
Journal of Global Optimization
https://doi.org/10.1007/s10898-024-01393-1

Aircraft conflict resolution with trajectory recovery using
mixed-integer programming

Fernando Dias1 · David Rey2

Received: 1 March 2022 / Accepted: 18 February 2024
© The Author(s) 2024

Abstract
To guarantee the safety of flight operations, decision-support systems for air traffic control
must be able to improve the usage of airspace capacity and handle increasing demand. This
study addresses the aircraft conflict avoidance and trajectory recovery problem. The problem
of finding the least deviation conflict-free aircraft trajectories that guarantee the return to
a target waypoint is highly complex due to the nature of the nonlinear trajectories that are
sought. We present a two-stage iterative algorithm that first solves initial conflicts by manip-
ulating their speed and heading control and then identifying each aircraft’s optimal time to
recover its trajectory towards their nominal one. We extend existing mixed-integer program-
ming formulations by modelling speed and heading control as continuous variables while
recovery time is treated as a discrete variable. We develop a novel iterative approach which
shows that the trajectory recovery costs can be anticipated by inducing avoidance trajecto-
ries with higher deviation, therefore obtaining earlier recovery time within a few iterations.
Numerical results on benchmark conflict resolution problems show that this approach can
solve instances with up to 30 aircraft within 10min.

Keywords Air traffic control · Conflict resolution · Trajectory recovery · Mixed integer
programming

1 Introduction

Conflict detection and resolution (CDR) has a significant impact on the workload of air traffic
controllers [1]. With increased airspace usage, controllers are expected to simultaneously
supervise an increased number of aircraft, thus reducing their cognitive capacity for potential
conflict detection and increasing their stress levels. This calls for the development of CDR
algorithms and their integration as decision-support tools for air traffic controllers.
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Airspace usage has seen an increase in demand throughout the last decades (except dur-
ing specific periods such as post-09/11 attacks and the COVID-19 pandemic). Aligned with
this trend, the limited airspace has put the current air traffic management (ATM) system
under intense pressure. This is reflected in the increasing amount of control necessary to
guarantee safety, which is a crucial aspect of air traffic control (ATC). With the advance of
remote-controlled aerial systems and urban air mobility, denser and more congested traf-
fic configurations are also expected. In such a scenario, aircraft safety might be impaired.
Besides safety issues, conflict detection and resolution (CDR) has a significant impact on the
workload of air traffic controllers [1].With increased airspace usage, controllers are expected
to simultaneously supervise an increased number of aircraft, thus reducing their cognitive
capacity for potential conflict detection and increasing their stress levels. This calls for the
development of CDR algorithms and their integration as decision-support tools for air traffic
controllers. Nevertheless, state-of-the-artmethods for aircraft traffic control are reaching their
limits and new approaches, including more automation, have recently received significant
attention in the field [2, 3]. In air traffic control, two or more aircraft are said to be in conflict
if their trajectories violate horizontal and vertical separation norms. Typically, the horizontal
separation norm is 5NM (nautical mile—1NM is 1852m), and the vertical separation norm
is 1000 ft [4].

The aircraft conflict avoidance and resolution problem can be formulated as an optimiza-
tion problem in which the goal is to find conflict-free trajectories while minimizing a cost
function, e.g. the deviation to the original flight path. Then, trajectory recovery is related to
additional maneuvers required to return the aircraft to their original flight path. Many strate-
gies have been proposed to address trajectory recovery based on the type of maneuvers issued
to aircraft: speed, heading or altitude control. These strategies can be applied separately or
in combination. Conflict resolution using global optimization has recently received growing
attention due to its ability to provide optimal solutions considering all aircraft present within
an airspace region. Following, we review the literature on conflict avoidance in Sect. 1.1
before focusing on efforts to develop approaches for trajectory recovery in Sect. 1.2. We
outline our contributions in Sect. 1.3.

1.1 Conflict avoidance

One of the first global optimization approaches for aircraft conflict resolution was introduced
by [5], which proposed two formulations: one focusing on speed control and another focusing
on heading control, and both minimize overall flight time. In the proposedmixed-integer pro-
gramming (MIP) formulation for conflict resolution with speed control, the authors derived
linear pairwise aircraft separation constraints based on the geometric construction introduced
by [6]. These separation conditions are obtained by projecting an intruder’s shadow (the pro-
jection of an aircraft trajectory into another trajectory) onto a reference aircraft’s trajectory.

In [7], the authors were the first to observe that this geometric construction provided a
basis to characterize the set of pairwise conflict-free trajectories via linear half-planes in the
relative velocity (speed and heading) plane. The authors introduced a nonconvex formulation
for the conflict resolution problem with speed and heading control and proposed a convex
relaxation based on semi-definite programming and a heuristic algorithm to find feasible
solutions to problems with up to 10 aircraft.

Subsequent approaches proposed speed control and altitude level assignment to minimize
fuel consumption by imposing separation at locations where aircraft trajectories intersect [8].
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In [9], the authors proposed a two-stage stochastic optimization model accounting for wind
uncertainty and using speed control. Multi-objective optimization formulations attempting
to perform a trade-off among deconfliction maneuvers (velocity, heading or altitude change)
with the total number of maneuvers, building on the work of [5] were proposed by [10, 11].
Subliminal speed control methods, which focus on speed control only for conflict resolu-
tion, have also proven to be efficient and with low impact in terms of deviation and fuel
consumption. However, they may fail to resolve all conflicts [12–14].

More recently, nonlinear global optimization approaches have received increasing atten-
tion in the literature. In [15], the authors proposed a hybrid algorithm that uses the optimal
solution of a Mixed-Integer Linear Program (MILP) as the starting point for solving a non-
linear formulation of the same problem. In [13], a Mixed-Integer Nonlinear Programming
(MINLP) approach for conflict resolution was proposed. Using only speed control highlights
that subliminal speed control alone may not be sufficient to resolve all conflicts in dense
traffic scenarios. Using a similar framework, Cafieri and Omheni [16] presented a two-step
approach where a maximum number of conflicts are first solved using speed control only, and
outstanding conflicts are solved by heading control. In [17], the author proposed a speed reg-
ulation strategy for aircraft deconfliction using feasibility pump. In [18], a formulation based
on bi-level optimization with multiple follower problems is introduced. Each follower prob-
lem represents a two-aircraft separation problem. The authors presented two formulations,
one using speed control and another using heading control. Recently, Lehouillier et al. [19]
proposed a maneuver-discretized model in which predefined sets of maneuvers are available
for aircraft, and a clique-based formulation is proposed to find the optimal combination of
conflict-free maneuvers. A cut generation algorithm is proposed to solve the correspond-
ing bi-level optimization problems. More recently, a complex number formulation for speed
and heading control without any form of discretization was proposed by [20]. Further, it
was extended by [21] in which an exact constraint generation algorithm was proposed. A
systematic review of mathematical programming methods in ATC can be found in [3].

1.2 Trajectory recovery

Aircraft conflict resolution with trajectory recovery is the problem of finding conflict-free
trajectories that ensure that aircraft recover their initial flight path upon completion of the
maneuvers. This problem has received very little attention in the literature due to its chal-
lenging nature (i.e. nonlinear and nonconvexity). Mathematical programming approaches
that have jointly addressed the avoidance and recovery problems often assume that a pre-
determined set of alternative maneuvers is available to choose from before optimization or
attempt to simplify the formulation by discretizing the domain of trajectory control variables.

In the literature of aircraft conflict resolution, approaches based on mathematical pro-
gramming often opt for a two-stage model. These stages are called avoidance and recovery.
Avoidance corresponds to the maneuvers necessary to avoid conflicts, and recovery corre-
sponds to the maneuvers necessary to restore the aircraft to its original trajectory. Some
modelling approaches ignore this two-stage trajectory model structure and instead develop
nonlinear trajectorymodels wherein aircraft deviate from and return to the initial trajectory in
a more integrated, possibly smooth, fashion. However, because of the difficulty to model this
integrated trajectory design problem using mathematical programming, formulation based
on mathematical programming often separate these two stages.

Despite their potential effectiveness, most efforts in conflict resolution have focused on
ensuring conflict avoidance. Such efforts do not take into account the challenge associated
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withmodelling trajectory recovery or the costs induced by avoidancemaneuvers. Thismay be
critical when conflict resolution is performed using heading control, which may significantly
deviate the aircraft from its initial trajectory, thus possibly increasing flight operating costs.

Meta-heuristics such as genetic algorithms are an alternative in order to avoid the chal-
lenges of expressing analytical trajectories (due to trigonometric functions). Thus, such
meta-heuristics results in the aircraft path being expressed in a discretized manner. In [22],
the aircraft path is divided into different segments based on possible conflict points and turn-
ing points, thus predefining a set of eligible trajectories. An ant colony algorithm was also
proposed by [23], where the authors determined the target point for each aircraft trajectory
and discretized its trajectory using a specific timestep. In [24], a different formulation is
presented in which time and space are represented as discrete variables. In order to generate
a smooth aircraft path (as in [25]) and derive conflict-free solutions, genetic algorithms were
implemented. In addition, in [25], the authors proposed a model which uses an analogy with
light propagation theory to create conflict-free aircraft trajectories with recovery. In [26], the
authors proposed a B-splines model which uses way-points of a given trajectory to design
conflict-free trajectories, including their recovery maneuvers. The authors did not explicitly
separate avoidance from trajectory recovery in [24–26]. In [27], the author proposed a formu-
lation providing a parallel trajectory recovery (which is an alternative trajectory obtained after
performing any recovery maneuver that results in a trajectory which is parallel to initial tra-
jectory of the aircraft) while minimizing fuel consumption and delays. In this model, aircraft
are assumed to perform a preventive maneuver before intersection with other trajectories.
In [11], the author introduced a two-step approach. The first stage was a non-convex mixed
integer nonlinear optimization model for avoidance based on geometric constructions. The
second stage solved a set of unconstrained quadratic models to impose trajectory recovery.

This literature review highlights that despite recent improvements in the modelling of air-
craft conflict resolution problems, designing scalable global optimization methods remains
a challenge, especially if trajectory recovery is considered. Few methods for aircraft trajec-
tory recovery have been proposed, and they typically assume a simplified trajectory design
(as expressed beforehand). This can be justified by the difficulties in formulating trajectory
recovery (trigonometric and nonlinear functions), especially using mathematical program-
ming.

1.3 Our contributions

As highlighted in our literature review, most state-of-the-art models using mathematical
programming focus on conflict avoidance only. This study presents a new two-stage algorithm
for aircraft conflict resolutionwith trajectory recovery.Our approach is basedondecomposing
the problem into two stages: conflict avoidance and trajectory recovery. In this approach, the
speed and heading of aircraft are first optimized to avoid conflicts while minimizing the
deviation from their initial trajectories. Then, in the second stage, aircraft trajectories are
modified to recover a target position on the aircraft’s initial trajectories. These two stages
are incorporated into an iterative algorithm, where the recovery cost is used as part of the
avoidance model to infer how decisions in the avoidance stage have consequences in the
recovery stage and vice-versa. Hence, this algorithm aims to obtain a non-trivial solution
where the overall cost of aircraft maneuvers is minimized. The main contributions of this
study relative to the literature are:
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1. The extension of state-of-the-art mixed-integer formulations for conflict avoidance with
aircraft selection variables that model the choice of deviating or not an aircraft from its
nominal trajectory,

2. The design of a penalty-based algorithm that iterates the conflict-avoidance and trajectory
recovery stages to find non-trivial solutions to the problem at hand, and

3. Extensive numerical experiments on benchmarking problems from the literature that
demonstrate the benefits of the proposed approach.

The paper is organized as follows: in Sect. 2, the two-stage algorithm is detailed, start-
ing with the conflict avoidance formulation and then the trajectory recovery. In Sect. 3, the
experimental framework, the results and discussions are presented. Section4 provides the
conclusion and future research directions.

2 Conflict resolution with trajectory recovery

In this section, we present a novel conflict resolution approach with trajectory recovery based
on decomposing the problem into two stages. The proposed approach aims to solve these
two sub-problems repeatedly: it first solves the conflict avoidance stage parameterized by an
estimate of the recovery costs, and then it solves the trajectory recovery stage based on the
outputs of the first stage.

2.1 Preliminaries

We assume that aircraft current and target positions are known and that aircraft are not in
conflict at t = 0. This sets the context of the optimization problem of interest: given a
set of aircraft with known current and target positions, find the least-deviating conflict-free
trajectories for all aircraft, such that aircraft may safely reach their target destination. To
address this problem, we propose decomposing the trajectory optimization problem into two
stages: (1) conflict avoidance and (2) trajectory recovery. Thefirst stage focuses on controlling
aircraft heading and speed to avoid all conflicts and the second stage focuses on calculating
the optimal time for aircraft to recover safely towards their target position. We focus on the
two-dimensional conflict resolution problem and only consider horizontal aircraft maneuvers
for brevity.

The avoidance stage aims to determine the optimal variation in speed and angle for each
aircraft to avoid conflicts. In the recovery stage, it is necessary to calculate and identify the
maneuvers required to recover the aircraft’s initial trajectories. In order to impose airspace
safety, it is also necessary to guarantee separation conditions in the recovery stage. In mathe-
matical programming, recovery approaches are challenging for several reasons. Even under
the simplifying assumption that aircraft trajectories can bemodelled as linear uniformmotion
over time, using the Euclidean distance to measure their relative distance and evaluate the
separation condition yields computational hurdles. This leads to equations using quadratic
and trigonometric elements, that are difficult to handle. Thus, such formulations may not
scale easily and be used in large scenarios. Second, Euclidean distance creates quadratic
terms that are nonlinear and nonconvex concerning decision variables, resulting in formu-
lations that cannot be easily solved. As presented by [5, 10, 20], nonlinear constraints can
be further simplified into a set of integer-linear equations with regards to aircraft velocity.
However, these formulations only focus on separating aircraft to solve existing conflicts and
ignore the process of planning aircraft recovery to a target destination. As shown in Fig. 1,
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Fig. 1 Example of a two-aircraft conflict resolution problem. If both aircraft followed their nominal trajectory
(in grey), aircraft i is in conflict with aircraft j . In order to avoid conflict, conflict avoidance maneuvers have
to be taken. For aircraft i , it deviates from its nominal maneuver by following the avoidance trajectory (Ai ).
After a certain amount of time, the aircraft can safely return towards its target point (x̌i ,y̌i ) via the trajectory
recovery (Ri )

trajectories in blue and in red segments are examples of conflict avoidance and trajectory
recovery, respectively. At first, the avoidance (in blue) is performed, followed by another
maneuver (in red) to redirect the aircraft towards its target point (in yellow). In this study, we
focus on developing a global optimization approach to design piecewise linear conflict-free
trajectories (avoidance and recovery) for a set of aircraft to minimize the total deviation with
regards to aircraft nominal trajectories.

2.2 Conflict avoidance

Consider a set of aircraft A sharing the same flight level. For each aircraft i ∈ A, assuming
uniform motion laws apply, its position is: pi (t) = [xi (t) = x̂i + qi v̂i cos(̂θi + θi )t, yi (t) =
ŷi + qi v̂i sin(̂θi + θi )t]� in which vi is the speed, x̂i and ŷi are the initial coordinates of i at
the time of optimization, ̂θi is its initial heading angle, θi is its deviation angle and qi is the
speed deviation. The relative velocity vector of i and j , denoted vi j , can be expressed as:

vi j = [vxi j , vy
i j ]� = [vi,x − v j,x , vi,y − v j,y]�, (1)

where:

vi,x = qi v̂i sin(̂θi + θi ), (2)

vi,y = qi v̂i cos(̂θi + θi ). (3)

Incorporating these elements into the equation of motion gives:

xi (t) = x̂i + vi,x t, (4a)

yi (t) = ŷi + vi,y t . (4b)
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The relative position of aircraft i and j at time t can be represented as pi j (t) = pi (t) −
p j (t). Let d be the horizontal separation norm, typically d = 5 NM. Two aircraft i, j ∈ A
are horizontally separated if and only if: ||pi j (t)|| ≥ d , for all t ≥ 0.

Let P be the set by the pairs of aircraft, i.e. P = {i ∈ A, j ∈ A, i < j}. For each pair
(i, j) ∈ P , the relative position vector pi j (t) is:

pi j (t) = [xi j (t), yi j (t)]�, (5)

and the relative velocity vector vi j = [vxi j , vy
i j ]�, is:

vxi j = qi v̂i cos(̂θi + θi ) − q j v̂ j cos(̂θ j + θ j ), (6a)

v
y
i j = qi v̂i sin(̂θi + θi ) − q j v̂ j sin(̂θ j + θ j ). (6b)

Imposing the separation condition, gives for each pair (i, j) ∈ P:

||pi j (t)|| ≥ d ⇔
√

(xi (t) − y j (t))2 + (yi (t) − y j (t))2 ≥ d, ∀t ≥ 0. (7)

Let x̂i j = x̂i − x̂ j and ŷi j = ŷi − ŷ j . Squaring both sides in Eq. (7), we obtain:

fi j (t) ≡ ((vxi j )
2 + (v

y
i j )

2)t2 + (2vxi j x̂i j + 2vy
i j ŷi j )t + x̂2i j + ŷ2i j − d2 ≥ 0. (8)

The function fi j (t) is a second-order polynomial in t which is minimal for f ′
i j (t) = 0:

f ′
i j (t) = 0 ⇒ tmin

i j ≡ − x̂i jvxi j + ŷi jv
y
i j

(vxi j )
2 + (v

y
i j )

2
. (9)

The time instant tmin
i j represents the time of minimal separation of aircraft i and j . As

noted in several studies [13, 14, 20], if tmin
i j ≤ 0, then aircraft i and j are diverging and,

assuming aircraft are separated at t = 0, they are thus separating for any t ≥ 0. Further,
substituting tmin

i j in fi j (t) yields:

gi j (v
x
i j , v

y
i j ) ≡ fi j (t

min
i j ) = (v

y
i j )

2 (̂x2i j − d2) + (vxi j )
2(ŷ2i j − d2) − (2x̂i j ŷi jv

x
i jv

y
i j ). (10)

Hence, if gi j (vxi j , v
y
i j ) ≥ 0, then aircraft i and j are separated. Therefore, we obtain the

following disjunctive pairwise aircraft separation conditions:

||pi j (t)|| ≥ d,∀t ≥ 0 ⇔ gi j (v
x
i j , v

y
i j ) ≥ 0 ∨ tmin

i j ≤ 0. (11)

The separation condition (11) can be further linearized following the approach described
by [20, 21]. By alternatively fixing variables vxi j and v

y
i j and solving the resulting quadratic

equations, we can obtain the solution for gi j (vxi j , v
y
i j ) = 0. By isolating each variable, we

obtain the discriminants:
{

�vxi j
= 4d2(vy

i j )
2 (̂x2i j + ŷ2i j − d2),

�v
y
i j

= 4d2(vxi j )
2 (̂x2i j + ŷ2i j − d2).

(12)

Assuming aircraft are separated at t = 0, then x̂2i j + ŷ2i j − d2 ≥ 0 holds and thus the

discriminants are positive, and the roots of equation g(vxi j , v
y
i j ) = 0 are the lines defined by

the system of equations:
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Fig. 2 Illustration of a two-aircraft conflict in the plane {(vxi j , vyi j ) ∈ R
2}. The red lines represent the lines P and

N . The dashed blue lines correspond to the linear equations R1 and R2 that are the roots of g(vxi j , v
y
i j ) = 0.

The sign of g(vxi j , v
y
i j ) is shown by the + and − green symbols. The hashed dark green region represents

g(vxi j , v
y
i j ) ≥ 0. The hashed blue half-plane represents diverging trajectories, i.e. tmin

i j (vxi j , v
y
i j ) ≤ 0. (Color

figure online)

(ŷ2i j − d2)vxi j − (x̂i j ŷi j + d
√

x̂2i j + ŷ2i j − d2)vy
i j = 0, (13a)

(ŷ2i j − d2)vxi j − (x̂i j ŷi j − d
√

x̂2i j + ŷ2i j − d2)vy
i j = 0, (13b)

(x̂2i j − d2)vy
i j − (x̂i j ŷi j + d

√

x̂2i j + ŷ2i j − d2)vxi j = 0, (13c)

(x̂2i j − d2)vy
i j − (x̂i j ŷi j − d

√

x̂2i j + ŷ2i j − d2)vxi j = 0. (13d)

If all coefficients in Eq. (13) are non-zero, they define two lines, denoted R1 and R2, in
the plane {(vxi j , vy

i j ) ∈ R
2} and the sign of gi j (vxi j , v

y
i j ) can be characterized based on the

position of (vxi j , v
y
i j ) relative to these lines (see Fig. 2). Recall that according to Eq. (9), the

sign of the dot product p̂i j · vi j indicates aircraft convergence or divergence. Let (P) be the
equation of the line corresponding to the dot product p̂i j · vi j .

vxi j x̂i j + v
y
i j ŷi j = 0. (P)

The line defined by (P) splits the plane {(vxi j , vy
i j ) ∈ R

2} in two half-planes, each of which
representing converging and diverging trajectories, respectively. Consider the line normal to
(P), denoted (N ):

v
y
i j x̂i j − vxi j ŷi j = 0. (N )
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Fig. 3 Illustration of a two-aircraft conflict in the plane {(vxi j , vyi j ) ∈ R
2}. The inner box with black lines

corresponds to the velocity bounds B in the deterministic scenario. The region hashed in red corresponds to
the conflict region C. If relative velocity B intersects with the conflict region B, then there exists a risk of
conflict. (Color figure online)

Recall that any point (vxi j , v
y
i j ) such that tmin

i j ≤ 0 or gi j (vxi j , v
y
i j ) ≥ 0 corresponds to a

pair of conflict-free trajectories.
The conflict region of a pair of aircraft represents the set of relative velocity vectors

(vxi j , v
y
i j ), which corresponds to conflicts. As depicted in Fig. 2, the feasible region is non-

convex. However, it can be represented via a disjunctive formulation. The following set of
constraints can be used to represent this disjunction, which we model using the binary vari-
able zi j ∈ {0, 1}, where the values of γ l

i j , φ
l
i j and γ u

i j , φ
u
i j are coefficients of the lines R1 and

R2 (as depicted in Fig. 2).

v
y
i j x̂i j − vxi j ŷi j ≤ 0, if zi j = 1, ∀(i, j) ∈ P, (14a)

v
y
i j x̂i j − v

y
i j ŷi j ≥ 0, if zi j = 0, ∀(i, j) ∈ P, (14b)

v
y
i jγ

l
i j − vxi jφ

l
i j ≤ 0, if zi j = 1, ∀(i, j) ∈ P, (14c)

v
y
i jγ

u
i j − vxi jφ

u
i j ≥ 0, if zi j = 0, ∀(i, j) ∈ P. (14d)

These equations characterize two convex sub-regions, each representing a set of conflict-
free trajectories. The expressions of these lines (represented by Eq. 14) depend on aircraft
initial positions, i.e. x̂i j , ŷi j . As shown in Theorem 1 of [21], the set of equations described
by Eq. (14) is equivalent to Eq. (11). We recall the formal definition of the conflict region
from [21] and Fig. 3.

Definition 1 (Conflict region, [21]) Consider a pair of aircraft (i, j) ∈ P . Let C be the subset
of R2 defined as:

C ≡
{

(vxi j , v
y
i j ) ∈ R

2 : vxi jγ
l
i j − v

y
i jφ

l
i j ≥ 0 ∧ vxi jγ

u
i j − v

y
i jφ

u
i j ≤ 0

}

. (15)

which means that C is the conflict region of (i, j) ∈ P .

For each aircraft i ∈ A, we assume that the speed rate variable is lower bounded by q
i

and upper bounded by qi , i.e.:

q
i
≤ qi ≤ qi , ∀i ∈ A. (16)
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We assume that the heading deviation is lower bounded by θ i and upper bounded by θ i , i.e.:

θ i ≤ θi ≤ θ i , ∀i ∈ A. (17)

To derive lower and upper bounds on relative velocity components vxi j and v
y
i j , we re-arrange

Eq. (6) using trigonometric identities:

vxi j = qi v̂i cos(̂θi ) cos(θi ) − qi v̂i sin(̂θi ) sin(θi )

− q j v̂ j cos(̂θ j ) cos(θ j ) + q j v̂ j sin(̂θ j ) sin(θ j ), (18a)

v
y
i j = qi v̂i sin(̂θi ) cos(θi ) + qi v̂i cos(̂θi ) sin(θi )

− q j v̂ j sin(̂θ j ) cos(θ j ) − q j v̂ j cos(̂θ j ) sin(θ j ). (18b)

Let vi j,x , vi j,x and vi j,y, vi j,y be the lower and upper bounds for v
x
i j and v

y
i j , respectively.

These bounds can be determined using Eq. (18) and the bounds on speed and heading control
provided in Eqs. (16) and (17). The derived bounds on the relative velocity components can
be used to define a box in the plane {(vxi j , vy

i j ) ∈ R
2}.

Definition 2 (Relative velocity box [21]) Consider a pair of aircraft (i, j) ∈ P . Let B be the
subset of R2 defined as

B ≡
{

(vxi j , v
y
i j ) ∈ R

2 : vi j,x ≤ vxi j ≤ vi j,x , vi j,y ≤ v
y
i j ≤ vi j,y

}

. (19)

B is the relative velocity box of (i, j) ∈ P .

The relative velocity box B characterizes all possible trajectories for the pair (i, j) ∈
P based on the available 2D deconfliction resources, i.e. speed and heading controls. To
characterize the set of conflict-free trajectories of a pair of aircraft (i, j) ∈ P , we evaluate if
there is any intersection between the relative velocity box B with the conflict region of this
pair of aircraft.

In conflict avoidance problems, a common objective is to minimize the combined devia-
tions of all aircraft (based on qi and θi ). This may lead several aircraft to perform minimal
conflict avoidance maneuvers, which may not be desirable from an operational perspective.
As observed in [28], even small deviations may result in costly recovery maneuvers. In order
to generate trajectories where fewer aircraft are controlled and those that are controlled have
a reduced total cost, an additional binary variable is introduced. This variable determines
whether an aircraft is controlled or not. In this formulation, the avoidance stage has the
objective to minimize the total deviation and the number of aircraft that are controlled. Let
ζi ∈ {0, 1} for i ∈ A represent the control variable: ζi = 1 represents the case where aircraft
i modifies its speed and/or heading; and ζi = 0 represents the case where aircraft i does not
perform any conflict avoidance maneuver. To link binary variable ζi with trajectory control
variables, observe that if aircraft i does not perform any maneuver, its speed and heading
control should remain unchanged. This can be expressed as:

q
i
ζi + (1 − ζi ) ≤ qi ≤ qiζi + (1 − ζi ), ∀i ∈ A, (20a)

θ iζi ≤ θi ≤ θ iζi , ∀i ∈ A. (20b)

Let v̂xi j and v̂
y
i j denote the relative velocity components of aircraft pair (i, j) if both

aircraft i and j follow their nominal trajectories, i.e. perform no deviation; and let t̂min
i j be

the corresponding time of minimal separation. Let P0 be the set of aircraft that are predicted
to be in conflict if aircraft follow their nominal trajectory: P0 ≡ {(i, j) ∈ P : gi j (̂vxi j , v̂y

i j ) <
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0 ∧ t̂min
i j > 0}. If a pair of aircraft is predicted to be in conflict if no action is taken, then at

least one of these aircraft must perform avoidance maneuvers. Therefore, the following cuts
are valid inequalities:

ζi + ζ j ≥ 1, ∀(i, j) ∈ P0. (21)

To incorporate the impact of controlling aircraft in the objective function, we propose
to minimize a weighted sum of two terms: a fixed cost linked to control variables (ζi ) and
a variable cost linked to trajectory deviation variables (qi , θi ). We denote λζ the weight
representing the fixed cost of controlling an aircraft, and we denote w in [0, 1] the weight
used to capture the trade-off between heading and speed control deviations.

min
∑

i∈A
(wθ2i + (1 − w)(1 − qi )

2 + λζ ζi ). (22)

The conflict avoidance stage can be formulated as presented in [21] incorporating the
penalty control variable ζi as described in Eq. (20) and constraint (21).

Model 1 (MINLP Formulation for Conflict Avoidance)

Minimize
∑

i∈A
(wθ2i + (1 − w)(1 − qi )

2 + λζ ζi ),

Subject to:

vxi j = qi v̂i cos(̂θi + θi ) − q j v̂ j cos(̂θ j + θ j ), ∀(i, j) ∈ P, (23a)

v
y
i j = qi v̂i sin(̂θi + θi ) − q j v̂ j sin(̂θ j + θ j ), ∀(i, j) ∈ P, (23b)

v
y
i j x̂i j − vxi j ŷi j ≤ 0, if zi j = 1, ∀(i, j) ∈ P, (23c)

v
y
i j x̂i j − vxi j ŷi j ≥ 0, if zi j = 0, ∀(i, j) ∈ P, (23d)

v
y
i jγ

l
i j − vxi jφ

l
i j ≤ 0, if zi j = 1, ∀(i, j) ∈ P, (23e)

v
y
i jγ

u
i j − vxi jφ

u
i j ≥ 0, if zi j = 0, ∀(i, j) ∈ P, (23f)

q
i
ζi + (1 − ζi ) ≤ qi ≤ qiζi + 1(1 − ζi ), ∀i ∈ A, (23g)

θ iζi ≤ θi ≤ θ iζi , ∀i ∈ A, (23h)

θ i ≤ θi ≤ θ i , ∀i ∈ A, (23i)

vxi j , v
y
i j ∈ B, ∀(i, j) ∈ P, (23j)

ζi ∈ {0, 1}, ∀i ∈ A, (23k)

zi j ∈ {0, 1}, ∀(i, j) ∈ P. (23l)

This formulation is nonconvex due to the velocity constraint, which is nonconvex quadratic
(Eq. 6). This results in aMINLP formulation which is challenging to solve and does not scale
easily. Coefficients γ l

i j , φl
i j and γ u

i j , φu
i j (present in Eq. 14) can be pre-processed based on

the sign of x̂i j and ŷi j . Finally, B represents the bounds for the velocity variables (vxi j , v
y
i j ).

2.3 Trajectory recovery

In this study, we consider a simple trajectory recovery model in which deviated aircraft
perform a second maneuver to change their heading or speed to move towards their target
point. This trajectory recovery model was first introduced in [28], and we build on this
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Fig. 4 Calculation of the recovery angle θri . The segment in blue corresponds to the avoidance stage, while
the segment in red corresponds to the trajectory recovery stage. The segments in green are the projection of
trigonometric functions in a right triangle. The initial position is denoted (x̂i , ŷi ), the point of recovery where
the aircraft switches from its avoidance trajectory to its recovery trajectory is (xri , yri ) and the aircraft target
position is (x̌i , y̌i ). (Color figure online)

framework to develop a penalty-based approach. We next recall the main components of this
trajectory recovery model.

Let (x̌i , y̌i ) be the coordinate of the target point of aircraft i , whose second maneuvers
are performed to compensate the deviation performed during the avoidance stage. The speed
maneuver qr is simply defined such as the aircraft are returning their velocity magnitude to
its nominal value, i.e. qri = 1. For the heading changes, the deviation angle (also defined
as the recovery angle, is the heading change maneuver required to compensate the initial
deviation) is based on the time each aircraft moves from its avoidance trajectory towards its
target point. For a given aircraft i ∈ A, its recovery trajectory is defined as: pi (t) = [̂xi +
qi v̂i cos(̂θi + θi )ti + v̂i cos(̂θi )t, ŷi +qi v̂i sin(̂θi + θi )ti + v̂i sin(̂θi )t]T , where ti corresponds
to the recovery time, i.e., the time in which the aircraft changes from its avoidance trajectory
to its trajectory recovery (see Fig. 4). Hence, the deviation angle θri can be calculated as:

θri (ti ) = arcsin
(dai (ti ) sin(θi )

dri (ti )

)

, (24)

where the dai (ti ) (see Eq. (25)) corresponds to the distance flown during the conflict
avoidance stage (from the initial position until the aircraft reaches ti and changes to trajectory
recovery) and dri (ti ) (see Eq. (26) to the distance flown during the recovery stage (from the
time ti where starts its trajectory until it reaches its destination point (x̌i , y̌i )) (see Fig. 4). If
the aircraft did not change its heading angle, the recovery angle is not calculated.

dai (ti ) =
√

(̂xi − x(ti ))2 + (ŷi − y(ti ))2, ∀i ∈ A, (25)

dri (ti ) =
√

(x(ti ) − x̌i )2 + (y(ti ) − y̌i )2, ∀i ∈ A. (26)

In the avoidance stage, the core idea is to compare the distance between each pair of aircraft
and derive time-independent expressions for all instances and impose them as constraints
simultaneously. However, the same cannot be achieved when avoidance and recovery are
calculated simultaneously. This is because the aircraft recovery trajectories are a function of
the time when aircraft perform their recovery maneuver (ti ). It is evident that this expression
is nonlinear with regard to speed and heading variables. Therefore, all the aircraft motion
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during trajectory recovery will depend explicitly on time, making it challenging to use the
avoidance model described beforehand.

Given this context, it is expected that some simplification level is required to make any
formulation usingmathematical programming viable.One of these simplificationswas imple-
mented by [28], where the authors implemented a naive approach for trajectory recovery. It
comprises a two-stage algorithm where avoidance and recovery are solved sequentially.

In this algorithm, themaneuvers determined during the avoidance stage are compensated in
the recovery stage, which means that all maneuvers performed in the recovery are intended
to redirect the aircraft towards its target destination. The algorithm preemptively uses the
recovery stage to determines how costly the deviation is in terms of speed and angle applied.
This way, the trajectory recovery can compensate for the cost during the avoidance stage.
Another characteristic of this formulation is that recovery time is discrete. This reduces the
feasible region and makes the options for trajectory recovery a limited, finite set. Based on
those characteristics, this formulation can solve small to more significant instances (up to 30
aircraft) in a reasonable amount of time. More details can be found in [28].

The main drawback of this formulation is the lack of anticipation of the recovery costs at
the avoidance stage. As both stages are solved separately, and each stage is solved only once,
the solution obtained after solving both stages is myopic. This is not a significant issue for
small instances due to the small amount of aircraft, but it becomes concerning in medium
to large instances. As the number of aircraft and conflicts increase, the naive approach of
[28] is expected to lead to weak solutions that do not anticipate recovery costs in designing
aircraft trajectories. To explore the situation where the avoidance takes the recovery costs
into account, we propose an alternative version of such an algorithm where the total cost
is optimized throughout an iterative algorithm by projecting the cost of recovery operations
into the avoidance stage to obtain non-trivial solutions (i.e. solutions that do not take into
account any recovery cost. We next explain this algorithm in detail.

Each aircraft must perform opposing maneuvers during trajectory recovery to nullify any
deviation that was performed during the avoidance stage. The goal is to guarantee that all
pairs of aircraft are separated throughout the recovery stage. Since the separation condition
in Eq. (14) is based on linear motion, we need to identify at which time each aircraft i ∈ A
will perform its recovery maneuver, i.e. before and after its recovery time ti . We denote Ai

as the avoidance trajectory of aircraft i and Ri as its recovery trajectory. Given a pair (i, j)
of aircraft, we need to ensure that aircraft are separated during all pairwise trajectory stages,
denoted Ai A j , Ai R j , Ri A j and Ri R j . Observe that separation for the stage Ai A j is already
ensured by the solution of Model 1. If aircraft i and j recover at the same time, then aircraft
would directly transition from Ai A j to Ri R j . Otherwise, if i (resp. j) recovers before j
(resp. i), then Ai A j will transition to Ri A j (resp. Ai R j ) before transitioning to Ri R j . We
discretize aircraft recovery times to avoid a nonlinear model (due to trigonometric functions
and quadratic terms) and, therefore, obtain a tractable formulation. Let T be the set of time
periods available for recovery. We require:

ti ∈ {1δ, 2δ, . . . , |T |δ}, (27)

where δ is the length of time periods. Abusing notation, we redefine the separation condition
expressed in Eq. (11) as: gi j (m, n) ≥ 0 and tmin

i j (m, n) ≤ 0 where the pair (m, n) indicates
the time period indices of recovery times ti and t j , respectively (for all cases m ≤ n.). Let
	Xi X j be the set of conflict-free pairs of recovery times for aircraft i, j ∈ A where Xi

represents the state of the trajectory of aircraft i , i.e. Ai or Ri ; and X j represents the state
of the trajectory of aircraft j , i.e. A j or R j . This set can be specified into three different
sets corresponding to the three different states during the recovery stage. The set 	Ri R j is
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Fig. 5 Illustration of fi j (t) for a configuration with gi j < 0 and tmin
i j > 0. τi j represents the start time of the

conflict

defined as:

	Ri R j = {(m, n) ∈ T 2 : gRi R j (m, n) ≥ 0 ∨ tmin
Ri R j

(m, n) ≤ 0}, (28)

where tmin
Ri R j

corresponds to the time of minimum separation between aircraft i and j
in their recovery trajectory. For the states Ai R j and Ri A j an extra condition is required.
Consider the state Ai R j : if the segment of its trajectory corresponding to Ai and R j are in
conflict but aircraft i turns into recovery prior to the start of this conflict, then no conflict
will occur. This is illustrated in Fig. 5 where gAi R j < 0 and tAi R j > 0. Let τAi R j (t j ) be the
smallest root of gAi R j = 0 if j recovers at time t j . If aircraft i recovers prior to τAi R j (t j ),
i.e. ti ≤ τAi R j (t j ), then the conflict will be avoided. Accordingly, we define:

	Ai R j = {(m, n) ∈ T 2 : gAi R j (n) ≥ 0 ∨ tmin
Ai R j

(n) ≤ 0 ∨ m ≤ τAi R j (n)}, (29a)

	Ri A j = {(m, n) ∈ T 2 : gRi A j (m) ≥ 0 ∨ tmin
Ri A j

(m) ≤ 0 ∨ n ≤ τRi A j (m)}. (29b)

Let ρim be a binary variable equal to 1 if aircraft i ∈ A recovers at time periodm ∈ T and
0 otherwise. To track the states of aircraft pair (i, j) which are activated, we introduce two
binary variables αi j and βi j . Those variables are used to identify whether ti < t j (βi j = 1)
which activates state Ri A j , or if ti > t j (αi j = 1) which activates state Ai R j . Variables αi j

and βi j are defined via the constraints:

αi j ≥ 1

|T |
(

∑

m∈T
mρim −

∑

n∈T
nρ jn

)

, ∀(i, j) ∈ P, (30a)

βi j ≥ 1

|T |
(

∑

n∈T
nρ jn −

∑

m∈T
mρim

)

, ∀(i, j) ∈ P, (30b)

αi j + βi j ≤ 1, ∀(i, j) ∈ P. (30c)

We use the following constraints to exclude conflicting trajectories from the feasible set.
Observe that states Ai R j and Ri A j are conditional on the recovery times of ti and t j and
thus the corresponding constraints are only active if i and j do not recover at the same time
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period. Specifically, if ti = t j , then the left-hand sides of constraints (30a) and (30b) are zero
and the separation conditions (31a) and (31b) for the intermediate states Ai R j and Ri A j are
relaxed since αi j = βi j = 0 is feasible.

ρim + ρ jn ≤ 2 − βi j , ∀(i, j) ∈ P, (m, n) /∈ 	Ai R j , (31a)

ρim + ρ jn ≤ 2 − αi j , ∀(i, j) ∈ P, (m, n) /∈ 	Ri A j , (31b)

ρim + ρ jn ≤ 1, ∀(i, j) ∈ P, (m, n) /∈ 	Ri R j . (31c)

Aircraft are assigned a recovery time via the constraint:
∑

m∈T
ρim = 1, ∀i ∈ A. (32)

The second stage aims to identify the optimal time for aircraft to recover towards their
target position. Different from [28], we adapted the objective function used in the avoidance
model (in Model 1) as an aircraft-based coefficient ai , for each i ∈ A:

ai = (1 − w)(1 − qi )
2 + wθ2i + λζ ζi , ∀i ∈ A, (33)

For the recovery stage, we propose minimizing the total weighted recovery time, which
accounts for maneuvers applied in the avoidance stage and aircraft recovery times:

∑

i∈A

∑

m∈T
aiρimt

2
m, (34)

this expression comes from the region enclosed between the nominal trajectory and the
deviating trajectory (as seen in Fig. 4) during the avoidance stage (i.e. the region formed by
the lines describing the nominal and avoidance trajectories), and it is quadratic in t2i . The
trajectory recovery formulation is summarized inModel 2, which is anMIQP (Mixed Integer
Quadratic Programming).

Model 2 (Trajectory Recovery)

Minimize
∑

i∈A

∑

m∈T
aiρimt

2
m,

Subject to:

αi j ≥ 1

|T |
(

∑

m∈T
mρim −

∑

n∈T
nρ jn

)

, ∀(i, j) ∈ P,

βi j ≥ 1

|T |
(

∑

n∈T
nρ jn −

∑

m∈T
mρim

)

, ∀(i, j) ∈ P,

αi j + βi j ≤ 1, ∀(i, j) ∈ P,

ρim + ρ jn ≤ 2 − βi j , ∀(i, j) ∈ P, (m, n) /∈ 	Ai R j ,

ρim + ρ jn ≤ 2 − αi j , ∀(i, j) ∈ P, (m, n) /∈ 	Ri A j ,

ρim + ρ jn ≤ 1, ∀(i, j) ∈ P, (m, n) /∈ 	Ri R j ,
∑

m∈T
ρim = 1, ∀i ∈ A,

ρim ∈ {0, 1}, ∀i ∈ A,m ∈ T ,

αi j , βi j ∈ {0, 1}, ∀(i, j) ∈ P.
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2.4 Penalty-based conflict resolution and trajectory recovery algorithm

The main idea behind the proposed penalty-based approach is to capture the recovery cost
during the avoidance stage. Therefore, its goal is to preemptively consider the cost of the
avoidance stage by anticipating the cost of trajectory recovery. It attempts to construct an
optimized trajectory across both stages, representing a balance between optimizing avoidance
and recovery. In this penalty-based approach, the solution of the recovery stage is used as a
preemptive cost in the avoidance stage. In this case, the algorithm aims to find a trade-off
between the deviation costs incurred during the avoidance and recovery stages. Let TCi be
the total cost per aircraft defined as the combined cost of avoidance and recovery.

TCi = (1 − w)(1 − qi )
2 + wθ2i + λζ ζi + λt t

2
i , ∀i ∈ A, (35)

where λt (≥ 0) is the weight for the recovery time component.
Therefore, the objective function in the avoidance stage is modified to account for the

anticipated cost of trajectory recovery. Let ri be an algorithmic parameter used to account
for the expected recovery cost of each aircraft i ∈ A at the avoidance stage. This parameter
is updated before re-solving the avoidance problem based on the optimal solutions of the
previous avoidance (q� and θ�) and recovery (t�) stages. For each aircraft i ∈ A, we define:

ri = (1 − w)(1 − q�
i )

2 + w(θ�
i )2 + λt (t

�
i )

2. (36)

where q�,θ�, and t� correspond to the optimal speed deviation, heading angle deviation and
recovery time from a previous iteration.

By adding this expression into the avoidance stage, we aim to account for the impact
of recovery costs within the avoidance stage. This approach aims to penalize the control of
aircraft in the avoidance stage proportionally to their anticipated total trajectory deviation.
Thus, the objective function in the avoidance stage can be rewritten as:

min
∑

i∈A
wθ2i + (1 − w)(1 − qi )

2 + ζi (λζ + ri ). (37)

The stopping criterion is based on the variation of the global total cost between two
consecutive iterations, i.e.:

�TC =
∑

i∈A
TCn

i − TCn−1
i , (38)

where n corresponds to the index of the iteration. If the value of �TC is below a predefined
threshold, the algorithm stops; otherwise, the recovery cost is updated, and the algorithm
proceeds. This means that the algorithm reaches a compromised solution, where both avoid-
ance and recovery are minimal, but not trivial, and both stages are equally considered in the
optimization process. Instead of determining a myopic solution for the avoidance stage, i.e.
where aircraft perform minimal deviations without considering trajectory recovery costs, the
algorithm aims to find a trade-off such that recovery costs are anticipated at the avoidance
stage.The optimal solution obtained using the algorithm is also a solution that the penalty-
based approach cannot further improve.

The proposed iterative approach is summarized in Algorithm 1. The algorithm starts
by initializing the algorithmic parameter ri = 0 for all aircraft and solves the first-stage
problem (conflict avoidance) using Model (1). The obtained first stage solution is then used
to determine the sets	Ai R j ,	A j Ri and	Ri R j based on Eqs. (28) and (29). The second stage
(trajectory recovery) is then solved to obtain aircraft recovery times using Model (2). The
combination of the first- and second-stage solutions is used to evaluate the total cost of each
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aircraft (TCi ) using Eq. (35). The best feasible solution is updated if the corresponding global
total cost TC = ∑

i∈A TCi is lower than the incumbent. If the variation of the global total
cost over two consecutive iterations �TC is less than a predefined threshold, the algorithm
stops. Otherwise, the algorithmic parameter ri is updated based on the last solutions of the
first- and second-stage problems and the previous steps are repeated. If a time limit is attained
while solving one of the stages, the best feasible solution is used to progress the iteration.

Algorithm 1 Penalty-based algorithm for the Conflict Resolution Problem with Trajectory
Recovery

Require: A, θ̂ , v̂, q, q, θ , θ , ε

Ensure: ζ �, q�, θ�, t�, TC
1: TC ← +∞
2: ri ← 0, ∀i ∈ A
3: converged ← False
4: while converged = False do
5: q, θ , ζ ← Solve Stage 1 - Avoidance using Model (1)
6: if Infeasible then
7: return Infeasible
8: end if
9: Calculate Sets 	Ai R j , 	Aj Ri and 	Ri R j according to Eqs. (28)–(29)
10: t ← Solve Stage 2 - Recovery using Model (2)
11: if Infeasible then
12: return Infeasible
13: else
14: Update TC
15: ζ � ← ζ

16: q� ← q
17: θ� ← θ

18: t� ← t
19: Calculate �TC
20: end if
21: if �TC ≤ ε then
22: converged ← True
23: else
24: ri ← wθ2i + (1 − w)(1 − qi )

2 + λt t2i
25: end if
26: end while

3 Numerical results

The experimental framework is introduced in Sect. 3.1. A detailed analysis of four instances is
presented in Sect. 3.2. A sensitivity analysis on model parameters in conducted in Sect. 3.3.
The computational performance of the proposed penalty-based approach is examined in
Sect. 3.4.

3.1 Experimental framework

We test the performance of the proposedmixed-integer formulations and algorithm using four
benchmark problems from the literature: the Circle Problem (CP), the Flow Problem (FP), the
Grid Problem (GP) and the Random Circle Problem (RCP). The four types of benchmarking
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Fig. 6 Examples of benchmarking instances for the Circle Problem (CP), Flow Problem (FP), Grid Problem
(GP) and Random Circle Problem (RCP). All of the instances were also used in [21]

instances are illustrated in Fig. 6. The CP consists of a set of aircraft uniformly positioned
on a circle heading towards its centre. Aircraft speeds are assumed to be identical; hence,
the problem is highly symmetric (see Fig. 6a). The CP is notoriously difficult due to the
geometry of initial aircraft configuration and has been widely used for benchmarking CD&R
algorithms in the literature [13, 16, 20, 23, 29]. CP and RCP instances are named CP-N and
RCP-N, respectively, where N is the total number of aircraft. While CP instances are highly
symmetric, theRCP instances have each aircraft randomly and independentlymoving towards
the centre of the circle with a unique initial heading and speed configuration. If a specific RCP
instance is examined, it is referred to by its unique identifier ID and the name RCP-N-ID. For
FP and GP, they are derived from [19], who formally introduced two additional structured
problems which aim to represent more realistic air traffic configurations. The FP consists of
two streams of aircraft separated by an angle α and anchored on the circumference of a circle.
In each stream, aircraft are separated by at least 5 NM from each other. The GP consists of
two FP instances separated by 15 NM diagonally. In our experiments, on each stream of
aircraft in FP and GP instances, aircraft are organized in linear streams initially separated
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by 15 NM. FP and GP instances are named FP-N and GP-N, respectively, where N denotes
the number of aircraft per stream. For all instances, we used α = π

4 . For reproducibility
purposes, all formulations and data used for testing are made available online at the public
repository https://github.com/acrp-lib/acrp-lib.

For all tests, a speed regulation range based on the subliminal speed control [− 6%,+ 3%]
is used, and the typical heading control range [− 30◦,+ 30◦] is also used. For the weight,
we use w = 0.5 and λζ = 1 in the objective in Eq. (33). This value was selected such that
both heading and speed control terms were of a comparable order of magnitude, emphasizing
penalizing heading control. For stage 2, a total of |T | = 15 time periods are used, with a
step of δ = 2 min. To solve avoidance, the algorithm used was derived from the constraint
generation algorithm implemented by [21]Disjunctive, and for the recovery stage, the model
used is presented in Model 2. Both are implemented with Cplex Python API and a time limit
of 5min per solving and 15min per instance.

The proposed approach is compared to the algorithms presented by [28]. Those methods
are respectively referred to as ExactNaive and GreedyNaive Recovery. The first method
corresponds to a similar formulation of the method presented in this paper: it is the first
iteration of Algorithm 1 where the avoidance and recovery stages are each solved only once.
The second is a heuristic-based trajectory recovery procedure that iterates over all time steps
and uses a priority list to decide which aircraft can be recovered at each time step. The priority
list used is based on ri values (36). The algorithm first sorts aircraft accordingly and iterates
over time. At each time, the algorithm iterates over the sorted list of aircraft and checks if
each aircraft can be recovered at the current time. The process is repeated until no aircraft
can recover at the current time. The proposed algorithm has a worst-case time complexity of
O(|T ||A|3). Details of our implementation of both benchmarking algorithms can be found
in [28], and an example of their solution can be found in Fig. 7. Those models were slightly
modified to be comparable to the algorithm presented in this paper. Specifically, the control
variable ζi is introduced in the avoidance stage. Since the solution methods presented in [28]
only solve each stage a single time, they are comparable to the first iteration of Algorithm
(1) if all parameters ri are initialized to zero.

3.2 Illustration

In this section,we illustrate the proposed two-stage iterative algorithm.Wedisplay the optimal
solution obtained for CP instances with eight aircraft and RCP instances with 20 aircraft. In
Fig. 7 using Algorithm 1, dashed grey lines represent initial aircraft trajectories, green lines
represent the avoidance trajectory of stage 1, and orange lines represent recovery trajectories
of stage 2 using Model 2.

We compared the solutions from the penalty-based approach (in green and yellow) against
the solution from the only avoidance separation (as presented by [21]) (in red). The figures
show that the effect of the two computational stages imposes a larger deviation in the avoid-
ance stage to guarantee a feasible trajectory recovery.

In CP-8, we observe that Algorithm 1 trades a larger deviation in the avoidance stage to
obtain an earlier recovery time. In RCP-10-1, we can observe those deviations even more
clearly. In addition, it is shown that only a few aircraft have their trajectories affected by
minor deviations, which would be sufficient for guaranteeing separation conditions instead of
deviating all aircraft (as shown in red). ForRCP-20 andRCP-30 (seeFig. 10 in “AppendixA”),
there are more aircraft to be altered, but overall, they show the same behaviour: more aircraft
with higher avoidance costs and reduced recovery costs, with overall cost improved.
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Fig. 7 Examples of two instances
used to benchmark our
formulation. For all figures, grey
lines represent their nominal
trajectory, orange lines represent
the avoidance trajectory, and
green trajectories correspond to
their recovery. For those results
are using special bounds for
speed ([0.96,1.03]) and for
heading angle([−π

3 ,π3 ]). (Color
figure online)
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Fig. 8 Sensitivity analysis on the preference weight λζ in the objective function Eq. (22). For all figures, �d

represents the total speed and heading deviation defined as
∑

i∈A(1 − qi )
2 + θ2i (in red) and �t represents

the total recovery time defined as
∑

i∈A t2i (in green). All instances tested here are CP-4 and RCP-10. (Color
figure online)

3.3 Sensitivity analysis

To quantify the impact of the preference weights λt and λζ in the proposed total cost function
Eq. (35), we conduct numerical experiments on one instance of each of the four types of
benchmarking instances for varying values of those parameters individually. This experiment
focuses on the typical heading control range [− 30◦,+ 30◦]. Our goal is to show that by
varying those preference weights in λt ∈ ]0, 1[ and λζ ∈ ]0, 1[ the decision-maker can
control the desired level of trade-off between the recovery time and total deviation. Recall
that in the total cost function (37), λζ is the coefficient of ζi and the total cost function has
a minimal value when ζi = 0; therefore, one can expect that increasing λζ will tend to
penalize the number of aircraft controlled and therefore decrease the recovery time. On the
other hand, increasing the value of λt will tend to penalize the recovery time and, therefore,
lead to potentially a greater total deviation of the aircraft.

This behaviour is confirmed in our numerical experiments. Specifically, we solve the
instances CP-4 and RCP-10-3 for λt , λζ = 0.1, . . . , 0.9 in steps of size 0.1, i.e. for a total of
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Fig. 9 Sensitivity analysis on the preference weight λt in the objective function Eq. (22). For all figures, �d
represents the total speed and heading deviation defined as

∑

i∈A(1 − qi )
2 + θ2i (in red) and �t represents

the total recovery time defined as
∑

i∈A t2i (in green). All instances tested here are CP-4 and RCP-10. (Color
figure online)

9 values per instance. Each parameter is changed separately and independently, which means
that when one parameter is changing, the other remains at a fixed value (in this case 0.5). All
instances are solved using Algorithm 1. The change in the total deviation �d and the total
recovery time�t are summarized in Figs. 8 and 9. Figure 8 shows the behaviour of CP-4 and
RCP-10-3 when λζ is changed: using the proposed objective function, the decision-maker
can control which maneuver is prioritized by scaling up or down the preference weights λζ

accordingly. Higher values of λζ will minimize the total deviation, while smaller values of
λζ will prioritize recovery time. We use λζ = 0.25 in the numerical experiments presented
in the remainder of the paper. We find that increasing λζ monotonically decreases the total
deviation and monotonically increases the recovery time for all four instances tested. For λt
(in Fig. 9), higher values lead to theminimization of recovery time and bigger deviation while
increasing λt leads to smaller deviation in heading angle and speed while larger recovery
time. We use λt = 0.25 in the numerical experiments presented in the remainder of the
paper. For the parameter w, we are using the value w = 0.5 based on the sensitivity analysis
presented in [21].
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3.4 Performance of the penalty-based conflict resolution and trajectory recovery
algorithm

The following tables represent the results for all instances. In the header, there are four groups
of columns; the first group refers to the content of each instance: the first column |A| is the
number of aircraft in each instance, and nc is the number of conflicts. The second group
refers to the avoidance stage: Obj. is the objective function; Gap (%) is the optimality gap;
Time(s) is the runtime in seconds, followed by total deviation in terms of |1−qi |, |θi | and ζi ,
respectively. The third group contains the results from the recovery stage using Model 2. It is
reported the average recovery time 1

|A|
∑

i∈A ti among all aircraft min
i∈A ti . All those values are

reported after the last iteration. The fourth group reports the algorithm’s overall performance:
Iter. reports the number of iterations, and Time (s) reports the overall runtime in seconds (s).
We also report the total cost in the first iteration TC0 and in the last iteration TCn . The
gap tolerance was 5%. Table 1 summarizes the results for CP instances, while Tables 3, 5
and 7 for the FP, GP and RCP instances, respectively. For RCP instances, averages over 100
instances are provided, and the standard deviations are presented in parenthesis.

In the results for CP instances in Tables 1 and 2, it is expected that all the aircraft are
moving towards the centre. In terms of the objective function, its value combines all three
variables: speed change, heading angle and recovery time. However, due to their differences
in magnitude,

∑

i∈A ζi is the biggest component of the objective value.. It is consistently
observed that one aircraft can remain in its initial condition in each instance. Inmost instances,
we observed that the objective function is roughly equal to the number of aircraft present in
that instance minus 1. This means that all other aircraft changed their trajectory from nominal
while one remained as it was. This line up perfectly with the algorithm. It is more costly to
alter all aircraft than only altering a few with larger deviations in each one. Such outcomes
differ considerably from the results using naive avoidance, where the global solution would
imply that all aircraft need to perform somemaneuvers. In instances with ten or more aircraft,
there are only slight deviations. Similarly, the variation in the heading angle is considered
negligible for smaller instances. However, it does not increase proportionallywith the number
of conflicts. This observation shows that heading changes are used sporadically.

Moreover, the results for the penalty-based approach show that only a small amount of
aircraft is required to be controlled, but the observed total deviations are more significant
than in the naive approach. In terms of runtime, all instances with 12 aircraft can be solved
within the time limit. In the recovery stage, the average recovery time does not increase with
the number of aircraft (around 0.32h on average), with the minimum recovery time around
5min while the maximum peaks at almost 1h. For all instances with 12 or more aircraft,
the algorithm could not find a solution within the time limit. Most instances can be solved
within the time limit for recovery time. However, for the denser instances, the time limit was
reached during the avoidance stage, compromising the final solution after the recovery stage.

The algorithm only requires up to 3 iterations to obtain a solution within the convergence
criterion used in terms of iterations. In comparison with the benchmark in Table 2, we can
conclude by the TC value that the speed variation is relatively smaller and the angle deviation
is overall larger compared to both ExactNaive (from [28]) andGreedyNaive (from [21]). This
comparison can be verified by comparing the deviation values reported in Table 2 between all
three models tested. This means that the recovery time is also considerably larger (in terms
of value compared to those reported by the ExactNaive algorithm in Table 2). This is mainly
due to the trivial solutions where the main focus is to solve the conflict as it comes without
any consideration relating to the recovery (as it is done in the iterative algorithm). Another
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observation (seen in Table 4) is that the recovery strategies presented in the ExactNaive and
the GreedyNaive methods always provided a strategy where the recovery time was slightly
higher for the latter and considerably higher for the former. This solidifies that using the
recovery cost as a preemptive measure contributes to better performance and usage of the
airspace configuration.

The results for FP instances are presented in Table 3. In the avoidance stage, the objective
function is directly related to the number of conflicts in each instance, and it shows that
it can be approximated by |A| − 2. Similarly to the CP instances, the objective function
values are a combination of the number of aircraft which performed a maneuver, speed and
heading changes. For FP instances, these values largely amounted from the

∑

i∈A ζi . Speed
change and angle deviation have a negligible contribution to those values. Due to the initial
configuration of the aircraft in these instances, larger angle deviations are required to avoid
conflict. This is justified by the higher values of

∑

i∈A |θi | in comparison to
∑

i∈A |1 − qi |.
The runtime for the avoidance stage is also quite small, with less than 40s for any instance. In
the recovery stage, the average recovery time increases with the number of aircraft (around
0.55h on average), with the minimum recovery time around 20min (as seen in Table 3, while
the maximum peaks at almost 1h. These values are justified by the fact that all aircraft must
finish their routes at the same point (however, at different time intervals). In this case, aircraft
in the leading position in each stream have small deviations, while any aircraft towards the
end of the stream has more complex trajectories to avoid conflict with any aircraft ahead of
them (it requires a combination of speed and angle in order to avoid them). For recovery
time, most instances are solved within the time limit, but for the more prominent instances,
the obtained solution in the avoidance stage and consequently in the recovery stage time out.
The algorithm only requires up to 4 iterations to obtain a solution within the convergence
criterion used in terms of iterations. In comparison with the benchmark in Table 4, we can
conclude that the penalty-based offers the best cost (total and per aircraft) for all instances.
However, it has a higher demand in terms of runtime. Because of the lack of symmetry, those
instances do not allow a more balanced arrangement of maneuvers among the aircraft, which
leads to higher averages of TC values (compared to CP instances). In addition, the iterative
algorithm allows for those maneuvers to be refined further from the original configuration,
which is unavailable to the other two strategies. By each iteration, each maneuver (either
speed or heading changes and recovery time) can be recalculated in order to find a solution
that minimizes total costs. Another observation is that the recovery strategies presented in
the ExactNaive and theGreedyNaivemethods always provided a strategy where the recovery
time was slightly higher for the latter and considerably higher for the former.

In Tables 5 and 6, all the remarks made about FP instances can be further extended to
GP instances. Especially since the trends observed in the former are even more evident in
the latter. One important observation is that even though GP instances have a considerably
larger number of conflicts, their runtime and total cost do not increase monotonically with
the number of aircraft and the number of conflicts.

The results for RCP instances are presented in Table 7. For the avoidance stage, the
objective function reflects the number of aircraft required to be separated. As indicated by the
objective function values, which are at 2.16 for RCP-10, 6.66 for RCP-20 and 12.6 for RCP-
30, which values are very close to the values obtained by

∑

i∈A ζi . Regarding speed, most
aircraft do not perform relatively large deviations. The values are close to the nominal value,
with only 0.02 for RCP-10, 0.10 for RCP-20 and 0.39 for RCP-30. For heading changes, the
values are small, reflecting that most aircraft do not perform any deviation in heading either:
0.02 for RCP-10, 0.12 for RCP-20 and 0.40 for RCP-30. However, compared to the heading
deviation obtained using the naive approach, it is clear that the heading deviation in thatmodel
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is considerably smaller and that most of the total deviation is caused by speed changes. The
opposite behaviour is observed here. The runtime for those instances is reasonably short,
and instances with up to 30 aircraft can be solved in less than 10s. Compared to the naive
approach, which provided balanced solutionswith equal contribution from speed and heading
control, the results from the penalty-based approach state that speed and heading control can
be kept to their minimum.

Finally, the optimality gap is negligible in all instances. In the recovery stage, the run-
time increases considerably with the number of aircraft given that with more aircraft, the
number of alternative routes to choose an optimal from increases drastically: up to 2.14 s for
RCP-10, 259s for RCP-20 and time out for 100% of the instances under 5min of the time
limit. Regarding the number of iterations, RCP-10 instances and RCP-20 instances require
up to 4 iterations to achieve convergence while solving RCP-30 instances; only up to two
iterations are executed due to the time limit. Compared with the benchmark methods (i.e.
naive approach), the results in Table 8 show that the recovery time is significantly larger than
the values obtained via the penalty-based algorithm. On the other hand, the runtime observed
by the naive approach is relatively small, which highlights the computational trade-off at
stake.

4 Conclusion

Findings are summarized in Sect. 4.1 and future research directions are discussed in Sect. 4.2.

4.1 Summary of findings

A new mixed-integer formulation and a penalty-based algorithm for the aircraft conflict
resolution problem with trajectory recovery are proposed. We solve aircraft collision avoid-
ance considering speed and heading controls, as well as binary aircraft selection variables.
This is incorporated into an iterative two-stage algorithm that incorporates the projected cost
of recovering aircraft to their target destination into the avoidance stage. The performance
of this approach revealed that by echoing the cost associated with trajectory recovery, the
avoidance stage decisions could be modified to minimize preemptively the overall cost of air-
craft trajectory deviations. On average, a few iterations are sufficient to obtain improvements
compared to naive approaches where more significant deviations in the avoidance stage are
required but compensated with an earlier recovery time in the recovery stage. This reveals a
trade-off between collision avoidance and trajectory recovery operations. The performance
of the Penalty-based algorithm shows that the number of aircraft required to be maneuvered
is reduced compared that of naive approaches. While the naive approaches provide more
balanced solutions in terms of maneuvers across aircraft, they are also more demanding, i.e.
most, if not all, aircraft are required to perform at least one maneuver. The Penalty-based
algorithm developed in this study presents an alternative solution where fewer aircraft are
controlled with higher deviations, which is expected to facilitate air traffic control operations.

4.2 Future research and perspectives

The most significant limitation in the iterative two-stage algorithm is conflict avoidance
and trajectory recovery decomposition. Although this is a common practice in mathematical
programming, there is no guarantee of the quality of the solution. Ideally, a global solution
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should be created by jointly optimizing both stages in a unified formulation. The nonlinearity
and complexity of such formulations heavily challenge this. Therefore, further research is
needed to model this problem more simply and efficiently. In addition, the cost of recov-
ery is projected into the avoidance stage throughout the iterations. Alternatively, stochastic
optimization methods can be used to determine the expected cost of recovery maneuvers
already incorporated in the avoidance stage. Finally, the discretization of any variable is a
limitation and modelling recovery time as a continuous variable may help reduce the total
cost of trajectories.

Further testing is required to fully assess the impact of the control variables on solu-
tion quality. Notably, quantifying the impact of first-stage formulations with non-discretized
heading changes and second-stage formulations continuously is critical to evaluate the cost
of maneuver discretization. Both formulations presented here are deterministic, where no
uncertainty is considered. An alternative formulation could consider the aircraft conflict and
resolution problem under uncertainty where weather effects and measurement errors may
affect the aircraft’s speed. Such trajectory prediction uncertainty would also affect trajectory
recovery operations, thus leading to a richer modelling framework capable of accounting for
perturbations and measurement errors.

A Extra figures

See Fig. 10.
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Fig. 10 Examples of two more
instances used to benchmark our
formulation. For all figures, grey
lines represent their nominal
trajectory, orange lines represent
the avoidance trajectory, and
green trajectories correspond to
their recovery. For those results
are using special bounds for
speed ([0.96,1.03]) and for
heading angle ([−π

3 ,π3 ]). (Color
figure online)
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