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Abstract
In this paper,weperformoptimality conditions and sensitivity analysis for parametric noncon-
vexminimax programming problems. Our aim is to study the necessary optimality conditions
by using the Mordukhovich (limiting) subdifferential and to give upper estimations for the
Mordukhovich subdifferential of the optimal value function in the problem under considera-
tion. The optimality conditions and sensitivity analysis are obtained by using upper estimates
for Mordukhovich subdifferentials of the maximum function. The results on optimality con-
ditions are then applied to parametric multiobjective optimization problems. An example is
given to illustrate our results.

Keywords Parametric nonconvex minimax programming · Metric qualification condition ·
Subdifferentiation of maximum functions · Optimality conditions · Optimal value function ·
Mordukhovich subdifferentials

Mathematics Subject Classification 49K35 · 90C29 · 90C31 · 90C46

B N. V. Tuyen
tuyensp2@yahoo.com ; nguyenvantuyen83@hpu2.edu.vn

D. T. V. An
andtv@tnus.edu.vn

N. H. Hung
nguyenhuyhung@hpu2.edu.vn

D. T. Ngoan
dtngoan@hunre.edu.vn

1 Department of Mathematics and Informatics, Thai Nguyen University of Sciences, Thai Nguyen
250000, Vietnam

2 Department of Mathematics, Hanoi Pedagogical University 2, Xuan Hoa, Phuc Yen, Vinh Phuc,
Vietnam

3 Department of Basic Sciences, Hanoi University of Natural Resources and Environment, 11916 Hanoi,
Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01388-y&domain=pdf
http://orcid.org/0000-0003-1822-4929
http://orcid.org/0000-0003-1920-310X


54 Journal of Global Optimization (2024) 90:53–72

1 Introduction

Optimization problems, in which both minimization and maximization processes are con-
sidered, are known in the area of mathematical programming as minimax problems. Such
kind of optimization problems is an important research focus in mathematics, economics,
and computer science (e.g., Chebyshev’s theory of best approximation [8], multiobjective
optimization [10], game theory [5, 30],…). According to Demyanov andMalozemov [8], the
minimax programming problems can be split into two classes which have their own interests:
discrete minimax problems and continuous minimax problems. The best approximation in
Chebyshev’s sense is a nonsmooth discrete minimax problem (see [8, p. 1]), while a matrix
game leads to a continuous minimax problem (see [8, p. 3], [30]).

Optimal value functions of parametric optimization problems play a crucial role in opti-
mal control and in the study of optimization problems. Investigations on the sensitivity of
parametric optimization problems are vital in optimization and variational analysis. They
allow us to understand behaviors of the optimal value function when parameters appear-
ing in the problem under consideration modify according to some perturbation via their
generalized derivatives/subdifferentials. Studies on differentiability properties of optimal
value functions in parametric mathematical programming are usually classified as studies on
sensitivity analysis of optimization problems. For nonconvex optimization problems, Mor-
dukhovich and his co-authors in [26], [20, Chapter 1], [25], Huong et al. [11], Jourani [17],
Penot and his co-workers in [16], [28, Chapter 4] have derived formulas for computing or
estimating the Fréchet (regular) subdifferential, Mordukhovich (limiting) subdifferential, G-
subdifferential of optimal value functions. While, by using sum rules which are known as
the Moreau-Rockafellar theorems and appropriate regularity conditions, the papers [1, 2, 11]
and the works [21, Chapter 3], [22], [23, Chapter 4] [24] have provided formulas for comput-
ing the subdifferential of convex analysis of optimal value functions in convex optimization
problems.

To solve optimization problems, one often uses optimality conditions, in particular, neces-
sary optimality conditions. Necessary optimality conditions help us solve problems through
manual calculations and are useful as stopping criteria in algorithms. It happens that the the-
ory of optimality conditions is strongly linked with sensitivity analysis, see, e.g., [4, Chapter
4] and [29, Chapter 3]. In fact, various results concerning optimality conditionswere obtained
as products of research on sensitivity analysis.

In this paper, we are interested in discrete minimax problems. We aim at studying opti-
mality conditions and sensitivity analysis of parametric nonconvex minimax programming
problems. A major part of the topic on minimax programming problems is the study of opti-
mality conditions as well as duality results with both differentiable and non-differentiable
cases, see, e.g., [6], [8, Chapters 3, 4, and 6], [3], [9], [31], [32] and the references therein.
Namely, Chuong and Kim [6], Zhong and Jin [32] have studied optimality conditions and
duality in nondifferentiable minimax programming and vector optimization in an Asplund
space setting/a finite-dimensional space setting by using Mordukhovich subdifferentials and
some advanced tools of variational analysis. Among necessary conditions, the Lipschitz con-
tinuity of the functions is the main key. Meanwhile, Bao et al. [3] have considered minimax
optimization problems with inequality, equality, and geometric constraints in the setting of
nondifferentiable and non-Lipschitz functions in Asplund spaces. In detail, necessary opti-
mality conditions in terms of upper and/or lower subdifferentials of both cost and constraint
functions as well as necessary optimality conditions in the fuzzy form have been given.
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Related to the study of sensitivity analysis in parametric minimax programming problems,
the results in [7] are the first ones, following our knowledge. Namely, the authors in [7]
obtained a differential expansion of the optimal value function in the neighborhood of a
certain point (Theorems 1 and 2) under some suitable conditions. Until now, we have not
found any works which are investigated the sensitivity analysis of the parametric minimax
programming problems.

Qualification conditions are sufficient conditions for the validity of fundamental calcu-
lus rules in variational analysis, convex analysis, and optimization theory. For instance, the
well-known Moreau-Rockafellar theorem in convex analysis supplies the formula for com-
puting the subdifferential sum of two proper convex functions under the condition that one of
these functions is continuous at a point belonging to the domain of the other. Meanwhile, in
variational analysis, the Lipschitz continuity guarantees the sum rule for the Mordukhovich
subdifferentials. Metric qualification conditions which are formulated through the distance
functions were first studied and developed in the papers by Ioffe, Penot, Jourani and Thibault
[12, 16, 18] and recently by Huong et al. [11] for the nonconvex case. According to Ioffe
[14], the metric qualification condition is even less restrictive than the weakest qualifica-
tion conditions used in convex analysis. The relationship between the metric qualification
condition and other qualification conditions (e.g., the calmness qualification condition, the
subregularity qualification condition, the metric regularity condition, the uniformly lower
semicontinuity) was examined in [14, 15, 19]. These conditions play vital roles in deriving
intersection rules for normal cones see, e.g., [11], [13], [27], [28, Theorem 6.41]. The latter
rules play an important role in the study of optimality conditions and sensitivity analysis of
parametric optimization problems.

As mentioned above, we will study optimality conditions as well as sensitivity analysis
of parametric nonconvex minimax programming problems in this paper. Our main tools
are the sum rule for subdifferentials and subdifferentiation of maximum functions under
two kinds of qualification conditions: the metric qualification condition and the Lipschitz
continuity among other necessary conditions. More precisely, the formula for estimating the
Mordukhovich subdifferential of maximum functions is presented in [20, Theorem 3.46]
by employing the Lipschitz continuity of the component functions. Meanwhile, using the
metric qualification condition to investigate the Mordukhovich subdifferential of maximum
functions has not been mentioned in the literature. So we present here a detail proof for
the latter (Proposition 3.3). For estimating or computing the sum rule for subdifferentials of
nondifferentiable and non-Lipschitz functions in infinite-dimensional spaces, the sequentially
normally compact (SNC) property of sets together with normal qualification condition are
the main ingredients. However, it has been shown in [27, Proposition 3.7] that the metric
qualification condition is really weaker than the normal qualification condition. In other
words, the metric qualification condition is a very weak condition stated in terms of some
distance estimates and without any additional compactness assumptions. We then use these
results to characterize the necessary optimality condition for the problem under consideration
(Theorems3.1 and 3.2).We also design an example to show that Theorem3.1where themetric
qualification conditions are required can be applicable, meanwhile, Theorem 3.2 based on the
Lipschitz continuity cannot. Moreover, it is worth emphasizing that the study of sensitivity
for parametric nonconvex minimax programming problems has not received much attention
since the firstwork byDarkhovskii andLevitin [7] in 1976.Withwide applications of the class
of minimax programming problems, we hope that the contributions (Theorems 3.1, 3.2, 4.1
and 4.2 ) in this paper will promote to enrich the results on optimality conditions as well as
sensitivity analysis of the minimax programming problem.
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The remaining sections are as follows. Section2 is for the problem formulation and some
auxiliary concepts in variational analysis from the books [20, 28]. Optimality conditions are
established in Sect. 3. These results are then applied to multiobjective optimization problems.
Section4 is devoted to the study of differential stability of the parametric nonconvexminimax
programming problem under two kinds of qualification conditions: the metric qualification
condition and the Lipschitz continuity among other necessary conditions. The last section
provides some concluding remarks.

Throughout the paper, we use the standard notations in variational analysis; see e.g.,
[20]. The topological dual spaces of Banach spaces (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) are denoted,
respectively, by X∗ and Y ∗. We write B(x, r) and BX∗ for the open ball centered at x with
radius r > 0 and the closed unit ball of X∗, respectively. The notation x∗

k → x∗ means the

norm convergence to x∗ of the sequence {x∗
k }k∈N with N := {1, 2, . . .}, while x∗

k
w∗−→ x∗

indicates the convergence to x∗ of {x∗
k }k∈N in the weak∗ topology of X∗.

2 Preliminaries

Let X and Y be two Banach spaces and let m be a positive integer number. We consider the
parametric nonconvex minimax programming problem

min
y∈G(x)

max
k∈K

ϕk(x, y), (Px )

depending on the parameter x , where G : X ⇒ Y is a given multifunction, K := {1, . . . , m},
ϕk : X × Y → R := R ∪ {−∞,+∞}, k ∈ K , are proper extended-real-valued functions.
Here and subsequently, we denote

ϕ(x, y) := max
k∈K

ϕk(x, y)

for all (x, y) ∈ X × Y . Then the optimal value function μ : X → R of (Px ) is

μ(x) = inf
y∈G(x)

ϕ(x, y), (2.1)

where by convention, μ(x) is defined to be +∞ if x /∈ domG. We define the solution map
M : X ⇒ Y of (Px ) by

M(x) := {y ∈ G(x) | μ(x) = ϕ(x, y)}.
Definition 2.1 For a given parameter x , a point ȳ ∈ G(x) is said to be a local optimal solution
of problem (Px ) if there exists a neighborhood U of ȳ such that

ϕ(x, ȳ) ≤ ϕ(x, y) ∀y ∈ U ∩ G(x). (2.2)

If the inequality in (2.2) holds for every y ∈ G(x), then ȳ is called a global optimal solution
(or simply, optimal solution) of (Px ). The latter means that ȳ ∈ M(x).

In this paper, we aim to investigate optimality conditions and sensitivity analysis of para-
metric minimax programming problem (Px ). To do that, we need some concepts and results
from the books [20, 28].

For a set-valued map F : X ⇒ X∗, the limiting construction

Lim sup
x→x̄

F(x) :=
{
x∗ ∈ X∗ |∃xk → x̄, x∗

k
w∗−→ x∗ with x∗

k ∈ F(xk),∀k ∈ N

}
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is known as the sequential Painlevé-Kuratowski upper limit of F as x → x̄ with respect to
the norm topology of X and the weak∗ topology of X∗.

If Ω ⊂ X is a given subset, the notation u
Ω−→ x means that u → x and u ∈ Ω .

Definition 2.2 (See [20, Definition 1.1]) Let Ω be a nonempty subset of X .

(i) For any x ∈ Ω and ε ≥ 0, the set of ε-normals to Ω at x is defined by

N̂ε(x;Ω) :=
{

x∗ ∈ X∗ | lim sup

u
Ω−→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

}
.

The set N̂ (x;Ω) := N̂0(x;Ω) is called the Fréchet normal cone or the regular normal cone
to Ω at x . If x /∈ Ω , we put N̂ε(x;Ω) = ∅ for all ε ≥ 0.

(ii) Let x̄ ∈ Ω . The set

N (x̄;Ω) := Lim sup
x→x̄,ε↓0

N̂ε(x;Ω),

is called the Mordukhovich normal cone or the limiting normal cone to Ω at x̄ . We put
N (x̄;Ω) = ∅ if x̄ /∈ Ω.

It is clear that N̂ (x;Ω) ⊂ N (x;Ω) for all Ω ⊂ X and x ∈ Ω . In the case, where Ω is
convex, the Mordukhovich normal cone and the Fréchet normal cone are coincident and they
coincide with the normal cone of convex analysis, i.e.,

N (x̄;Ω) = N̂ (x̄;Ω) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ Ω},
(see [28, Excercise 6, p. 174 and Proposition 6.6]).

Let f : X → R be an extended-real-valued function. The domain and epigraph of f are
given, respectively, by

dom f := {x ∈ X | f (x) < ∞}
and

epi f := {(x, α) ∈ X × R | α ≥ f (x)}.
One says that f is proper if dom f is nonempty, and if f (x) > −∞ for all x ∈ X . Recall
that f is lower semicontinuous (l.s.c.) at some x̄ ∈ X if for every real number r < f (x̄) there
exists some member V of the familyN (x̄) of neighborhoods of x̄ such that r < f (v) for all
v ∈ V . We say that f is l.s.c. around x̄ when it is l.s.c. at any point of some neighborhood of
x̄ . If f is l.s.c. at every x ∈ X , f is said to be l.s.c. on X . We observe that f is automatically
lower semicontinuous at x̄ when f (x̄) = −∞; when f (x̄) = +∞ the lower semicontinuity
of f means that the values of f remain as large as required, provided one stays in some small
neighborhood of x̄ .

The upper semicontinuity (u.s.c.) of f is defined symmetrically from the lower semiconti-
nuity of − f . Obviously, the function f is continuous at x̄ iff it is both lower semicontinuous
and upper semicontinuous at x̄ .

Following [28, Proposition 1.15.], f is lower semicontinuous iff epi f is a closed set in
X × Y .

Definition 2.3 (See [20, Definition 1.77]) Let f : X → R be an extended-real-valued func-
tion and let x̄ ∈ X . Suppose that f (x̄) is finite.
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(i) The set

∂ f (x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N ((x̄, f (x̄)); epi f )}
is said to be the Mordukhovich subdifferential or the limiting subdifferential of f at x̄ .

(ii) The set

∂∞ f (x̄) := {x∗ ∈ X∗ | (x∗, 0) ∈ N ((x̄, f (x̄)); epi f )}
is called the singular subdifferential of f at x̄ .

One puts ∂ f (x̄) := ∂∞ f (x̄) := ∅ when f (x̄) ∈ {−∞,+∞}.

Recall that the function f is Lipschitz continuous around x̄ (cf. [20, p. 19]) if there are a
neighborhood U of x̄ and a constant � ≥ 0 such that

| f (x) − f (y)| ≤ �‖x − y‖, ∀x, y ∈ U .

Since ∂∞ f (x̄) = {0} if f is Lipschitz continuous around x̄ (see [20, Corollary 1.81]),
the singular subdifferential occurs to be useful for the study of non-Lipschitzian functions.
Namely, it is utilized in establishing appropriate qualification conditions for subdifferential
calculus rules as in [20, Chapter 3].

If f is convex, theMordukhovich subdifferential and the subdifferential of convex analysis
coincide, i.e.,

∂ f (x̄) = {x∗ ∈ X∗ | f (x) − f (x̄) ≥ 〈x∗, x − x̄〉, ∀x ∈ X},
(see [28, Proposition 6.17(b)]).

Consider the indicator function δΩ : X → R ∪ {+∞} defined by δΩ(x) = 0 for x ∈ Ω

and δΩ(x) = +∞ otherwise. We have a relation between the Mordukhovich normal cone
and Mordukhovich subdifferential of the indicator function as follows (see [20, Proposition
1.79]

N (x̄;Ω) = ∂δΩ(x̄) = ∂∞δΩ(x̄), ∀x̄ ∈ Ω.

Let F : X ⇒ Y be a set-valued map between Banach spaces. The graph and the domain
of F are given respectively by the formulas

gph F := {(x, y) ∈ X × Y | y ∈ F(x)},
dom F := {x ∈ X | F(x) �= ∅}.

Recall that F is closed if gph F is a closed subset of X × Y .
Equipping the product space X × Y with the norm ‖(x, y)‖ := ‖x‖ + ‖y‖, by the above

notion of the Mordukhovich normal cone, one can define the concept of the Mordukhovich
coderivative (also called the limiting coderivative) of set-valued maps as follows.

Definition 2.4 (See [20, p. 40, 41]) The Mordukhovich coderivative of F at (x̄, ȳ) ∈ gph F
is the multifunction D∗F(x̄, ȳ) : Y ∗ ⇒ X∗ given by

D∗F(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N ((x̄, ȳ); gph F)
}
, ∀y∗ ∈ Y ∗.

If (x̄, ȳ) /∈ gph F then we accept the convention that the set D∗F(x̄, ȳ)(y∗) is empty for any
y∗ ∈ Y ∗.
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Given a nonempty subset Ω of a Banach space X , the distance function to Ω is given by

d(x,Ω) := inf
y∈Ω

‖x − y‖, x ∈ X .

Clearly, d(·,Ω) : X → R is a Lipschitz continuous function with modulus one.
We now recall the concept of the metric qualification condition.

Definition 2.5 Let Ci , i = 1, 2, . . . , m, be nonempty subsets of a Banach space X and

let x̄ ∈ C :=
m⋂

i=1
Ci . We say that the sets C1, C2, . . . , Cm satisfy the metric qualification

condition (MQC) at x̄ if there exist two numbers γ > 0 and δ > 0 such that

d(x, C) ≤ γ
[
d(x, C1) + d(x, C2) + . . . + d(x, Cm)

]
, ∀x ∈ B(x̄, δ). (MQC)

The qualification condition (MQC) is the key factor for the main results of this paper.
They have appeared in several works under different names. For instance, in [27] the authors
named (MQC) the metric inequality, while it is called the linear coherence condition as in
[28, Theorems 4.75 and 6.41]).

We next represent the intersection rule for normal cones under the metric qualification
condition (MQC). It appeared in [28, Theorem 6.41], in [27, Theorem 3.8, (i) implies (iii)]
and in [11, Proposition 3.6 and Theorem 3.1]. Let us notice that the assumption X being an
Asplund space is indispensable, as shown by a counterexample in [27, p. 202]. Recall that
a Banach space is Asplund if every continuous convex function defined on an open convex
subset W of X is Fréchet differentiable on a dense Gδ subset D of W (see [28, Definition
3.96]).

Theorem 2.1 Suppose that X is an Asplund space and Ci , i = 1, 2, . . . , m, are closed. If the
condition (MQC) is satisfied at x̄ ∈ C = ∩m

i=1Ci , then

N (x̄; C) ⊂ N (x̄; C1) + N (x̄; C2) + . . . + N (x̄; Cm).

We end this section with relevant concepts and results from [20].

Definition 2.6 (See [20, Definition 1.63] and [25]) Let M : X ⇒ Y be the solution map
of the parametric optimization problem (Px ). One says that M is μ-inner semicontinuous at

(x̄, ȳ) ∈ gph M if for every sequence xk
μ−→ x̄ there exists a sequence yk ∈ M(xk) converging

to ȳ as k → ∞.

The properties of the solution map considered in the above definition extend the corre-
sponding notions in [20, Definition 1.63] and adapt them to the solution map M of (Px ).
The only difference is that the condition xk → x̄ in [20] is replaced by the weaker condi-

tion xk
μ−→ x̄ . This does not cause any effect on the conclusions of [20, Theorem 1.108], as

observed in [25].

Definition 2.7 (i) A subset Ω in a Banach space X is called sequentially normally compact

(SNC) at x̄ if for any sequences εk ↓ 0, xk
Ω−→ x̄ and x∗

k ∈ N̂εk (xk;Ω) one has

[
x∗

k
w∗−→ 0

] �⇒ [‖x∗
k ‖ → 0

]
as k → ∞.

(ii) A function f : X → R is called sequentially normally epi-compact (SNEC) at x̄ if its
epigraph is SNC at (x̄, f (x̄)).
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3 Optimality conditions

3.1 Optimality conditions for parametric minimax programming problems

Hereafter, unless otherwise specified, all spaces under consideration are Asplund spaces.
The first result of this section gives a useful representation of the coderivative for the

intersection

(F1 ∩ F2 ∩ . . . ∩ Fm)(x) := F1(x) ∩ F2(x) ∩ . . . ∩ Fm(x)

of set-valued maps, which is important for applications to the subdifferentiation of maximum
functions.

Proposition 3.1 Let Fi : X ⇒ Y , i = 1, 2, . . . , m be closed. Assume that the sets gph F1,
gph F2, . . . , gph Fm satisfy the metric qualification condition (MQC) at (x̄, ȳ) ∈ gph F1 ∩
gph F2 ∩ . . . ∩ gph Fm. Then, for any y∗ ∈ Y ∗ we have

D∗
( m⋂

i=1

Fi

)
(x̄, ȳ)(y∗) ⊂

⋃
m∑

i=1
y∗

i =y∗

[
m∑

i=1

D∗Fi (x̄, ȳ)(y∗
i )

]
.

Proof For every ȳ ∈ (∩m
i=1Fi )(x̄), y∗ ∈ Y ∗, take any x∗ ∈ D∗(∩m

i=1Fi )(x̄, ȳ)(y∗). By the
definition of the coderivative, we have

(x∗,−y∗) ∈ N
(
(x̄, ȳ); gph (F1 ∩ F2 ∩ . . . ∩ Fm)

)
.

Clearly, gph (F1∩ F2 ∩ . . .∩ Fm) = gph (F1)∩gph (F2)∩ . . .∩gph (Fm). Under the validity
of (MQC), we apply Theorem 2.1 to get

(x∗,−y∗) ∈
m∑

i=1

N
(
(x̄, ȳ); gph Fi

)
.

The latter means that we can find (x∗
i ,−y∗

i ) ∈ N ((x̄, ȳ); gph Fi ), i = 1, 2, . . . , m
such that x∗ = x∗

1 + x∗
2 + . . . + x∗

m and −y∗ = −y∗
1 − y∗

2 − . . . − y∗
m . Therefore

x∗ ∈ D∗F1(x̄, ȳ)(y∗
1 ) + D∗F2(x̄, ȳ)(y∗

2 ) + . . . + D∗Fm(x̄, ȳ)(y∗
m) and y∗ =

m∑
i=1

y∗
i , which

justify the claimed inclusion. ��
Proposition 3.2 Let Fi : X ⇒ Y , i = 1, 2, . . . , m be set-valued maps. Assume that (x̄, ȳ) ∈
∩m

i=1(gph Fi ) and (x̄, ȳ) ∈ int (gph Fi ), i = 1, 2, . . . , m −1. Then, for any y∗ ∈ Y ∗, one has

D∗
( m⋂

i=1

Fi

)
(x̄, ȳ)(y∗) = D∗Fm(x̄, ȳ)(y∗).

Proof Clearly, gph (F1 ∩ F2 ∩ . . . ∩ Fm) = gph F1 ∩ gph F2 ∩ . . . ∩ gph Fm . Hence,

N
(
(x̄, ȳ); gph (F1 ∩ F2 ∩ . . . ∩ Fm)

) = N
(
(x̄, ȳ); ∩m

i=1gph Fi
)
.

Since (x̄, ȳ) ∈ int (gph Fi ), i = 1, 2, . . . , m − 1, there exists δ > 0 such that B((x̄, ȳ); δ) ⊂
gph Fi for all i ∈ {1, 2, . . . , m − 1}. Hence,

B((x̄, ȳ); δ)∩( ∩m
i=1 gph Fi

)=[B((x̄, ȳ); δ)∩gph F1 ∩ ... ∩ gph Fm−1
] ∩ gph Fm

= B((x̄, ȳ); δ) ∩ gph Fm .
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This implies that

N̂ε((x, y); ∩m
i=1gph Fi ) = N̂ε((x, y); gph Fm),

for any ε ≥ 0 and (x, y) ∈ ∩m
i=1gph Fi satisfying (x, y) ∈ B((x̄, ȳ); δ). Consequently,

N
(
(x̄, ȳ); ∩m

i=1gph Fi
) = N

(
(x̄, ȳ); gph Fm

)
.

Therefore, D∗(⋂m
i=1 Fi

)
(x̄, ȳ)(y∗) = D∗Fm(x̄, ȳ)(y∗) for any y∗ ∈ Y ∗. The proof is com-

plete. ��
Given f : X → R, we associate with it the epigraphical multifunction E f : X ⇒ R

defined by

E f (x) := {r ∈ R | f (x) ≤ r}.
Note that gph E f = epi f . Thus, for every x̄ where f is finite, we can equivalently define
the Mordukhovich and singular subdifferentials of f at x̄ through the coderivative of E f :

∂ f (x̄) = D∗E f (x̄, f (x̄))(1) and ∂∞ f (x̄) = D∗E f (x̄, f (x̄))(0). (3.1)

The following proposition contains results for computing Mordukhovich and singular
subdifferentials of the maximum function ϕ in Asplund spaces. Given (x̄, ȳ) ∈ X × Y , we
define the sets

I (x̄, ȳ) := {k ∈ K | ϕk(x̄, ȳ) = ϕ(x̄, ȳ)},

Λ(x̄, ȳ) :=
{

(λ1, . . . , λm) | λk ≥ 0,
∑
k∈K

λk = 1, λk(ϕk(x̄, ȳ) − ϕ(x̄, ȳ)) = 0

}
,

Λ̄(x̄, ȳ) :=
{

(λ1, . . . , λm) |
∑
k∈K

λk = 1, λk(ϕk(x̄, ȳ) − ϕ(x̄, ȳ)) = 0

}
,

where we recall that ϕ(x, y) := max
k∈K

ϕk(x, y).

Proposition 3.3 Given (x̄, ȳ) ∈ X × Y . Let ϕk be l.s.c. for k ∈ I (x̄, ȳ) and be u.s.c. at (x̄, ȳ)

for k ∈ K\I (x̄, ȳ). Suppose that there are γ > 0 and δ > 0 such that

d(((x, y), r), epi ϕ̄)

≤ γ
∑

k∈I (x̄,ȳ)

d(((x, y), r), epiϕk), ∀(x, y) ∈ B((x̄, ȳ), δ), r ∈ B(ϕ(x̄, ȳ), δ), (3.2)

where ϕ̄(x, y) := max
k∈I (x̄,ȳ)

ϕk(x, y). Then, one has

∂ϕ(x̄, ȳ) ⊂
⋃{ ∑

k∈I (x̄,ȳ)

λk ◦ ∂ϕk(x̄, ȳ), (λ1, . . . , λk) ∈ Λ(x̄, ȳ)

}
,

∂∞ϕ(x̄, ȳ) ⊂
∑

k∈I (x̄,ȳ)

∂∞ϕk(x̄, ȳ), (3.3)

where λ ◦ ∂ϕ(x̄, ȳ) is defined as λ∂ϕ(x̄, ȳ) when λ > 0 and as ∂∞ϕ(x̄, ȳ) when λ = 0.

Proof Let (x∗, y∗) ∈ ∂ϕ(x̄, ȳ). By (3.1), one has

(x∗, y∗) ∈ D∗Eϕ((x̄, ȳ), ϕ(x̄, ȳ))(1).
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Clearly, Eϕ(x, y) =⋂k∈K Eϕk (x, y) for all (x, y) ∈ X ×Y . Observe that ((x̄, ȳ), ϕ(x̄, ȳ)) ∈
int (gph Eϕk ) for any k /∈ I (x̄, ȳ) due to the upper semicontinuity assumption. By Proposi-
tion 3.2, we have

D∗Eϕ((x̄, ȳ), ϕ(x̄, ȳ))(1) = D∗( ∩k∈I (x̄,ȳ) Eϕk

)
((x̄, ȳ), ϕ(x̄, ȳ))(1)

= D∗Eϕ̄ ((x̄, ȳ), ϕ(x̄, ȳ))(1).
(3.4)

It follows from (3.2) that gph Eϕk , k ∈ I (x̄, ȳ), satisfy the metric qualification condition
(MQC) at (x̄, ȳ). In addition, since ϕk , k ∈ I (x̄, ȳ), are l.s.c., it holds that epiϕk , k ∈ I (x̄, ȳ),
are closed. In other words, gph Eϕk , k ∈ I (x̄, ȳ), are closed. By (3.4) and Proposition 3.1,
we have

D∗Eϕ((x̄, ȳ), ϕ(x̄, ȳ))(1) = D∗Eϕ̄ ((x̄, ȳ), ϕ(x̄, ȳ))(1)

⊂
⋃
∑

k∈I (x̄,ȳ)

λk=1

⎡
⎣ ∑

k∈I (x̄,ȳ)

D∗Eϕk ((x̄, ȳ), ϕ(x̄, ȳ))(λk)

⎤
⎦ .

Hence,

∂ϕ(x̄, ȳ) ⊂
⋃{ ∑

k∈I (x̄,ȳ)

D∗Eϕk ((x̄, ȳ), ϕ(x̄, ȳ))(λk), (λ1, . . . , λm) ∈ Λ̄(x̄, ȳ)

}
.

So, there exist (λ1, . . . , λm) ∈ Λ̄(x̄, ȳ) and (x∗
k , y∗

k ) ∈ D∗Eϕk ((x̄, ȳ), ϕ(x̄, ȳ))(λk), k ∈
I (x̄, ȳ), satisfying

(x∗, y∗) =
∑

k∈I (x̄,ȳ)

(x∗
k , y∗

k ).

For each k ∈ I (x̄, ȳ), we have

((x∗
k , y∗

k ),−λk) ∈ N (((x̄, ȳ), ϕ(x̄, ȳ)); gph Eϕk ) = N (((x̄, ȳ), ϕ(x̄, ȳ)); epiϕk).

By [20, Proposition 1.76], λk ≥ 0 for all k ∈ I (x̄, ȳ), i.e., (λ1, . . . , λm) ∈ Λ(x̄, ȳ).

In the case, if λk > 0, then
1

λk
((x∗

k , y∗
k ),−1) ∈ N (((x̄, ȳ), ϕ(x̄, ȳ)); epiϕk) and hence,

1

λk
(x∗

k , y∗
k ) ∈ ∂ϕk(x̄, ȳ), or, equivalently, (x∗

k , y∗
k ) ∈ λk∂ϕk(x̄, ȳ). Otherwise, (x∗

k , y∗
k ) ∈

∂∞ϕk(x̄, ȳ). Therefore (x∗
k , y∗

k ) ∈ λk ◦ ∂ϕk(x̄, ȳ) for all k ∈ I (x̄, ȳ) and (3.3) is proved.
The proof for singular subdifferential of ϕ is quite similar to that of the proof of (3.3), so

it is omitted. ��
Weare now in a position to give necessary optimality conditions for local optimal solutions

of problem (Px ). By using the metric qualification condition, we obtain the first result as
follows.

Theorem 3.1 (Necessary optimality condition I) Let x̄ ∈ X. Assume that ϕk(x̄, ·), k ∈
I (x̄, ȳ), are l.s.c. and G(x̄) is a closed set. If ȳ ∈ Y is a local optimal solution of prob-
lem (Px̄ ) and the following conditions hold:

(i) epi ϕ̄(x̄, ·) and G(x̄)×R satisfy the metric qualification condition (MQC) at (ȳ, ϕ(x̄, ȳ)),
where ϕ̄(x, y) := max

k∈I (x̄,ȳ)
ϕk(x, y).

(ii) ϕk(x̄, ·), k /∈ I (x̄, ȳ), are u.s.c. at ȳ and the sets epiϕk(x̄, ·), k ∈ I (x̄, ȳ), satisfy the
metric qualification condition (MQC) at (ȳ, ϕ(x̄, ȳ)).
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Then, one has

0 ∈
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk ◦ ∂yϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭+ N (ȳ; G(x̄)). (3.5)

Proof Given x̄ ∈ X . Let ȳ be a local optimal solution of (Px̄ ). Consider the function ψ :
Y → R given by ψ(y) := ϕ(x̄, y) + δG(x̄)(y), where δG(x̄)(·) is the indicator function of
the set G(x̄). The latter means that δG(x̄)(y) = 0 for y ∈ G(x̄) and δG(x̄)(y) = +∞ for
y /∈ G(x̄). It is not difficult to see that ȳ is a local optimal solution of (Px̄ ) if and only if the
function ψ attains its local minimum at this point. By Proposition 1.114 in [20], one has

0 ∈ ∂ψ(ȳ) = ∂
(
ϕ(x̄, ·) + δG(x̄)(·)

)
(ȳ). (3.6)

This is equivalent to

(0,−1) ∈ N ((ȳ, ψ(ȳ)); epiψ) = N
(
(ȳ, ϕ(x̄, ȳ) + δG(x̄)(ȳ)

); epi (ϕ(x̄, ·) + δG(x̄))
)
.

It is not hard to show that epi (ϕ(x̄, ·) + δG(x̄)) = epiϕ(x̄, ·) ∩ (G(x̄) × R) and ϕ(x̄, ȳ) +
δG(x̄)(ȳ) = ϕ(x̄, ȳ). Consequently, we have

(0,−1) ∈ N
(
(ȳ, ϕ(x̄, ȳ)

); epiϕ(x̄, ·) ∩ (G(x̄) × R)
)

= N
(
(ȳ, ϕ(x̄, ȳ)

); epi ϕ̄(x̄, ·) ∩ (G(x̄) × R)
)
,

where the last equality holds due to the upper semicontinuity of ϕk(x̄, ·) for k /∈ I (x̄, ȳ).
Under the assumption (i), we apply Theorem 2.1 to get

(0,−1) ∈ N
(
(ȳ, ϕ(x̄, ȳ)); epi ϕ̄(x̄, ·))+ N

(
(ȳ, ϕ(x̄, ȳ)); G(x̄) × R

)
= N

(
(ȳ, ϕ(x̄, ȳ)); epiϕ(x̄, ·))+ N

(
(ȳ, ϕ(x̄, ȳ)); G(x̄) × R

)
.

Thus, we can find

(y∗
1 , α

∗
1) ∈ N

(
(ȳ, ϕ(x̄, ȳ)); epiϕ(x̄, ·)) (3.7)

and

(y∗
2 , α

∗
2) ∈ N ((ȳ, ϕ(x̄, ȳ)); G(x̄) × R) (3.8)

such that (0,−1) = (y∗
1 , α

∗
1) + (y∗

2 , α
∗
2). This means that

y∗
1 = −y∗

2 (3.9)

α∗
1 + α∗

2 = −1. (3.10)

On one hand, from (3.8) we get y∗
2 ∈ N (ȳ; G(x̄)) and α∗

2 ∈ N (ϕ(x̄, ȳ);R) = {0}. On the
other hand, from (3.7), (3.9) and (3.10) we obtain

(y∗
1 ,−1) ∈ N ((ȳ, ϕ(x̄, ȳ)); epiϕ(x̄, ·)).

The latter means that y∗
1 ∈ ∂yϕ(x̄, ȳ). Therefore,

0 ∈ ∂yϕ(x̄, ȳ) + N (ȳ; G(x̄)). (3.11)

We now estimate ∂yϕ(x̄, ȳ). By the assumption (ii), we apply Proposition 3.3 to obtain

∂yϕ(x̄, ȳ) ⊂
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk ◦ ∂yϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭ . (3.12)

Therefore, by combining (3.11) and (3.12) we derive (3.5), which completes the proof. ��
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The next theorem provides a necessary condition for local optimal solutions of prob-
lem (Px ) under the condition related to the Lipschitz continuity.

Theorem 3.2 (Necessary optimality condition II) Let x̄ ∈ X. Suppose that G(x̄) is closed
and ϕk(x̄, ·), k ∈ K , are Lipschitz continuous around ȳ ∈ Y . If ȳ is a local optimal solution
of (Px ), then

0 ∈
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk∂yϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭+ N (ȳ; G(x̄)). (3.13)

Proof We will use the proof scheme of Theorem 3.1 to prove this theorem.
Given x̄ ∈ X . Suppose that ȳ is a local optimal solution of (Px ). We first consider

the function ψ := ϕ(x̄, ·) + δG(x̄)(·). By the same arguments, we arrive at (3.6). Since
ϕk(x̄, ·), k ∈ K , are Lipschitz continuous around ȳ, it yields that ϕk(x̄, ·) is SNEC at x̄ (see
[20, p. 121]) and ϕ is Lipschitz continuous around ȳ. Moreover, as G(x̄) is closed, it follows
that δG(x̄) is l.s.c. at any y ∈ G(x̄). Thus, by applying the sum rule for the Mordukhovich
subdifferential [20, Theorem 3.36] one gets

0 ∈ ∂ψ(ȳ) ⊂ ∂yϕ(x̄, ȳ) + ∂δG(x̄)(ȳ).

On one hand, we have ∂δG(x̄)(ȳ) = N (ȳ; G(x̄)). On the other hand, ϕk(x̄, ·) are l.s.c. around
ȳ for k ∈ I (x̄, ȳ) and u.s.c. at ȳ for k /∈ I (x̄, ȳ) due to the Lipschitz continuity of ϕk(x̄, ·), k ∈
K . By Theorem 3.46 (ii) in [20], one has

∂yϕ(x̄, ȳ) =
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk∂yϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭ .

Therefore, we obtain (3.13). ��
Remark 3.1 In [6], the authors study necessary optimality conditions for minimax program-
ming problems, where the constraint set is given by finite inequalities and equations under
the Lipschitz continuity and SNC assumptions. Here, we consider the parametric minimax
programming problems andwe obtained two theorems on the necessary optimality conditions
for the problem in question. We use the metric qualification condition in the first one, and
the Lipschitz continuity assumption in the second one. The relationship between these two
conditions is still unclear. Interestingly, we have found a simple example in which Theorem
3.1 can be applied, but Theorem 3.2 cannot (see Example 3.1 below).

Remark 3.2 In theAsplund space setting,Bao et al. [3] have consideredminimaxoptimization
problems with inequality, equality, and geometric constraints in the setting of nondifferen-
tiable and non-Lipschitz functions. More precisely, necessary optimality conditions in terms
of upper and/or lower subdifferentials of both cost and constraint functions as well as nec-
essary optimality conditions in the fuzzy form have been given. The qualification conditions
used in that paper is the SNC properties and the normal qualification condition

∂∞
y ϕ(x̄, ȳ) ∩ (− N (ȳ; G(x̄)

) = {0}. (3.14)

It is worth noting that, the metric qualification condition (MQC) is really weaker than (3.14)
as proved in [27, Proposition 3.7].

We nowestablish a sufficient condition for optimal solutions of (Px ) by using the convexity
in the next theorem.
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Theorem 3.3 (Sufficient optimality condition) Assume that x̄ ∈ X, ȳ ∈ G(x̄), and (x̄, ȳ)

satisfies condition (3.5). If ϕk(x̄, ·), k ∈ K , are convex functions and G(x̄) is a convex set,
then ȳ is a global optimal solution of (Px̄ ), that is, ȳ ∈ M(x̄).

Proof Since (x̄, ȳ) satisfies condition (3.5), there exist (λ1, . . . , λm) ∈ Λ(x̄, ȳ) and y∗
k ∈

λk ◦ ∂yϕk(x̄, ȳ), k ∈ I (x̄, ȳ), such that

−
∑

k∈I (x̄,ȳ)

y∗
k ∈ N (ȳ; G(x̄)). (3.15)

Suppose on the contrary that ȳ is not a global optimal solution of (Px̄ ). Then, there exist
ŷ ∈ G(x̄) such that

ϕ(x̄, ȳ) > ϕ(x̄, ŷ). (3.16)

By the convexity of G(x̄) and (3.15), we have〈 ∑
k∈I (x̄,ȳ)

y∗
k , ŷ − ȳ

〉
≥ 0. (3.17)

For each k ∈ I (x̄, ȳ), we consider two following cases.
Case 1. λk > 0. Since y∗

k ∈ λk ◦ ∂yϕk(x̄, ȳ) = λk∂yϕk(x̄, ȳ), one has

y∗
k

λk
∈ ∂yϕk(x̄, ȳ).

By the convexity of ϕk(x̄, ·), we have

ϕk(x̄, ŷ) − ϕk(x̄, ȳ) ≥
〈

y∗
k

λk
, ŷ − ȳ

〉
,

or, equivalently,

λk[ϕk(x̄, ŷ) − ϕk(x̄, ȳ)] ≥ 〈y∗
k , ŷ − ȳ

〉
. (3.18)

Case 2. λk = 0. In this case, y∗
k ∈ ∂∞

y ϕk(x̄, ȳ). Since (3.16), ŷ ∈ domϕ(x̄, ·). Further-
more, by [2, Proposition 4.2], one has

∂∞
y ϕk(x̄, ȳ) = N (ȳ; domϕ(x̄, ·)).

Hence, we have

〈y∗
k , ŷ − ȳ〉 ≤ 0. (3.19)

Combining (3.17) and (3.19), we arrive at〈 ∑
k∈I (x̄,ȳ),λk>0

y∗
k , ŷ − ȳ

〉
≥ −

〈 ∑
k∈I (x̄,ȳ),λk=0

y∗
k , ŷ − ȳ

〉
≥ 0.

This and (3.18) imply that ∑
k∈I (x̄,ȳ),λk>0

λk[ϕk(x̄, ŷ) − ϕk(x̄, ȳ)] ≥ 0,

or, equivalently ∑
k∈K

λk[ϕk(x̄, ŷ) − ϕk(x̄, ȳ)] ≥ 0. (3.20)
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On the other side, by (λ1, . . . , λm) ∈ Λ(x̄, ȳ), we have∑
k∈K

λkϕk(x̄, ȳ) = ϕ(x̄, ȳ) and ϕ(x̄, ŷ) ≥
∑
k∈K

λkϕk(x̄, ŷ).

Now, taking (3.20) into account, we arrive at

ϕ(x̄, ŷ) ≥ ϕ(x̄, ȳ),

which contraries to (3.16). The proof is complete. ��
Remark 3.3 The sufficient optimality condition forminimax programming problems is inves-
tigated in [6] as well by imposing assumptions of L-invexity-infineness. Although the class
of L-invex-infine functions contains some nonconvex functions it is quite difficult to check.

Let us see an example to illustrate the results of this subsection.

Example 3.1 Let X = Y = R equipped with norm ‖(x, y)‖ := |x |+ |y| for any (x, y) ∈ R
2.

Let C1 = {0} × (−∞, 0] and C2 = {0} × [0,+∞) be two closed convex subsets in X × Y .
The corresponding indicator functions associated with C1 and C2 are

ϕ1(x, y) := δC1(x, y) =
{
0 if (x, y) ∈ C1,

+∞ otherwise,

and

ϕ2(x, y) := δC2(x, y) =
{
0 if (x, y) ∈ C2,

+∞ otherwise.

Consider the problem (Px ) with

ϕ(x, y) = max{ϕ1(x, y), ϕ2(x, y)} =
{
0 if x = y = 0,

+∞ otherwise,

and

G(x) =
{

{y ∈ R | y ≥ x − 2} if x ≥ 0,

∅ otherwise.

Let x̄ = ȳ = 0. Clearly, ϕk(x̄, ·), k = 1, 2 are l.s.c., and G(x̄) is a closed set. It is worth
emphasizing that ϕk(x̄, ·), k = 1, 2 are not Lipschitz continuous around ȳ. So we are not
applicable Theorem 3.2. We now check the assumptions of Theorem 3.1.

One has epiϕ(x̄, ·) = {0}×[0,+∞) and G(x̄)×R = [−2,+∞)×R. Then, epiϕ(x̄, ·)∩
G(x̄) × R = epiϕ(x̄, ·), and hence, for any (y, α) ∈ R × R, we have

d
(
(y, α), epiϕ(x̄, ·) ∩ G(x̄) × R

) ≤ d
(
(y, α), epiϕ(x̄, ·))+ d

(
(y, α), G(x̄) × R

)
.

In other words, the sets epiϕ(x̄, ·) and G(x̄) × R satisfy the metric qualification condi-
tion (MQC) at (0, 0) with δ being arbitrary and γ = 1. Similarly, it is not difficult to show
that epiϕ1(x̄, ·) and epiϕ2(x̄, ·) satisfy the metric qualification condition (MQC) at (0, 0)
with δ being arbitrary and γ = 1. Moreover, ϕk(x̄, ·), k = 1, 2 are convex functions and G is
convex. Then, the necessary optimality conditions in Theorem 3.1 is the sufficient one. By a
simple computation, we get ∂yϕ(0, 0) = ∂∞

y ϕ(0, 0) = R, N (ȳ; G(x̄)) = {0}.Consequently,
ȳ = 0 is a global solution of (Px ).
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3.2 Applications tomultiobjective optimization problems

This section is devoted to applying results on optimality conditions of the minimax pro-
gramming problem to a multiobjective optimization problem.More precisely, we employ the
necessary as well as sufficient optimality conditions obtained for the minimax programming
problem in the previous subsection to derive the corresponding ones for a multiobjective
optimization problem.

Consider the following parametric multiobjective optimization problem:

MinRm+{(ϕ1(x, y), . . . , ϕm(x, y)) | y ∈ G(x)}, (M O Px )

depending on the parameter x , where Rm+ is the nonnegative orthant of Rm .

Definition 3.1 Let x ∈ X and ȳ ∈ G(x). ȳ is a weakly Pareto solution of problem (M O Px )
if there is no y ∈ G(x) such that

ϕk(x, y) < ϕk(x, ȳ), ∀k ∈ K .

Wewill start with a necessary condition for weakly Pareto solutions of problem (M O Px ).

Theorem 3.4 Let x̄ ∈ X and ȳ ∈ G(x̄). Assume that all assumptions of Theorem 3.1 are
satisfied. If ȳ is a weakly Pareto solution of (M O Px ), then there exists (α1, . . . , αm) ∈ R

m+,∑
k∈K

αk = 1 such that

0 ∈
∑
k∈K

αk ◦ ∂yϕk(x̄, ȳ) + N (ȳ; G(x̄)). (3.21)

Proof For each y ∈ Y and k ∈ K , we put

ϕ̃k(x̄, y) := ϕk(x̄, y) − ϕk(x̄, ȳ).

Then, we will show that ȳ is a local optimal solution of the following minimax programming
problem:

min
y∈G(x̄)

max
k∈K

ϕ̃k(x̄, y). (3.22)

To see this, define the function ϕ̃(x̄, ·) := maxk∈K ϕ̃k(x̄, ·). Since, ȳ is a weakly Pareto
solution of (M O Px ), there is no y ∈ G(x̄) such that

ϕk(x̄, y) < ϕk(x̄, ȳ) ∀k ∈ K .

The latter means that, for each y ∈ G(x̄), there exists k0 ∈ K such that

ϕk0(x̄, y) ≥ ϕk0(x̄, ȳ),

or, equivalently,

ϕ̃(x̄, y) ≥ ϕ̃(x̄, ȳ) = 0

for all y ∈ G(x̄). Hence, ȳ is a local optimal solution of problem (3.22). We now can apply
Theorem 3.1 to problem (3.22), where ϕ̃k and ϕ̃ play the corresponding roles of ϕk and ϕ.
Then we find (α1, . . . , αm) ∈ R

m+,
∑

k∈K
αk = 1 satisfying

0 ∈
∑
k∈K

αk ◦ ∂y ϕ̃k(x̄, ȳ) + N (ȳ; G(x̄)).

Clearly, ∂y ϕ̃k(x̄, ȳ) = ∂yϕk(x̄, ȳ) for all k ∈ K and we therefore get (3.21). ��
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The necessary condition for weakly Pareto solutions of problem (M O Px ) under the Lip-
schitz continuity is given in the next theorem.

Theorem 3.5 Let x̄ ∈ X and ȳ ∈ G(x̄). Assume that all assumptions of Theorem 3.2 are
satisfied. If ȳ is a weakly Pareto solution of (M O Px ), then there exists (α1, . . . , αm) ∈ R

m+,∑
k∈K

αk = 1 such that

0 ∈
∑
k∈K

αk∂yϕk(x̄, ȳ) + N (ȳ; G(x̄)).

Proof Following the proof scheme in Theorem 3.4 and applying Theorem 3.2 instead of
Theorem 3.1 we derive the assertion of the theorem. ��

We close this section by the sufficient condition for optimal solutions of problem (M O Px )
by using the convexity in the following theorem.

Theorem 3.6 Suppose that x̄ ∈ X and ȳ ∈ G(x̄). Assume further that ϕk(x̄, ·), k ∈ K , are
convex functions and G is a convex multifunction. If there exists (α1, . . . , αm) ∈ R

m+,
∑

k∈K
αk =

1
satisfying condition (3.21), then ȳ is a weakly Pareto solution of problem (M O Px ).

Proof Similar to the proof of Theorem 3.4, we put

ϕ̃k(x̄, y) := ϕk(x̄, y) − ϕk(x̄, ȳ), k ∈ K , y ∈ Y

and

ϕ̃(x̄, ·) := max
k∈K

ϕ̃k(x̄, ·).

Clearly, ϕ̃k(x̄, ·), k ∈ K , are convex functions. Thus, we apply the sufficient optimality
conditions in Theorem 3.3 to conclude that ȳ is a global optimal solution of problem (3.22).
This means that

ϕ̃(x̄, y) ≥ 0 ∀y ∈ G(x̄),

or, equivalently,

max
k∈K

{ϕk(x̄, y) − ϕk(x̄, ȳ)} ≥ 0 ∀y ∈ G(x̄).

Hence, there is no y ∈ G(x̄) such that

ϕk(x̄, y) < ϕk(x̄, ȳ) ∀k ∈ K .

Consequently, ȳ is a weakly Pareto solution of problem (M O Px ). ��

4 Sensitivity analysis

In this section, we will present upper estimates for the Mordukhovich subdifferential of the
optimal value function μ of (Px ). These estimations are established via the Mordukhovich
subdifferentials of ϕk and the Mordukhovich normal cone of gph G.
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Theorem 4.1 Consider the constrained problem (Px ). Suppose that G has closed graph, ϕk ,
k ∈ I (x̄, ȳ), are l.s.c., the optimal value function μ given by (2.1) be finite at x̄ ∈ dom M
and ȳ ∈ M(x̄). Suppose further that:

(i) The solution map M is μ-inner semicontinuous at (x̄, ȳ) ∈ gph M;
(ii) epi ϕ̄ and gphG × R satisfy the condition (MQC) at (x̄, ȳ, ϕ(x̄, ȳ)), where ϕ̄(x, y) :=

max
k∈I (x̄,ȳ)

ϕk(x, y);

(iii) ϕk(x̄, ȳ), k /∈ I (x̄, ȳ), are u.s.c. at (x̄, ȳ) and the sets epiϕk , k ∈ I (x̄, ȳ), satisfy the
condition (MQC) at (x̄, ȳ, ϕ(x̄, ȳ)).

Then x∗ ∈ ∂μ(x̄), it is necessary that

(x∗, 0) ∈
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk ◦ ∂ϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭

+ N ((x̄, ȳ); gphG).

(4.1)

Proof Since the solution map M is μ-inner semicontinuous at (x̄, ȳ), applying [20, Theorem
1.108] for the unconstrained problem with ϕ + δgph G being the objective function yields
the following inclusions

∂μ(x̄) ⊂ {x∗ ∈ X∗ | (x∗, 0) ∈ ∂(ϕ + δgph G)(x̄, ȳ)}. (4.2)

We now prove

∂(ϕ + δgph G)(x̄, ȳ) ⊂ ∂ϕ(x̄, ȳ) + ∂δgph G(x̄, ȳ) (4.3)

under the validity of condition (ii). Indeed, take any (u∗, 0) ∈ ∂(ϕ + δgph G)(x̄, ȳ). This
means that

(u∗, 0,−1) ∈ N

((
x̄, ȳ, (ϕ + δgphG)(x̄, ȳ)

); epi (ϕ + δgphG)

)
. (4.4)

As observed in the proof of Theorem 3.1, one has (ϕ +δgphG)(x̄, ȳ) = ϕ(x̄, ȳ) and epi (ϕ +
δgphG) = epiϕ ∩ (gphG × R). So, (4.4) is written as

(u∗, 0,−1) ∈ N
((

x̄, ȳ, ϕ(x̄, ȳ)
); epiϕ ∩ (gphG × R)

)
= N

((
x̄, ȳ, ϕ(x̄, ȳ)

); epi ϕ̄ ∩ (gphG × R)
)
.

(4.5)

Note that epi ϕ̄ = ⋂
k∈I (x̄,ȳ)

epiϕk . By conditions (ii), (iii) and Theorem 2.1, we have that

N
((

x̄, ȳ, ϕ(x̄, ȳ)
); epi ϕ̄ ∩ (gphG × R)

) ⊂ N ((x̄, ȳ, ϕ(x̄, ȳ)); epi ϕ̄)

+ N ((x̄, ȳ, ϕ(x̄, ȳ)); gphG × R)

= N ((x̄, ȳ, ϕ(x̄, ȳ)); epiϕ)

+ N ((x̄, ȳ, ϕ(x̄, ȳ)); gphG × R).

Combining this with (4.5) gives

(u∗, 0,−1) ∈ N ((x̄, ȳ, ϕ(x̄, ȳ)); epiϕ) + N ((x̄, ȳ, ϕ(x̄, ȳ)); gphG × R).
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Thus, we can find a triple (u∗
1, v

∗
1 , α1) ∈ N ((x̄, ȳ, ϕ(x̄, ȳ)); epiϕ)) and a triple (u∗

2, v
∗
2 , α2) ∈

N ((x̄, ȳ, ϕ(x̄, ȳ); gphG × R) such that
⎧⎪⎨
⎪⎩

u∗ = u∗
1 + u∗

2;
0 = v∗

1 + v∗
2 ;

−1 = α1 + α2.

(4.6)

As N ((x̄, ȳ, ϕ(x̄, ȳ)); gphG × R) = N ((x̄, ȳ); gphG) × N (ϕ(x̄, ȳ));R), it follows that
α2 = 0. Hence, α1 = −1 from the last equation of (4.6). Consequently, (u∗

1, v
∗
1 ,−1) ∈

N ((x̄, ȳ, ϕ(x̄, ȳ)); epiϕ)) and (u∗
2,−v∗

1) ∈ N ((x̄, ȳ); gphG). In other words, (u∗
1, v

∗
1) ∈

∂ϕ(x̄, ȳ) and (u∗
2,−v∗

1) ∈ ∂δgphG(x̄, ȳ). Combining the latter with the equations of (4.6),
one gets

(u∗, 0) ∈ ∂ϕ(x̄, ȳ) + ∂δgphG(x̄, ȳ),

which proves (4.3).
We now rewrite (4.2) as follows

∂μ(x̄) ⊂ {x∗ ∈ X∗ | (x∗, 0) ∈ ∂ϕ(x̄, ȳ) + ∂δgph G(x̄, ȳ)}.
On one hand, under condition (iii), we get

∂ϕ(x̄, ȳ) =
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk ◦ ∂ϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭

from Proposition 3.3. On the other hand, ∂δgph G(x̄, ȳ) = N ((x̄, ȳ); gphG). Therefore, we
arrive at (4.1). ��

Theorem 4.2 Consider the constrained problem (Px ). Let the optimal value function μ given
by (2.1) is finite at x̄ ∈ dom M and ȳ ∈ M(x̄). Suppose that G has closed graph, ϕk

are Lipschitz continuous around (x̄, ȳ) for k ∈ K , and the solution map M is μ-inner
semicontinuous at (x̄, ȳ) ∈ gph M. Then x∗ ∈ ∂μ(x̄) if

(x∗, 0) ∈
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk∂ϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭

+ N ((x̄, ȳ); gphG).

Proof In the same manner as in the proof of Theorem 4.1, we also obtain (4.2). Since ϕk are
Lipschitz continuous around (x̄, ȳ), so is ϕ. It follows that ϕ is SNEC at (x̄, ȳ) (see [20, p.
121]). In addition, δgphG is l.s.c. because of the closedness of gphG. So, by using the sum
rule for the Mordukhovich subdifferential [20, Theorem 3.36] one gets

∂(ϕ + δgph G)(x̄, ȳ) ⊂ ∂ϕ(x̄, ȳ) + ∂δgph G(x̄, ȳ).

Consequently,

∂μ(x̄) ⊂ {x∗ ∈ X∗ | (x∗, 0) ∈ ∂ϕ(x̄, ȳ) + ∂δgph G(x̄, ȳ)}.
We note that ∂δgph G(x̄, ȳ) = N ((x̄, ȳ); gphG). Meanwhile, ϕk are l.s.c. around (x̄, ȳ) for
i ∈ I (x̄, ȳ) and u.s.c. at (x̄, ȳ) for i /∈ I (x̄, ȳ) following the Lipschitz continuity around
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(x̄, ȳ) for k ∈ K of ϕk . Thus, by applying Theorem 3.46 (ii) in [20], we obtain

∂ϕ(x̄, ȳ) =
⋃⎧⎨
⎩
∑

k∈I (x̄,ȳ)

λk∂ϕk(x̄, ȳ), (λ1, . . . , λm) ∈ Λ(x̄, ȳ)

⎫⎬
⎭ .

Therefore, the proof is complete. ��

5 Concluding remarks

In this paper, optimality conditions and sensitivity analysis for parametric nonconvex min-
imax programming problems are investigated. Namely, we study the necessary optimality
conditions by using the Mordukhovich subdifferential and give upper estimations for the
Mordukhovich subdifferential of the optimal value function μ. The optimality conditions
and sensitivity analysis are obtained by using upper estimates for the Mordukhovich subd-
ifferential of the maximum function. The results on optimality conditions are then applied
to parametric multiobjective optimization problems. An example is given to illustrate our
results.
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