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Abstract
Maintenance and production exert reciprocal influence in practical manufacturing applica-
tions. However, decisions regarding production scheduling and maintenance planning are
often made separately, leading to frequent conflicts between production and maintenance
plans. This paper investigates an integrated production scheduling and maintenance planning
problem for a parallel machine system, considering both deteriorating jobs and deteriorat-
ing maintenance activities. Additionally, the problem features constraints on the number
of available maintenance activities due to maintenance budget limitations. The objective is
to determine the optimal scheduling and maintenance plan that minimizes the makespan.
To tackle this complex problem, we initially delve into the special case where jobs and
maintenance activities are already assigned to machines. In our endeavor to minimize the
makespan for each machine, we uncover some crucial structural properties and present a
polynomial-time algorithm. Subsequently, we develop a hybrid algorithm that combines
Whale Optimization Algorithm and Variable Neighborhood Search (WOA–VNS) to address
the assignment challenge encompassing jobs and maintenance activities within the paral-
lel machine environment. A series of rigorous comparative experiments are conducted to
assess the effectiveness of the proposed algorithm. The results conclusively demonstrate the
superior performance of the WOA–VNS algorithm over the WOA, VNS, ABC, and ACO
algorithms in addressing the presented problem.
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1 Introduction

Production scheduling plays a critical role inmodernmanufacturing, contributing to enhanced
efficiency, cost reduction, meeting customer demands, and ensuring the smooth operation of
production processes [1]. Extensive research efforts in production scheduling have yielded
significant contributions. Nevertheless, existing research still exhibits certain limitations.
Firstly, most production scheduling studies assume that job processing times are constant and
known in advance. However, in actual manufacturing scenarios, the efficiency of machines
can gradually decline as they operate, leading to an increase in job processing times. This
phenomenon is widely recognized as the deteriorating effect [2]. Secondly, most production
scheduling studies assume that machines are perpetually available for job processing, such
as [3–5]. In reality, machines require preventive maintenance, rendering them temporarily
unusable for production purposes [6, 7]. Consequently, there has been a notable surge in
research interest in recent years focusing on integrated production scheduling and mainte-
nance planning (IPSMP), with a particular emphasis on addressing the challenges posed by
the deteriorating effect.

The initial studies on IPSMP with deteriorating effect were conducted in the context of
a single machine. Wu and Lee [8] investigated a single machine scheduling problem that
incorporates linearly deteriorating jobs and an unavailability period caused by maintenance,
with the primary aim of minimizing the makespan. They successfully demonstrated that the
problem they tackled could be solved using the 0–1 integer programming technique. Subse-
quently, Ji et al. [9] extended the work by Wu and Lee [8] and conclusively established that
the problem under examination is NP-hard. Furthermore, they introduced an optimal approx-
imation algorithm to address this challenging scheduling problem. Low et al. [10] conducted
a research study akin to that of Wu and Lee [8]. But in their problem formulation, the dete-
riorating effect of the machine began to re-accumulate after maintenance. Building on this
novel aspect, Low et al. [10] conducted an extensive analysis and successfully demonstrated
that the problem they investigated is likewise NP-hard, and they also put forward several
heuristic algorithms based on bin packing concepts.

Different from those studies with predetermined maintenance schedules, Lodree and
Geiger [11] considered a flexible rate-modifying activity when investigating the single
machine scheduling problem with a deteriorating effect. Their objective is to determine
an integrated schedule for both jobs and the RMA that minimizes the makespan. In a related
vein, Sun and Geng [12] also explored the single machine scheduling problem with dete-
riorating effects and a rate-modifying activity. They proved that the problem is polynomial
time solvable whether the optimization goal is to minimize the maximum completion time
or to minimize the sum of the total completion time. Rustogi and Strusevich [13] further
presented a single machine scheduling problem with general position-based processing time
andmultiple rate-modifying activities. In this intricate problem, decision-makers were tasked
with not only determining the job sequence but also strategically deciding the optimal num-
ber of maintenance activities to insert into the schedule. Zhang et al. [14] also discussed
the single-machine scheduling problem with deteriorating effect and multiple maintenance
activities. But in their study, the duration of a maintenance activity is considered as a non-
decreasing function of the continuous running time of the machine. Subsequently, some
researchers expanded the IPSMP problem with deteriorating effects into more complex par-
allel machine environments. Lu et al. [15] introduced a parallel machine scheduling problem
featuring maintenance deterioration, with the primary aim of minimizing the makespan. In
their problem formulation, each machine was mandated to undergo one mandatory mainte-
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nance activity. Zhang et al. [16] conducted a similar research study to that of Lu et al. [15],
but their objective was to minimize the sum of completion times. Lee et al. [17] introduced a
unique dimension to the parallel machine scheduling problem by considering job processing
times as position-dependent. Additionally, their problem formulation allowed for at most one
maintenance activity for each machine. The overarching goal of minimizing total earliness
and tardiness costs. Da et al. [18] investigated a parallel machine scheduling problem with
deteriorating jobs and flexible maintenance strategy, in which the actual processing time of a
job depends on the effective age and the processing rate of themachine. Their two goals are to
minimize the preventivemaintenancemean cost rate and total completion time.Woo andKim
[19] delved into a parallel machine scheduling problemwith deterioration effect andmultiple
maintenance activities, in which the actual processing time of job is time-dependent. Their
research aimed at jointly determining the assignment of jobs to machines and the sequence of
jobs andmaintenance activities on eachmachine, all with the overarching goal of minimizing
makespan.

Following the exhaustive examination of the existing literature, several significant obser-
vations come to light: (i) The majority of prior studies have generally overlooked the
deterioration of maintenance activity. However, in actual production scenarios, delaying
maintenance can lead to deteriorating machine conditions, resulting in longer maintenance
duration. (ii) Many previous studies assumed the presence of only one maintenance activ-
ity per machine during the planning period. However, practical production environments
frequently involve multiple maintenance activities. Embracing this aspect is imperative to
ensure that schedulingmodels better reflect the complexities found in real-life production set-
tings. (iii) When considering deteriorating effects, time-based processing time has received
considerable attention, whereas position-based processing time has not been subject to equiv-
alent scrutiny.

Therefore, in this paper, we investigate a new IPSMP problem, in which position-
dependent processing times and multiple deteriorating maintenance activities are simultane-
ously considered. In addition, given the constraints of maintenance budget, the number of
available maintenance activities in the problem is limited. The objective is to minimize the
makespan by concurrently determining the allocation of jobs and maintenance activities to
machines and establishing a joint sequence for both jobs and maintenance activities on each
machine. Table 1 provides the comparison of previous studies and ours. To the best of our
knowledge, the proposed problem has not been investigated in the literature.

The main contributions of this research are as follows:
(1) This paper investigates an IPSMP problem for a parallel machine system, in which

both deteriorating jobs and deteriorating maintenance activities are considered.
(2) In the special case where jobs and maintenance activities are already allocated to each

machine, we uncover several critical structural properties and present a polynomial-time
algorithm aimed at minimizing the makespan for each machine.

(3) To solve the assignment of jobs and maintenance activities in parallel machine envi-
ronment, we propose a hybrid algorithm that combines Whale Optimization Algorithm and
Variable Neighborhood Search (WOA–VNS).

The remainder of this paper is organized as follows. Section2 describes the studied prob-
lem. Section3 analyzes the sequencing problem of jobs andmaintenance activities on a given
machine, and presents a polynomial time algorithm. Section4 develops a hybridWOA–VNS
algorithm. Section5 discusses the validity of the developed WOA–VNS through rigorous
comparison experiments. Section6 concludes this research.
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2 Problem description

The notations used in this paper and their definitions are presented as follows.

Notions Definitions

n Total number of jobs
m Total number of machines
Ml The machine l, l = 1, . . . ,m.
kmax Number of available maintenance activities, m ≤ kmax ≤ n
kl The number of maintenance activities performed on Ml
J j The job j , j = 1, . . . , n.
p j Normal processing time of J j , j = 1, . . . , n
pAj Actual processing time of J j
nl The number of jobs processed on Ml , where

∑m
l=1 nl = n.

Gil The i th group of jobs processed on Ml , i = 1, . . . , kl .

nil The number of jobs in Gil , where
∑kl

i=1 nil = nl
Pil The processing time of Gil , wherePil = ∑

J j∈Gil
pAj

α The normal duration of a maintenance activity
β The deteriorating maintenance factor, β ≥ 0
mail The actual duration of the i th maintenance activity on Ml
Cmax The makespan

The problem is described as follows. There are n independent jobs to be processed on m
identical parallel machines. All of the jobs are available at time zero, and no preemption is
allowed. Each machine can only process one job at a time, and the processing of each job
cannot be interrupted. As the machine operates, its condition deteriorates, ultimately causing
a gradual increase in the actual processing time of jobs. Hence, implementing maintenance
becomes imperative to minimize actual production time. The maintenance is assumed to be
perfect, ensuring themachine is restored to an “as good as new” condition. It is also presumed
that all machines are initially new. Tomaintain this assumption in subsequent planning phase,
a mandatory maintenance activity is executed immediately after the machine completes its
final job. Throughout the planning horizon, the number of available maintenance activities
is restricted due to the budget constraints. We use kmax (m ≤ kmax ≤ n) to represent the total
number of available maintenance activities and kl to indicate the number of maintenance
activities assigned to Ml . Noting that, kl includes the final mandatory maintenance activity
on Ml . Figure1 is an illustrative diagram of the described problem. We designate the set
of jobs between any two adjacent maintenance activities or prior to the first maintenance
activity as a group. Hence, a schedule on machine Ml can be represented by π(Ml) =
(G1 l , MA1 l , G2 l , MA1 l , . . . ,Gkl ,l , MAkl ,l), where Gil represents the i th group on Ml .

According to Öztürkoğlu [20], the actual processing time of J j can be formulated as:

pA
j = (1 + θ)r−1 p j (1)

where p j is the normal processing time of J j , r represents the position of J j within its
corresponding group, and θ ( ≥ 0) is the deteriorating rate of the machine.

Additionally, the duration of a maintenance activity is also deteriorating. Following Yang
[21], the actual duration of the i th maintenance activity on Ml can be formulated as:

mail = α + βPil (2)
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Fig. 1 Schematic diagram of the proposed problem

where α is the basic duration of a maintenance activity, β is the maintenance deteriorating
factor, and Pil represent represent the actual processing time of Gil .

The objective is to is to determine a combined schedule for both jobs and maintenance
activities thatminimizes themakespan.Using the three-filed notation scheme [22], the studied
problem can be denoted as Pm |pA

j = (1 + θ)r−1 p j , m ≤ MA ≤ kmax|Cmax, where MA
represents the number of maintenance activities actually performed.

3 Special case study

To address our problem, two crucial decisions need to be made: first, allocating jobs and
maintenance activities to machines, and second, organizing the sequence for jobs and main-
tenance activities on each machine. Given the complexity of this problem, our initial focus
will be on the special case where jobs and maintenance activities are already assigned to each
machine.

With the known count of maintenance activities on each machine, the problem on a given
single machine can be denoted as 1 |pA

j = (1 + θ)r−1 p j , MA = kl |Cmax. To address this
problem, we establish essential structural properties and then introduce a heuristic method
in this section.

Lemma 1 For the problem 1 |pA
j = (1 + θ)r−1 p j , MA =kl |Cmax, exchanging the positions

of any two groups does not alter the makespan.

Proof For any given schedule π , the makespan on machine Ml can be calculated as:

Cmax (Ml , π) =
kl∑

i=1

Pil +
kl∑

i=1

mail =
kl∑

i=1

Pil +
kl∑

i=1

(α + βPil)

= klα + (1 + β)

kl∑

i=1

Pil

= klα + (1 + β)

kl∑

i=1

⎛

⎝
∑

J j∈Gil

pA
j

⎞

⎠

(3)
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According to the above equation, it’s evident that the makespan solely relies on the group-
ing result and the job sequence within each group. Changing the order of groups doesn’t
impact the total job processing time or the overall duration of maintenance activities. Thus,
Lemma 1 is proved. ��

Lemma 2 For the problem 1 |pA
j = (1 + θ)r−1 p j , MA =kl |Cmax, if there exists an optimal

schedule, the number of jobs within each group cannot exceed � nl
kl

�.

Proof Suppose there exists an optimal schedule π in which there is a group Gxl

containing ϕ (ϕ ≥ ⌈ nl
kl

⌉ + 1) jobs. Then there must be a group Gyl containing fewer jobs

than
⌈ nl
kl

⌉
. Denote the number of jobs in the group Gyl as δ (δ <

⌈ nl
kl

⌉
). Let Ja represent the

last job in the group Gxl , with a normal processing time of pa . Move Ja to the last position
of the group Gyl to obtain a new schedule π∗. According to Lemma 1, the difference in
makespan between the schedule π and π∗is:

Cmax (Ml , π) − Cmax
(
Ml , π

∗)

= Pxl (π) − Pxl
(
π∗) + Pyl (π) − Pyl

(
π∗)

+ maxl (π) − maxl
(
π∗) + mayl (π) − mayl

(
π∗)

= (1 + θ)ϕ−1 pa − (1 + θ)δ pa + β (1 + θ)ϕ−1 pa − β (1 + θ)δ pa

= (1 + β)
[
(1 + θ)ϕ−1 − (1 + θ)δ

]
pa

(4)

As ϕ − 1 ≥ δ, it follows that Cmax (π) − Cmax (π∗) ≥ 0. This indicates that relocating
job Ja leads to a shorter makespan. Hence, π cannot be the optimal schedule. With this, the
proof of Lemma 2 is completed. ��

Lemma 2 sets an upper limit for the number of jobs within a group but doesn’t ascertain the
exact count of jobs in each group. For example, if there are 10 jobs and 3 maintenance activ-
ities to be scheduled, the possible grouping results could be {n1 l = 4, n2 l = 3, n3 l = 3 }
and {n1 l = 4, n2 l = 4, n3 l = 2}, as indicated by Lemma 2. To address this uncertainty
regarding the number of jobs in each group, Lemma 3 is introduced.

Lemma 3 For the problem 1 |pA
j = (1 + θ)r−1 p j , MA =kl |Cmax, if there exists an optimal

schedule, the number of jobs within a group cannot be less than
⌊ nl
kl

⌋
.

Proof Here are two cases.
Case 1: nl mod kl = 0
In this case, the number of jobs in each group is

⌊ nl
kl

⌋
, where

⌊ nl
kl

⌋ = ⌈ nl
kl

⌉
.

Case 2: nl mod kl 
= 0
Suppose there exists an optimal schedule π in which there is a group Gxl containing

ϕ (ϕ <
⌊ nl
kl

⌋
) jobs. Then there must be more than one group containing

⌈ nl
kl

⌉
jobs. Randomly

choose a group containing
⌈ nl
kl

⌉
jobs and denote this group as Gyl . Let Ja represent the last

job in the group Gyl , with a normal processing time of pa . Move Ja to the last position of
the group Gxl to obtain a new schedule π∗. Then the difference in makespan between the
schedule π and π∗ is:
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Cmax (Ml , π) − Cmax
(
Ml , π

∗)

= Pxl (π) − Pxl
(
π∗) + Pyl (π) − Pyl

(
π∗)

+ maxl (π) − maxl
(
π∗) + mayl (π) − mayl

(
π∗)

= (1 + θ)

⌈
nl
kl

⌉
−1

pa − (1 + θ)ϕ pa + β (1 + θ)

⌈
nl
kl

⌉
−1

pa − β (1 + θ)ϕ pa

= (1 + β)

[

(1 + θ)

⌈
nl
kl

⌉
−1 − (1 + θ)ϕ

]

pa

(5)

As ϕ <
⌊ nl
kl

⌋ = ⌈ nl
kl

⌉ − 1, it follows that Cmax (π) − Cmax (π∗) > 0. This indicates that
relocating job Ja leads to a shorter makespan. Therefore, π cannot be the optimal schedule.

Combining case 1 and case 2, we complete the proof of lemma 3. ��
Lemma 4 Given two sequences of positive numbers, X and Y , the sum of products of their
corresponding elements

∑
XiYi is minimized when the two sequences are monotonic in the

opposite sense.

Proof See in Hardy et al. [23]. ��
Lemma 5 For the problem 1 |pA

j = (1 + θ)r−1 p j , MA =kl |Cmax, if there exists an optimal
schedule, the jobs within a group should be processed in non-increasing order of their normal
processing times.

Proof Suppose that the job sequence in the group Gil is s = {J1, J2, . . . , Jnil }, and the
normal processing time of each job is p j = {p1, p2, . . . , pnil }, then the processing time of
the group Gil and the duration of the closely-following maintenance activity is:

Pil + mail = Pil + α + βPil = α + (1 + β)

nil∑

σ=1

pσ (1 + θ)σ−1 (6)

Clearly, (1 + θ)σ−1 increases with σ, where σ = 1, 2, . . . , nil . Therefore, Pil + mail
is minimized when pσ = {p1, p2, . . . , pnil } is sequenced in non-increasing order, as per
Lemma 4. Thus, the proof of Lemma 5 is completed.

Utilizing the established lemmas, a polynomial time algorithm is developed to solve the
single machine problem 1 |pA

j = (1 + θ)r−1 p j , MA = kl |Cmax. The pseudo-code for the
proposed polynomial-time algorithm are outlined in Algorithm I. Noting that, kl includes the
last mandatory maintenance activity on Ml . ��

Algorithm I: Polynomial time algorithm for single machine problem
1: Input the number of jobs nl and the number of maintenance activities kl
2: Sequence all jobs in descending order of their normal processing times and renumber them, such as

π = {J1, · · · , Jx , · · · , Jnl } which satisfying p1 ≥ · · · ≥ px ≥ · · · ≥ pnl
3: For x → 1 to nl
4: Let a = x mod kl , and b = ⌈ x

kl

⌉

5: If a 
= 0,then
6: Put the job Jx into the bth position in ath group
7: Else
8: Put the job Jx into the bth position in kthl group
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Fig. 2 An example to illustrate Algorithm I

To provide a more intuitive understanding of Algorithm I, we present an example with 10
jobs and 3 maintenance activities (including the last mandatory maintenance activity). Let’s
consider a job set J = {J1, J2, . . . , J10} to be processed on the machine Ml , with the job set
following the condition p1 ≥ p2 ≥ · · · ≥ p10. Based on Algorithm I, the scheduling result
is depicted in Fig. 2.

Theorem 1 Algorithm I is optimal for solving the single machine problem 1 |pA
j

= (1 + θ)r−1 p j , MA =kl |Cmax.

Proof Denote the schedule generated by the Algorithm I as πopt . Evidently, schedule πopt

satisfies Lemmas 2 and 3. Now, let’s shift our focus to the makespan of schedule πopt . The
makespan of schedule πopt can be calculated as follows:

Cmax
(
Ml , π

opt ) = klα + (1 + β)

kl∑

i=1

⎛

⎝
∑

J j∈Gil

pA
j

⎞

⎠

= klα + (1 + β)

[

p1 + · · · + pkl + pkl+1 (1 + θ) + · · · + p2kl (1 + θ)

+ p2kl+1 (1 + θ)2 + · · · + p3kl (1 + θ)2 + p3kl+1 (1 + θ)3

+ · · · + p4kl (1 + θ)3 + · · · + pnl (1 + θ)

⌈
nl
kl

⌉
−1

]

= klα + (1 + β)

nl∑

x=1

px (1 + θ)

⌈
x
kl

⌉
−1

(7)

Since the two sequences,{px } and
{

(1 + θ)

⌈
x
kl

⌉
−1

}

, demonstrate opposite monotonicity,

the makespan is minimized, as per Lemma 4. Therefore, the proposed Algorithm I is optimal
for solving the single machine problem. ��
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4 WOA–VNS algorithm

In Sect. 3, we delve into the special case where jobs and maintenance activities are pre-
assigned to each machine. To solve the joint sequencing of jobs and maintenance activities
on each machine, we present a polynomial time algorithm which is proxved to be opti-
mal. In this section, our focus will be on the allocation of parts and maintenance activities
within the parallel machine environment. Without accounting for the deteriorating effects
and maintenance activities, the investigated parallel problem can be simplified to the prob-
lem Pm||Cmax, which has been proved to be NP-hard by Sethi [24]. Therefore, the proposed
problem is at least NP-hard, and it is difficult to address it with an accurate algorithm. Con-
sequently, to solve the proposed problem within a reasonable time, a hybrid algorithm that
combines Whale Optimization Algorithm and Variable Neighborhood Search (WOA–VNS)
is developed. More specific information about the WOA–VNS algorithm is detailed below.

4.1 Encodingmethod

Due to the mandatory maintenance required after each machine completes its final job, the
actual number of assignable maintenance activities becomes kmax −m. It’s worth noting that,
when the time spent on maintenance exceeds the reduction in processing time for jobs, the
maintenance activity no longer remains beneficial. This implies that an optimal allocation
plan doesn’t necessarily require utilizing all available maintenance activities to their fullest
extent. Consequently, the following one-dimensional vector is proposed to represent the
solution to the addressed problem.

�X = (
x1, x2, . . . , xn, xn+1, . . . , xn+kmax−m

)
, xi ∈ (0, 1]

In the vector �X , the first n elements represent the assignment results for each job, and
the last kmax − m elements represent the allocation results for each maintenance activity.
For the first n elements, if xi falls within the interval ( k−1

M , k
M ], where k = 1, . . . , M , then

job i is assigned to the machine Mk . For the last kmax − m elements, if xi falls within the
interval ( k

M+1 ,
k+1
M+1 ], where k = 1, . . . , M , then the corresponding maintenance activity is

assigned to the machine Mk . It is worth noting that if xi falls within the interval (0, 1
M+1 ],

the corresponding maintenance activity will not be assigned to any machine. This encoding
permits maintenance activities to remain unassigned, ensuring the potential for discovering a
balanced maintenance solution when maintenance resources are excessive. Figure3 provides
a more visual representation of this encoding method with an example involving 10 jobs, 3
machines, and 4 availablemaintenance activities (excluding the final mandatorymaintenance
activity on each machine).

4.2 The standardWOA

The Whale Optimization Algorithm (WOA) was introduced by Mirjalili and Lewis [25] in
2016, drawing inspiration from the hunting behavior of humpback whales. Since the WOA
was developed, it has been widely used in various fields, such as feature selection, cluster-
ing, image classification, and scheduling optimization, due to its straightforward iterative
approach and rapid convergence. The primary steps of the WOA are outlined as follows.
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Fig. 3 An example to illustrate the encoding method

(1) Encircling prey
Since the exact location of the target prey is unknown in advance, theWOAalgorithmoperates
under the assumption that the current optimal individual is the target prey. Subsequently,
candidate whales update their positions in the direction of this presumed prey. This behavior
can be described as follows:

�D =
∣
∣
∣C ∗ �X∗ (t) − �X (t)

∣
∣
∣ (8)

�X (t + 1) = �X∗ (t) − A ∗ �D (9)

where �X∗ is the current optimal individual, t is the current iteration, A and C and are
coefficient values, and

∣
∣
∣
∣ signifies taking the absolute value of each element within the vector.

The calculation formulas for and are as follows:

A = 2a ∗ r − a (10)

C = 2 ∗ r (11)

a = 2 ∗
(

1 − t

Tmax

)

(12)

where Tmax is the maximum number of iterations, and r is a random value in [0,1]

(2) Bubble-net attacking (Exploitation)
While swimming around the prey, whales employ two mechanisms to update their posi-
tions: the shrinkage mechanism and the spiral mechanism. The shrinkage mechanism is
accomplished by establishing the coefficient value within the range of [-1,1] while linearly
decreasing the value of throughout the iterations. The spiral mechanism can be represented
by the following formula.

�D′ =
∣
∣
∣ �X∗ (t) − �X (t)

∣
∣
∣ (13)

�X (t + 1) = �X∗ + �D′ ∗ ebl ∗ cos (2πl) (14)
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Because two mechanisms are used simultaneously, the entire model can be described as
follows.

�X(t + 1) =
{ �X∗(t) − A ∗ �D, i f pi < 0.5

�D′ ∗ ebl ∗ cos (2πl) , i f pi ≥ 0.5
(15)

where pi is a random value in [0,1].

(3) Search for prey
Over the course of iteration, when |A| > 1, the whales update their position according to
the randomly selected whale �Xrand . This mechanism motivates the whales to venture away
from the current best solution, actively seeking potentially superior prey. This behavior can
be expressed as follows.

�D =
∣
∣
∣C ∗ �Xrand − �X(t)

∣
∣
∣ (16)

�X(t + 1) = �Xrand − A ∗ �D (17)

4.3 HybridWOA–VNS

Despite the widespread adoption of the WOA algorithm across diverse applications, certain
researchers have highlighted its potential challenges in effectively exploring extensive search
spaces. This becomes especially pertinent when tackling intricate, large-scale problems [26–
28]. To address these concerns, a VNS algorithm [29] is specifically developed and integrated
into the standard WOA framework, aimed at augmenting its search capabilities.

As known, the key to success for VNS is the neighborhood structure it applies. Given
the distinctive encoding method in this paper, classic local search operators may not be
efficient. Consequently, a novel local search operator is designed, tailored to the specific
characteristics of the encoding method utilized herein. The devised local search operator
initiates bygenerating a random integer τ within the rangeof (1, n+kmax−m). It subsequently
determines whether to alter the job assignment or the maintenance activity assignment based
on the generated integer. Algorithm II delineates the procedure steps of the designed local
search operator.

Algorithm II: Local Search Operator for VNS

1: Input the solution �X
2: Let �Xnew ← �X
3: Randomly generate an integer τ in (1, n + kmax − m)

4: If τ ≤ n , then
5: Randomly generate an integer σ in (1, τ )

6: For i in range (σ, τ )

7: Let �Xnew[i] = �X [τ − i + σ ]
8: Else
9: Let �Xnew [τ ] = 1 − �X [τ ]
10: End if
11: Output �Xnew

Employing the tailored local search operator, a VNS algorithm is further developed and
integrated into theWOA algorithm.Within each iteration, the VNS takes the optimal solution
found by WOA as its initial solution, progressively refining it through iterations using the
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local search operator. Algorithm III illustrates the comprehensive process of the WOA–VNS
algorithm, where lines 21 to 29 delineate the implementation steps of the designed VNS
algorithm.

Algorithm III: Hybrid WOA-VNS algorithm

1: Initialize the whales’ population �Xi , i = 1, . . . , pop
2: Calculate the fitness of each search agent
3: Set the best search agent as �X∗
4: t = 0
5: While t < Tmax
6: For i ← 1 to pop
7: Generate the probability pi
8: Update a, A, C based on (10),(11),(12)
9: If pi < 0.5
10: If |A| < 1
11: Update �Xi by the formula (9)
12: Else
13: Randomly select a search agent �Xrand
14: Update �Xi by the formula (17)
15: End if
16: Else
17: Update �Xi by the formula (14)
18: End if
19: End for
20: Calculate the fitness of each whale and Update �X∗
21: Set E = 1
22: While E ≤ 4
23: Execute Algorithm II for �X∗ and obtain �X∗

new
24: If f i tness( �X∗

new) < f i tness( �X∗)

25: �X∗ ← �X∗
new , E = 1

26: Else
27: E = E + 1
28: End if
29: End while
30: Let t = t + 1
31: End while
32: Return �X∗

5 Computational experiment

To evaluate the efficacy of our algorithm, we conduct a comparative analysis between the
proposed WOA–VNS algorithm and several benchmarks, including the Gurobi solver, along
with four other intelligent algorithms: the standard WOA algorithm [25], the VNS algorithm
[30], the ant colony optimization (ACO) algorithm [31], and the artificial bee colony (ABC)
algorithm [32]. These selected intelligent algorithms, except for the WOA algorithm, have
been enhanced and demonstrated strong performance in solving similar parallel machine
problems. For fair comparisons, the proposed Algorithm I is utilized in all of these algo-
rithms to solve the single machine problem. Moreover, identical initial solutions are used
for all algorithms on each problem instance. All algorithms are implemented in Python and
executed on a computer with an Intel(R) Core (TM) i7-7770 CPU @3.60 GHz, 8GB RAM,
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Table 2 Experimental factors and their levels

Parameters Definitions Levels

p j The processing time of the job J j [10, 20]

θ The production deterioration factor 0.1

α The normal duration of a maintenance activity 10

β The deteriorating maintenance factor, β ≥ 0 0.2

and a Windows 10 operating system. Further details of the computational experiments are
elaborated below.

5.1 Test instances and parameter settings

To ensure the robustness of the results, various scales of test instances are generated. Each
instance is denoted as, where represents the number of jobs, represents the number of
machines, and represents the actual number of assignable maintenance activities. Every
algorithm utilizes a population size set at 10, with the termination condition set to reach 100
iterations. Each algorithm undergoes 10 executions for every test instance. For fair compar-
isons,the suggested parameters for the standard WOA algorithm [25], the VNS algorithm
[30], ACO [31], and ABC [32] are employed. Table 2 details the parameters and their levels
for the addressed problem.

5.2 Comparison with Gurobi solver

This subsection employs both the Gurobi solver and WOA–VNS on various small-scale
problem instances, offering a comparative analysis of their operational outcomes. Before
employing the Gurobi solver, establishing the mathematical model for the addressed problem
is crucial. Given that single-machine problems can be solved by Algorithm I, our primary
objective revolves around determining the allocation of jobs and maintenance activities.
Therefore, the following decision variables are defined:

x[i][ j] =
{
1, job i is asigned to M j

0, otherwise

y[k][ j] =
{
1, the kth maintenance activi t y is asigned to M j

0, otherwise

Further, the mathematical model of the simplified problem can be represented as follows:

Min max
l=1−→m

{
Cmax (Ml , π

opt )
}

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

∑m
j=1 x[i][ j] = 1

∑m
j=1 y[k][ j] ≤ 1

x[i][ j] = {0, 1}
y[k][ j] = {0, 1}

where i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , kmax − m.
In the aforementioned model, the first constraint signifies that a job can only be allocated

to a single machine, and all jobs must be assigned. The subsequent constraint specifies that

123



Journal of Global Optimization

Table 3 Results generated by
WOA–VNS and Gurobi solver

Instance WOA–VNS Gurobi GAP (%)

Solution Time Solution Time

(10,2,3) 102.401 1.09 102.401 1.33 0.00

(10,3,4) 81.220 1.16 81.22 1.74 0.00

(15,2,3) 168.072 1.37 166.233 11.39 1.11

(15,3,4) 111.725 1.43 110.988 16.45 0.66

(20,2,3) 229.973 1.75 223.582 41.51 2.86

(20,3,4) 155.485 1.72 152.236 102.15 2.13

(20,4,5) 119.569 1.94 117.601 103.60 1.67

(50,2,4) 674.598 3.68 656.602 1800 2.74

(50,3,6) 384.800 4.19 373.244 1800 3.10

(50,4,6) 309.917 4.48 NA 1800 –

NA indicates that no feasible solution is obtained within the specified
time

a maintenance activity can be assigned to only one machine or remain unassigned to any
machine. For any given feasible assignment plan, the optimal sequence of jobs and mainte-
nance activities on each machine can be determined by Algorithm I, and the corresponding
makespan on each machine (Cmax (Ml , π

opt )) can be calculated according to formula 7.
To solve the aforementioned model using the Gurobi solver, a maximum runtime of 1800s

is set. Table 3 displays the results of the Gurobi solver and the proposed WOA–VNS for
solving problems of different scales. The final column indicates the difference in outcomes
between theWOA–VNS algorithm and theGurobi solver, also known as theGAP. Examining
Table 3, it’s evident that the WOA–VNS algorithm significantly outperforms the Gurobi
solver in terms of solution time. Furthermore, as the scale reaches (50, 4, 6), the Gurobi
solver fails to yield a feasible solution within the designated time limit. Additionally, for
all test instances, the difference (GAP) between the outcomes of the WOA–VNS algorithm
and the Gurobi solver remains under 4%. Therefore, it can be inferred that the proposed
WOA–VNS is effective in solving the given problem.

5.3 Comparison with other algorithms

In this subsection, the proposed WOA–VNS algorithm is further compared with other intel-
ligent algorithms, namely WOA [25], VNS [30], ACO [31], and ABC [32]. To assess the
advantages of the WOA–VNS algorithm over others, Friedman tests are conducted. These
tests formulate a null hypothesis assuming that the distributions of solutions produced by
WOA, VNS, ABC, ACO, andWOA–VNS are identical. By analyzing the solutions, the tests
calculate the asymptotic significance. If the asymptotic significance is less than 0.05, the
null hypothesis is rejected; otherwise, it is accepted. Table 4 summarizes the results of the
Friedman test, with the asymptotic significant values above 0.05 indicated in bold. The table
indicates that among the 21 test instances, there are significant differences in the solutions
obtained by these algorithms in 19 test instances, excluding instances (150, 3, 8) and (200,
6, 12).

In addition to hypothesis tests, the Friedman tests also yield the mean ranks of WOA,
VNS, ABC, ACO, and WOA–VNS. In the pursuit of minimizing the objective function, a
lower mean rank indicates that the results obtained by a specific algorithm are closer to the
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Fig. 4 Mean ranks of each algorithm for different problem instances

optimal solution. Figure4 vividly portrays the mean ranks of each algorithm across various
problem instances. Remarkably, the WOA–VNS algorithm consistently attains the lowest
mean rank for each test instance. This consistent pattern underscores the superiority of the
proposed WOA–VNS algorithm over others, consistently delivering outstanding results.

To emphasize the superiority ofWOA–VNS over other algorithms, the relative percentage
deviations (RPD) analysis is also performed. The RPD is expressed as follows:

RPD = ZA − ZB

ZB

where ZA is the result obtained by a given algorithm for an instance and ZB is the best result
obtained by all selected algorithms for the same instance. Table 5 displays the RPD results of
the maximum (Max), minimum (Min), average (AVE), and standard deviation (SD) of each
algorithm for different problem instances. The better results are bold.

As shown in Table 5, in terms of minimum (Min) results, the WOA–VNS algorithm
outperforms other selected algorithms in 17 out of 21 test problem instances. Additionally,
when assessing the maximum (Max) and average (AVE) results, the WOA–VNS algorithm
demonstrates superiority over the comparison algorithms across all test instances. Regard-
ing standard deviation (SD), the WOA–VNS algorithm consistently delivers the best results,
except for the specific problem instance (250, 6, 15). Therefore, it can be confidently con-
cluded that the proposed WOA–VNS algorithm is both more efficient and stable compared
to other selected algorithms in effectively addressing the presented problem.

Furthermore, Fig. 5 displays the convergence curves of these algorithms. Each point on
the curve represents the average fitness of all individuals in each generation. Particularly
noteworthy is that even when the iterations reach 80, the WOA–VNS algorithm exhibits
a continuous decline, indicating ongoing improvement. This observation strongly suggests
that the hybrid WOA–VNS algorithm effectively mitigates the original WOA algorithm’s
tendency to converge towards local optima, significantly addressing this limitation.
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Fig. 5 Convergence curves for different problem instances

6 Conclusion

In this paper, we investigate a joint production scheduling andmaintenance planning problem
in the parallel machine system, and the objective to minimize the makespan. Both deteriorat-
ing jobs and deteriorating maintenance activities are considered in our model. Considering
the complexity of this problem, we initiate our study by focusing on a special case wherein
the assignments of jobs and the number of maintenance activities allocated to each machine
are predetermined. To tackle this challenge on a single-machine level, we introduce a heuris-
tic approach that capitalizes on essential structural properties. Subsequently, we extend our
investigation to address the assignment problem encompassing jobs and maintenance activ-
ities within the parallel machine environment, and develop a hybrid WOA–VNS algorithm.
Computational experiments results unveil the superior performance of the WOA–VNS algo-
rithm, which excels in both search capability and stability when compared to theWOA, VNS,
ABC, and ACO algorithms.

Similar to numerous existing studies, our paper assumes a constant processing rate for the
machines. However, in actual production settings, the equipment’s rate is often adjustable.
Future research endeavors can delve into the integration of controllable machining speeds to
offer a more comprehensive analysis. Furthermore, our study does not encompass the consid-
eration of potential random equipment failures. This omission represents another promising
avenue for advancing research in this field, as it introduces an added layer of complexity and
realism to the problem.
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