C., & Gallo, J. L. (2013). The impact of objective and subjective measures of air quality and 
noise on house prices: A multilevel approach for downtown Madrid. Economic Geography, 89, 
127–148.

Chasco, C., & Le Gallo, J. (2015). Heterogeneity in perceptions of noise and air pollution: A spatial quantile 
approach on the city of Madrid. Spatial Economic Analysis, 10(3), 317–343.

Chay, K. Y., & Greenstone, M. (2005). Does air quality matter? Evidence from the housing market. Journal 
of Political Economy, 113(2), 376–424.

Chen, Y., & Chen, L. (2012). Pricing for clean air: empirical evidence from Qingdao in China. The journal 
of world economy, 4, 140–160.

Chen, J., Hao, Q., & Yoon, C. (2018). Measuring the welfare cost of air pollution in Shanghai: Evidence 
from the housing market. Journal of Environmental Planning and Management, 61(10), 1744–1757.

Chen, S., & Jin, H. (2019). Pricing for the clean air: Evidence from Chinese housing market. Journal of 
Cleaner Production, 206, 297–306.

Chen, S., Oliva, P., & Zhang, P. (2022). The effect of air pollution on migration: Evidence from China. 
Journal of Development Economics, 156, 102833.

Dominici, F., Greenstone, M., & Sunstein, C. R. (2014). Particulate matter matters. Science, 344(6181), 
257–259.

Dong, K., & Zeng, X. (2018). Public willingness to pay for urban smog mitigation and its determinants: A 
case study of Beijing, China. Atmospheric Environment, 173, 355–363.

Ebenstein, A., Fan, M., Greenstone, M., He, G., Yin, P., & Zhou, M. (2015). Growth, pollution, and life 
expectancy: China from 1991–2012. American Economic Review, 105(5), 226–231.

Freeman, A. M. (1981). Hedonic prices, property values and measuring environmental benefits: A survey 
of the issues. In S. Strøm (Ed.), Measurement in public choice (pp. 13–32). Palgrave Macmillan.

Freeman, A. M., III. (1974). On estimating air pollution control benefits from land value studies. Journal 
of Environmental Economics and Management, 1(1), 74–83.

Freeman, R., Liang, W., Song, R., & Timmins, C. (2019). Willingness to pay for clean air in China. 
Journal of Environmental Economics and Management, 94, 188–216.

Gao, Y., Guo, X., Ji, H., Li, C., Ding, H., Briki, M., et al. (2016). Potential threat of heavy metals and PAHs 
in PM2.5 in different urban functional areas of Beijing. Atmospheric Research, 178–179, 6–16. https:// 
doi. org/ 10. 1016/j. atmos res. 2016. 03. 015.

Greenstone, M., & Hanna, R. (2014). Environmental regulations, air and water pollution, and infant 
mortality in India. American Economic Review, 104(10), 3038–3072.

He, G., Fan, M., & Zhou, M. (2016). The effect of air pollution on mortality in China: Evidence from the 
2008 Beijing Olympic Games. Journal of Environmental Economics and Management, 79, 18–39.

He, Y., & Collins, A. R. (2020). Does environmental pollution affect metropolitan housing prices? Evidence 
from Guangzhou, China (1987–2014). Applied Economics Letters, 27(3), 213–220.

https://doi.org/10.1016/j.atmosres.2016.03.015
https://doi.org/10.1016/j.atmosres.2016.03.015


907Economic effects of air quality on housing prices: evidence…

1 3

Hitaj, C., Lynch, L., McConnell, K. E., & Tra, C. I. (2018). The value of ozone air quality improvements 
to renters: Evidence from apartment building transactions in Los Angeles County. Ecological Eco-
nomics, 146, 706–721.

Ito, K., & Zhang, S. (2020). Willingness to pay for clean air: Evidence from air purifier markets in 
China. Journal of Political Economy, 128(5), 000–000.

Klingen, J., & van Ommeren, J. (2020). Urban air pollution and time losses: Evidence from cyclists in 
London. Regional Science and Urban Economics, 81, 103504.

Kuntz, M., & Helbich, M. (2014). Geostatistical mapping of real estate prices: An empirical compari-
son of kriging and cokriging. International Journal of Geographical Information Science, 28(9), 
1904–1921.

Lan, F., Lv, J., Chen, J., Zhang, X., Zhao, Z., & Pui, D. Y. H. (2020). Willingness to pay for staying away 
from haze: Evidence from a quasi-natural experiment in Xi’an. Journal of Environmental Manage-
ment, 262. https:// doi. org/ 10. 1016/j. jenvm an. 2020. 110301.

Landrigan, P. J., Fuller, R., Acosta, N. J., Adeyi, O., Arnold, R., Baldé, A. B., Bertollini, R., Bose-O’Reilly, 
S., Boufford, J. I., & Breysse, P. N. (2018). The Lancet Commission on pollution and health. The Lan-
cet, 391(10119), 462–512.

Lang, C. (2015). The dynamics of house price responsiveness and locational sorting: Evidence from air 
quality changes. Regional Science and Urban Economics, 52, 71–82.

Le Boennec, R., & Salladarré, F. (2017). The impact of air pollution and noise on the real estate market. The 
case of the 2013 European Green Capital: Nantes, France. Ecological Economics, 138, 82–89.

Li, B., Wang, F., Yin, H., & Li, X. (2019). Mega events and urban air quality improvement: A temporary 
show? Journal of Cleaner Production, 217, 116–126. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 01. 116.

Lichter, A., Pestel, N., & Sommer, E. (2017). Productivity effects of air pollution: Evidence from profes-
sional soccer. Labour Economics, 48, 54–66.

Liu, T., He, G., & Lau, A. (2018). Avoidance behavior against air pollution: evidence from online search 
indices for anti-PM 2.5 masks and air filters in Chinese cities. Environmental Economics and Policy 
Studies, 20(2), 325–363.

Liu, Z., Hanley, N., & Campbell, D. (2020). Linking urban air pollution with residents’ willingness to pay 
for greenspace: A choice experiment study in Beijing. Journal of Environmental Economics and Man-
agement, 104, 102383.

McCord, M. J., MacIntyre, S., Bidanset, P., Lo, D., & Davis, P. (2018). Examining the spatial relation-
ship between environmental health factors and house prices:  NO2 problem? Journal of European Real 
Estate Research, 11(3), 353–398.

Mei, Y., Gao, L., Zhang, J., & Wang, J. (2020). Valuing urban air quality: a hedonic price analysis in Bei-
jing. China. Environmental Science and Pollution Research, 27(2), 1373–1385.

Nourse, H. O. (1967). The effect of air pollution on house values. Land Economics, 43(2), 181–189.
Palmquist, R. B. (2005). Property value models. Handbook of Environmental Economics, 2, 763–819.
Qin, B., & Han, S. S. (2013). Emerging Polycentricity in Beijing: Evidence from Housing Price Variations, 

2001–05. Urban Studies, 50(10), 2006–2023. https:// doi. org/ 10. 1177/ 00420 98012 471979.
Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal 

of political Economy, 82(1), 34–55.
Schulze, W. D., d’Arge, R. C., & Brookshire, D. S. (1981). Valuing environmental commodities: Some 

recent experiments. Land Economics, 57(2), 151–172.
Shiva Nagendra, S. M., Khare, M., Schlink, U., & Diya, M. (2021). Air quality management and control. In 

S. M. Shiva Nagendra, U. Schlink, A. Müller, & M. Khare (Eds.), Urban air quality monitoring, mod-
elling and human exposure assessment (pp. 59–68). Springer.

Sullivan, D. M. (2016). The true cost of air pollution: Evidence from house prices and migration. Harvard 
University.

Tian, G., Wei, Y. D., & Li, H. (2017). Effects of accessibility and environmental health risk on housing 
prices: A case of Salt Lake County, Utah. Applied Geography, 89, 12–21.

Tilt, B. (2019). China’s air pollution crisis: Science and policy perspectives. Environmental Science and 
Policy, 92, 275–280.

Won Kim, C., Phipps, T. T., & Anselin, L. (2003). Measuring the benefits of air quality improvement: A 
spatial hedonic approach. Journal of Environmental Economics and Management, 45(1), 24–39.

Xu, W., Sun, J., Liu, Y., Xiao, Y., Tian, Y., Zhao, B., & Zhang, X (2019). Spatiotemporal variation and 
socioeconomic drivers of air pollution in China during 2005–2016. Journal of Environmental Manage-
ment, 245, 66–75. https:// doi. org/ 10. 1016/j. jenvm an. 2019. 05. 041

Yang, Z., & Shen, Y. (2008). The affordability of owner occupied housing in Beijing. Journal of Housing 
and the Built Environment, 23(4), 317–335.

https://doi.org/10.1016/j.jenvman.2020.110301
https://doi.org/10.1016/j.jclepro.2019.01.116
https://doi.org/10.1177/0042098012471979
https://doi.org/10.1016/j.jenvman.2019.05.041


908 Y. Cai et al.

1 3

Yuan, F., Wu, J., Wei, Y. D., & Wang, L. (2018). Policy change, amenity, and spatiotemporal dynamics of 
housing prices in Nanjing, China. Land Use Policy, 75, 225–236.

Yue, S., Lu, R., Shen, Y., & Chen, H. (2019). How does financial development affect energy consumption? 
Evidence from 21 transitional countries. Energy Policy, 130, 253–262.

Zabel, J. E., & Guignet, D. (2012). A hedonic analysis of the impact of LUST sites on house prices. 
Resource and Energy Economics, 34(4), 549–564.

Zhang, H., Li, L., Hui, E. C.-M., & Li, V. (2016). Comparisons of the relations between housing prices and 
the macroeconomy in China’s first-, second-and third-tier cities. Habitat International, 57, 24–42.

Zhang, J., & Mu, Q. (2018). Air pollution and defensive expenditures: Evidence from particulate-filtering 
facemasks. Journal of Environmental Economics and Management, 92, 517–536.

Zou, Y. (2019). Air pollution and housing prices across Chinese cities. Journal of Urban Planning and 
Development, 145(4), 04019012.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Economic effects of air quality on housing prices: evidence from Beijing, China
	Abstract
	1 Introduction
	2 Literature review
	2.1 Estimation methods for the economic value of air quality
	2.2 Housing prices and air pollution under a hedonic pricing approach

	3 Materials and methods
	3.1 Study area
	3.2 Data
	3.2.1 Housing data
	3.2.2 Neighborhood data
	3.2.3 Air pollution and meteorological data

	3.3 Model specifications
	3.3.1 Model at the housing level
	3.3.2 OLS model at the community level
	3.3.3 Fixed effects model
	3.3.4 Fixed effects two-stage least squares (FE2sls) model
	3.3.5 Dynamic effects


	4 Results and discussion
	4.1 Benchmark regression results
	4.2 Robustness check
	4.3 Effects of PM2.5 across income levels
	4.4 Effects of PM2.5 across regions
	4.5 Dynamic effects

	5 Conclusions
	Appendix
	Acknowledgements 
	References




