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Abstract
This paper studies a class of multiobjective convex polynomial problems, where both the
constraint and objective functions involve uncertain parameters that reside in ellipsoidal
uncertainty sets. Employing the robust deterministic approach, we provide necessary condi-
tions and sufficient conditions,which are exhibited in relation to secondorder cone conditions,
for robust (weak) Pareto solutions of the uncertain multiobjective optimization problem.
A dual multiobjective problem is proposed to examine robust converse, robust weak and
robust strong duality relations between the primal and dual problems.Moreover, we establish
robust solution relationships between the uncertain multiobjective optimization program and
a (scalar) second order cone programming relaxation problem of a corresponding weighted-
sum optimization problem. This in particular shows that we can find a robust (weak) Pareto
solution of the uncertain multiobjective optimization problem by solving a second order cone
programming relaxation.
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1 Introduction

Since the seminal paper by Soyster [34], robust optimization has become a useful and efficient
deterministic mathematical approach to handle problems relating to decision making in the
face of data uncertainty [5, 7]. Recently, the robust optimization approach has been applied to
various domains in multiobjective/vector frameworks with many further developments and
high-potential techniques to solve various real-life decision making problems under the data
uncertainty (see e.g., [9, 12, 16–18, 20, 23, 24, 26, 36] and the references therein).

A recent research direction in robust multiobjective optimization has been devoted to
investigating on how to reformulate and solve a robust multiobjective optimization problem
via semidefinite programming (SDP) (see e.g., [4]) techniques by exploiting special structures
of the constraint and objective functions such as linear, quadratic or polynomials; see e.g., [10,
11, 14, 25, 28]. For example, Magron et al. [28] used SDP relaxations to approximate Pareto
curves of a bi-criteria polynomial program. The author in [11] established duality and linear
matrix inequality conditions for a multiobjective SOS-convex optimization problem under
constraint uncertainty, while Lee and Jiao in [25] examined such a multiobjective problem by
employing an approximate constraint scalarization approach to find robust efficient solutions
via SDP duals. In terms of two-stage frameworks, the authors in [14] reformulated and solved
an adjustable robust linear multiobjective optimization using SDP relaxations.

Remarkably, a new class of first-order scaled diagonally dominant sums-of-squares con-
vex (1st-SDSOS-convex) polynomials has been recently introduced in [8]. This class is a
subclass of SOS-convex polynomials [3, 21], and is a numerically tractable subclass of con-
vex polynomials in the sense that checking a given polynomial is 1st-SDSOS-convex or not
can be done by solving a feasibility problem of a second order cone programming (SOCP)
problem [1, 2, 8]. The class of 1st-SDSOS-convex polynomials covers all separable con-
vex quadratic functions and any polynomial that can be expressed as a sum of even powers
with the corresponding nonnegative coefficients [8]. The interested readers are referred to a
more recent paper [13] for an application of the class of 1st-SDSOS-convex polynomials to
examine duality and optimality conditions for weak efficient solutions of a multiobjective
optimization problem.

In this paper, we consider an uncertainmultiobjective optimization problem that is defined
by

min
x∈Rn

{(
f1(x, u1), . . . , fm(x, um)

) | gl(x, ωl) ≤ 0, l = 1, . . . , q
}
, (U)

where x ∈ R
n is the vector of decision variables, uζ ∈ Uζ , ζ = 1, . . . ,m, ωl ∈ �l , l =

1, . . . , q, are uncertain parameters,Uζ , ζ = 1, . . . ,m,�l , l = 1, . . . , q are uncertainty sets
and fζ : Rn ×Uζ → R, ζ = 1, . . . ,m, gl : Rn × �l → R, l = 1, . . . , q are bi-functions.

In what follows, the uncertainty sets Uζ , ζ = 1, . . . ,m,�l , l = 1, . . . , q are assumed to
be ellipsoids given by

Uζ := {
uζ ∈ R

s | uTζ Aζ uζ ≤ ρζ

}
, �l := {

ωl ∈ R
r | ωT

l Blωl ≤ τl
}
, (1)

where Aζ , ζ = 1, . . . ,m, Bl , l = 1, . . . , q are positive-definite symmetric matrices
(Aζ � 0, Bl � 0) and ρζ , ζ = 1, . . . ,m, τl , l = 1, . . . , q are positive real numbers
(ρζ > 0, τl > 0), while the bi-functions fζ (·, ·), ζ = 1, . . . ,m, gl(·, ·), l = 1, . . . , q are
assumed to satisfy that fζ (·, uζ ), uζ ∈ Uζ and gl(·, ωl), ωl ∈ �l are 1st-SDSOS-convex
polynomials (cf. Definition 2) and that fζ (x, ·), gl(x, ·), x ∈ R

n are affine functions given
by
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fζ (x, uζ ) : = p0ζ (x) +
s∑

i=1

uiζ p
i
ζ (x) for uζ := (u1ζ , . . . , u

s
ζ ) ∈ R

s,

gl(x, ωl) : = h0l (x) +
r∑

j=1

ω
j
l h

j
l (x) for ωl := (ω1

l , . . . , ω
r
l ) ∈ R

r , (2)

where piζ , i = 0, 1, . . . , s, ζ = 1, . . . ,m and h j
l , j = 0, 1, . . . , r , l = 1, . . . , q are given

polynomials with degrees at most η ∈ N0 := {0, 1, 2, . . .}. Without loss of generality, we
suppose that η is an even number because otherwise we can replace η by η + 1.

To deal with the uncertainty problem (U), we associate with it the following robust coun-
terpart:

min
x∈Rn

{(
max
u1∈U1

f1(x, u1), . . . , max
um∈Um

fm(x, um)
) | gl(x, ωl) ≤ 0, ∀ωl ∈ �l , l = 1, . . . , q

}
,

(R)

where the uncertain objective functions and uncertain constraint functions are enforced for
all possible realizations within the corresponding uncertainty sets.

From now on, the feasible set of problem (R) is denoted by

C := {
x ∈ R

n | gl(x, ωl) ≤ 0, ∀ωl ∈ �l , l = 1, . . . , q
}
. (3)

We also use the notations F := (F1, . . . , Fm), where Fζ (x) := max
uζ ∈Uζ

fζ (x, uζ ), ζ =
1, . . . ,m for x ∈ R

n .
The forthcoming concepts of solutions are in terms of worst-case robustness efficiencies

(see e.g., [16, 22]) of multiobjective/vector optimization (cf. [15, 19, 27, 29, 31, 35]).

Definition 1 (i) A point x̄ ∈ C is called a robust Pareto solution of problem (U) if x̄ is a
Pareto solution of problem (R), i.e., for all x ∈ C,

F(x) − F(x̄) /∈ −R
m+ \ {0},

where Rm+ stands for the nonnegative orthant of Rm . (ii) We say that x̄ ∈ C is a robust weak
Pareto solution of problem (U) if x̄ is a weak Pareto solution of problem (R), i.e., for all
x ∈ C,

F(x) − F(x̄) /∈ −intRm+,

where intRm+ denotes the topological interior of Rm+.

The purpose of this paper is threefold: Firstly,we propose necessary and sufficient optimal-
ity conditions for robust (weak) Pareto solutions of the uncertain multiobjective optimization
problem (U). The obtained optimality conditions are displayed by means of second order
cone (SOC) conditions, which provide a numerically checkable certificate of the solvability
of the robust optimality conditions. Interestingly, it is shown that the SOC conditions are
equivalent to the robust Karush-Kuhn-Tucker (KKT) condition. These are done by employ-
ing the special structures of the 1st-SDSOS-convex polynomials that empower us to provide
robust optimality conditions by way of SOC conditions. These results will be given in Sect. 2.

Secondly, we suggest a dual multiobjective problem in terms of SOC conditions to the
robust multiobjective optimization problem (R) and explore robust strong, robust weak and
robust converse duality relations between (R) and its dual. The obtained dual results charac-
terize the SOC conditions as well as the fulfilment of the robust KKT condition. In particular,
this shows how we can verify a Pareto solution of the robust multiobjective optimization
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problem (R) by solving the corresponding dual multiobjective problem, which is expressed
in terms of SOC conditions. These results will be given in Sect. 3.

Thirdly, we establish robust solution relationships between the uncertain multiobjective
optimization problem (U) and an SOCP relaxation of a corresponding weighted-sum opti-
mization problem. These relationships show how one can find a robust (weak) Pareto solution
of the uncertain multiobjective polynomial program (U) by solving an SOCP relaxation. In
this way, we obtain strong SOCP duality and exact SOCP relaxation among the (scalar)
dual, relaxation and weighted-sum optimization programs. These results will be presented
in Sect. 4. The last section summarizes the main results and provides some perspectives on
this research topic.

2 Second-order cone optimality conditions and solution relationships

To begin with, some notations and definitions are presented. The notation R
n signifies the

Euclidean space whose norm is denoted by ‖·‖ for each n ∈ N := {1, 2, . . .}. The inner prod-
uct in R

n is defined by 〈x, y〉 := xT y for all x, y ∈ R
n . Denote by R[x] (or R[x1, . . . , xn])

the ring of polynomials in x := (x1, . . . , xn) with real coefficients. Consider a polynomial
f with degree at most η where η is an even number, and let l := η/2. We note the canonical
basis of Rη[x1, . . . , xn] as

x (η) := (1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n , . . . , x

η
1 , . . . , xη

n )T ,

where Rη[x1, . . . , xn] is the space including of all real polynomials on R
n with degree η.

Let s(η, n) be the dimension of Rη[x1, . . . , xn] and for each 1 ≤ α ≤ s(η, n), let i(α) =
(i1(α), . . . , in(α)) ∈ (N0)

n denote the multi-index satisfying

x (η)
α = xi(α) := xi1(α)

1 . . . xin(α)
n .

Let the monomials mα(x) = x (η)
α be the α-th coordinate of x (η), 1 ≤ α ≤ s(η, n). Thus, we

can write

f (x) =
s(η,n)∑

α=1

fαmα(x) =
s(η,n)∑

α=1

fαx
(η)
α .

Given u ∈ N and y = (yα) ∈ R
s(u,n), the Riesz functional Ly : Rη[x] → R is defined by

Ly( f ) =
s(u,n)∑

α=1

fα yα for f (x) =
s(u,n)∑

α=1

fαx
(η)
α , (4)

and the moment matrixMu(y) about x ∈ R
n with degree u generated by y = (yα) ∈ R

s(2u,n)

is defined by

Mu(y) =
s(2u,n)∑

α=1

yαMα, (5)

where Mα, α = 1, . . . , s(2u, n), are the (s(u, n) × s(u, n)) symmetric matrices such that

x (u)(x (u))T =
s(2u,n)∑

α=1

x (u)
α Mα. (6)
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Definition 2 Let d be a polynomial on R
n . (i) The polynomial d with degree η = 2	, l ∈

N0, is scaled diagonally dominant sum-of-squares (SDSOS) [1] if there exist nonnegative
numbers αi , β

+
i j , β

−
i j γ +

i j , γ
−
i j and p ∈ N with 1 ≤ p ≤ s(	, n) such that

d(x) =
p∑

i=1

αim
2
i (x) +

p∑

i, j=1,i 
= j

(β+
i j mi (x) + γ +

i j m j (x))
2 +

p∑

i, j=1,i 
= j

(β−
i j mi (x) − γ −

i j m j (x))
2,

where mi ,m j are monomials in the variable x . We let SDSOSη[x] denote the set of all
SDSOS polynomials on R

n with degree at most η. (ii) For the polynomial d with degree
η ∈ N0, we consider a polynomial D defined as

D(x, y) := d(x) − d(y) − ∇d(y)T (x − y),

where ∇d(y) stands for the derivative of d at y. The polynomial d is called first-order scaled
diagonally dominant sum-of-squares convex (1st-SDSOS-convex) [8] if D is an SDSOS
polynomial in the variable of (x, y).

It is worth mentioning here that all 1st-SDSOS-convex polynomials are convex, the sum
of two 1st-SDSOS-convex polynomials is a 1st-SDSOS-convex polynomial, and the product
of a 1st-SDSOS-convex polynomial and a nonnegative scalar is also a 1st-SDSOS-convex
polynomial.

The first theorem in this section provides necessary and sufficient optimality conditions
for robust (weak) Pareto solutions of problem (U) in terms of second order cone (SOC)
conditions. Let Qζ , ζ = 1, . . . ,m and El , l = 1, . . . , q be square matrices such that Aζ =
QT

ζ Qζ and Bl = ET
l El .

Theorem 1 (SOC conditions for robust (weak) efficiencies) Let x̄ ∈ R
n be a robust feasible

point of problem (U).

(i) Suppose that the Slater condition is satisfied; i.e., there exists x̂ ∈ R
n such that for all

ωl ∈ �l , l = 1 . . . , q,

gl(x̂, ωl) < 0. (7)

If x̄ is a robust weak Pareto solution of problem (U), then there exist μ0
l ∈ R+, μ

j
l ∈

R, l = 1, . . . , q, j = 1, . . . , r and (α0
1, . . . , α

0
m) ∈ R

m+\{0}, αi
ζ ∈ R, ζ =

1, . . . ,m, i = 1, . . . , s such that

m∑

ζ=1

(
α0

ζ p
0
ζ +

s∑

i=1

αi
ζ p

i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) −
m∑

ζ=1

α0
ζ Fζ (x̄) ∈ SDSOSη[x], (8)

‖Qζ (α
1
ζ , . . . , α

s
ζ )‖ ≤ √

ρζ α0
ζ , ζ = 1, . . . ,m, (9)

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , l = 1, . . . , q, (10)

where Fζ (x̄) := max
uζ ∈Uζ

fζ (x̄, uζ ) for ζ = 1, . . . ,m.

(ii) If there exist μ0
l ∈ R+, μ

j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and (α0

1, . . . , α
0
m) ∈

R
m+\{0}, αi

ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s such that (8), (9) and (10) are satisfied,
then x̄ is a robust weak Pareto solution of problem (U).

(iii) If there exist μ0
l ∈ R+, μ

j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and (α0

1, . . . , α
0
m) ∈

intRm+, αi
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s such that (8), (9) and (10) are satisfied,

then x̄ is a robust Pareto solution of problem (U).
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Proof (i) Suppose that the Slater condition (7) is satisfied and let x̄ be a robust weak Pareto
solution of problem (U). Put Fζ (x) := max

uζ ∈Uζ

fζ (x, uζ ), ζ = 1, . . . ,m and Gl(x) :=
max
ωl∈�l

gl(x, ωl), l = 1, . . . , q for x ∈ R
n . Then, it holds that Fζ , ζ = 1, . . . ,m and

Gl , l = 1, . . . , q are convex functions finite on R
n because fζ (·, uζ ), uζ ∈ Uζ and

gl(·, ωl), ωl ∈ �l are 1st-SDSOS-convex polynomials (hence, convex polynomials), fζ (x, ·)
and gl(x, ·) are affine functions for each x ∈ R

n, and Uζ and �l are compact sets. Note that
the Slater condition (7) ensures that for each l = 1, . . . , q,

Gl(x̂) < 0. (11)

Since x̄ is a robust weak Pareto solution of problem (U), it ensures that

{x ∈ R
n | Fζ (x) − Fζ (x̄) < 0, ζ = 1, . . . ,m, Gl(x) < 0, l = 1, . . . , q} = ∅.

Invoking a classical alternative theorem in convex analysis (see e.g., [32, Theorem 21.1]),

we can find λζ ≥ 0, ζ = 1, . . . ,m, γl ≥ 0, l = 1, . . . , q such that
m∑

ζ=1
(λζ )

2 +
q∑

l=1
(γl)

2 > 0

and

m∑

ζ=1

λζ

(
Fζ (x) − Fζ (x̄)

) +
q∑

l=1

γlGl(x) ≥ 0, ∀x ∈ R
n . (12)

We observe by (11) and (12) that (λ1, . . . , λm) 
= 0, and that

inf
x∈Rn

{ m∑

ζ=1

λζ Fζ (x) +
q∑

l=1

γlGl(x)
}

≥
m∑

ζ=1

λζ Fζ (x̄). (13)

Denoting W :=
m∏

ζ=1
Uζ ×

q∏

l=1
�l ⊂ R

ms+qr , it is true that W is a convex compact set. Now,

by recalling the definition of Fζ , ζ = 1, . . . ,m and Gl , l = 1, . . . , q, we get by (13) that

inf
x∈Rn

max
w∈W

{ m∑

ζ=1

λζ fζ (x, uζ ) +
q∑

l=1

γl gl(x, ωl)
}

≥
m∑

ζ=1

λζ Fζ (x̄), (14)

where w := (u1, . . . , um, ω1, . . . , ωq). Let H : R
n × R

ms+qr → R be defined by

H(x, w) :=
m∑

ζ=1
λζ fζ (x, uζ )+

q∑

l=1
γl gl(x, ωl) for x ∈ R

n, w := (u1, . . . , um, ω1, . . . , ωq) ∈
R
ms+qr . Then, H is a convex function in variable x and affine function in variable w and so,

we refer to the classical minimax theorem (see e.g., [33, Theorem 4.2]) to claim that

inf
x∈Rn

max
w∈W H(x, w) = max

w∈W inf
x∈Rn

H(x, w).

This together with (14) entails that

max
w∈W inf

x∈Rn

⎧
⎨

⎩

m∑

ζ=1

λζ fζ (x, uζ ) +
q∑

l=1

γl gl(x, ωl)

⎫
⎬

⎭
≥

m∑

ζ=1

λζ Fζ (x̄).
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Hence, we can find ūζ := (ū1ζ , . . . , ū
s
ζ ) ∈ Uζ , ζ = 1, . . . ,m and ω̄l := (ω̄1

l , . . . , ω̄
r
l ) ∈

�l , l = 1, . . . , q such that

m∑

ζ=1

λζ fζ (x, ūζ ) +
q∑

l=1

γl gl(x, ω̄l) ≥
m∑

ζ=1

λζ Fζ (x̄), ∀x ∈ R
n . (15)

We now consider a polynomial onRn given by for each x ∈ R
n, σ (x) :=

m∑

ζ=1
λζ fζ (x, ūζ )+

q∑

l=1
γl gl(x, ω̄l) −

m∑

ζ=1
λζ Fζ (x̄). By our assumption, it is easy to see that σ is a 1st-SDSOS-

convex polynomial andmoreover,σ(x) ≥ 0,∀x ∈ R
n, by virtue of (15). So,σ ∈ SDSOSη[x]

(cf. [8, Proposition 5.3]).

Now, the relations ūζ := (ū1ζ , . . . , ū
s
ζ ) ∈ Uζ , ζ = 1, . . . ,m mean that

ūTζ Aζ ūζ ≤ ρζ , ζ = 1, . . . ,m. (16)

Setting α0
ζ := λζ ≥ 0, ζ = 1, . . . ,m and αi

ζ := α0
ζ ū

i
ζ ∈ R, i = 1, . . . , s, ζ = 1, . . . ,m,

we claim that (9) holds. To see this, let ζ ∈ {1, . . . ,m}. If α0
ζ = 0, then αi

ζ = 0 for all

i = 1, . . . , s, and hence, (9) is trivially valid. If α0
ζ 
= 0, then it follows from (16) that

ûTζ Aζ ûζ ≤ ρζ (α
0
ζ )

2,

where ûζ := (α1
ζ , . . . , α

s
ζ ). Since Aζ = QT

ζ Qζ , we arrive at the conclusion that

‖Qζ (α
1
ζ , . . . , α

s
ζ )‖ ≤ √

ρζ α
0
ζ , which shows that (9) holds, too. Similarly, by letting

μ0
l := γl ≥ 0, l = 1, . . . , q and μ

j
l := μ0

l ω̄
j
l ∈ R, j = 1, . . . , r , l = 1, . . . , q , we

conclude from the relations ω̄l := (ω̄1
l , . . . , ω̄

r
l ) ∈ �l , l = 1, . . . , q that (10) also holds.

Next, by noting the definitions of functions fζ , ζ = 1, . . . ,m and gl , l = 1, . . . , q in

(2), we obtain that λζ fζ (x, ūζ ) = α0
ζ p

0
ζ (x) +

s∑

i=1
αi

ζ p
i
ζ (x) and γl gl(x, ω̄l) = μ0

l h
0
l (x) +

r∑

j=1
μ

j
l h

j
l (x), l = 1, . . . , q, for all x ∈ R

n . This together with the definition of σ yields

m∑

ζ=1

(
α0

ζ p
0
ζ +

s∑

i=1

αi
ζ p

i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) −
m∑

ζ=1

α0
ζ Fζ (x̄) = σ,

which shows that (8) is satisfied. Therefore, the proof of (i) is accomplished.
(ii) Assume that there exist μ0

l ∈ R+, μ
j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and

(α0
1, . . . , α

0
m) ∈ R

m+\{0}, αi
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s such that (8), (9) and (10)

hold.
Consider any ζ ∈ {1, . . . ,m}. We claim by (9) that if α0

ζ = 0, then αi
ζ = 0 for all

i = 1, . . . , s. Assume on contrary that α0
ζ = 0 but there exists i0 ∈ {1, . . . , s} with α

i0
ζ 
= 0.

In this case, (9) entails that ‖Qζ wζ ‖ = 0, wherewζ := (α1
ζ , . . . , α

s
ζ ) 
= 0. This establishes a

contradiction as inasmuch ‖Qζ wζ ‖2 = wT
ζ Aζ wζ > 0, where the strict inequality is satisfied

by virtue of Aζ � 0. So, our claim is valid. Similarly, we assert by (10) that if μ0
l = 0 for

each l ∈ {1, . . . , q}, then μ
j
l = 0 for all j = 1, . . . , r .
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Now, denote ûζ := (û1ζ , . . . , û
s
ζ ), ζ = 1, . . . ,m and ω̂l := (ω̂1

l , . . . , ω̂
r
l ), l = 1, . . . , q ,

where

ûiζ :=
⎧
⎨

⎩

0 if α0
ζ = 0,

αi
ζ

α0
ζ

if α0
ζ 
= 0,

i = 1, . . . , s, ω̂
j
l :=

⎧
⎨

⎩

0 if μ0
l = 0,

μ
j
l

μ0
l

if μ0
l 
= 0,

j = 1, . . . , r .

It follows from (9) and (10) that

ûTζ Aζ ûζ ≤ ρζ , ζ = 1, . . . ,m, ω̂T
l Bl ω̂l ≤ τl , l = 1, . . . , q,

which show that ûζ ∈ Uζ , ζ = 1, . . . ,m and ω̂l ∈ �l , l = 1, . . . , q. Then, for any x ∈ R
n,

α0
ζ p

0
ζ (x) +

s∑

i=1

αi
ζ p

i
ζ (x) =α0

ζ p
0
ζ (x) +

s∑

i=1

(α0
ζ û

i
ζ )p

i
ζ (x)

=α0
ζ

[
p0ζ (x) +

s∑

i=1

ûiζ p
i
ζ (x)

] = α0
ζ fζ (x, ûζ ), ζ = 1, . . . ,m,

where we note that if α0
ζ = 0 for each ζ ∈ {1, . . . ,m}, then αi

ζ = 0 for all i = 1, . . . , s,

as shown above. Similarly, μ0
l h

0
l (x) +

r∑

j=1
μ

j
l h

j
l (x) = μ0

l gl(x, ω̂l), l = 1, . . . , q for each

x ∈ R
n .

Therefore, we use (8) to find σ0 ∈ SDSOSη[x] such that
m∑

ζ=1

α0
ζ fζ (x, ûζ ) = σ0(x) −

q∑

l=1

μ0
l gl(x, ω̂l) +

m∑

ζ=1

α0
ζ Fζ (x̄), ∀x ∈ R

n . (17)

Let x̃ ∈ R
n be an arbitrary robust feasible point of problem (U). Note here that σ0(x̃) −

q∑

l=1
μ0
l gl(x̃, ω̂l) ≥ 0 inasmuch as σ0 is an SDSOS polynomial, and hence σ0(x̃) ≥ 0 andμ0

l ≥

0, gl(x̃, ω̂l) ≤ 0, l = 1, . . . , q. Then, we estimate (17) at x̃ to obtain that
m∑

ζ=1
α0

ζ fζ (x̃, ûζ ) ≥
m∑

ζ=1
α0

ζ Fζ (x̄) and thus,

m∑

ζ=1

α0
ζ Fζ (x̃) ≥

m∑

ζ=1

α0
ζ Fζ (x̄), (18)

due to the fact that α0
ζ ≥ 0, Fζ (x̃) ≥ fζ (x̃, ûζ ) for ζ = 1, . . . ,m.

Note by (18) that F(x̃) − F(x̄) /∈ −intRm+ because of (α0
1, . . . , α

0
m) ∈ R

m+ \ {0}. So, x̄ is
a robust weak Pareto solution of problem (U).

(iii) Assume that there exist μ0
l ∈ R+, μ

j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and

(α0
1, . . . , α

0
m) ∈ intRm+, αi

ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s such that (8), (9) and (10)
hold. Following the same lines as in the proof of (ii), we arrive at the assertion that

m∑

ζ=1

α0
ζ Fζ (x̃) ≥

m∑

ζ=1

α0
ζ Fζ (x̄) (19)

for each given robust feasible point x̃ of problem (U). We claim that x̄ is a robust Pareto
solution of problem (U). Otherwise, there exists a robust feasible point x∗ of problem (U)
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such that F(x∗) − F(x̄) ∈ −R
m+\{0}. Moreover, by (α0

1, . . . , α
0
m) ∈ intRm+, we see that∑m

ζ=1 α0
ζ Fζ (x∗) − ∑m

ζ=1 α0
ζ Fζ (x̄) < 0, which contradicts the assertion in (19). So, our

claim is true and the proof is complete. ��
Remark 1 The Slater condition (7) is important for obtaining necessary SOC conditions. The
following example shows that the conclusion of (i) in Theorem 1 may go awry if this Slater
condition does not hold.

Example 1 (The importance of the Slater condition) Consider the robust multiobjective
convex polynomial optimization problem

min
x∈R

{(
max
u∈U {x8 + (3 − u2)x2 − 2x + 1},max

u∈U {(2 − u1)x2 − 3x − 1}) | x8 + 2x2 ≤ 0,

(PE1)

(1 − ω2)x8 + (1 − ω1)x2 − 1 ≤ 0,∀ω := (ω1, ω2) ∈ �
}
,

where U := {u := (u1, u2) ∈ R
2 | (u1)2

2 + (u2)2

3 ≤ 1} and � := {ω := (ω1, ω2) ∈ R
2 |

(ω1)2 + (ω2) ≤ 1}. The problem (PE1) can be expressed in terms of problem (R), where the
ellipsoids U1 := U2 := U and �1 := �2 := � are described respectively by

A1 := A2 :=
( 1

2 0
0 1

3

)
, B1 := B2 :=

(
1 0
0 1

)
,

ρ1 := ρ2 := τ1 := τ2 := 1 and the bi-functions fζ , ζ = 1, 2, gl , l = 1, 2 are given

by fζ (x, u) := p0ζ (x) +
2∑

i=1
ui piζ (x) for u := (u1, u2) ∈ R

2 with p01(x) := x8 + 3x2 −
2x + 1, p11(x) := 0, p21(x) := −x2, p02(x) := 2x2 − 3x − 1, p12(x) := −x2, p22(x) := 0

for x ∈ R and gl(x, ω) := h0l (x) +
2∑

j=1
ω j h j

l (x) for ω := (ω1, ω2) ∈ R
2 with h01(x) :=

x8 + 2x2, h11(x) := h21(x) := 0, h02(x) := x8 + x2 − 1, h12(x) := −x2, h22(x) := −x8 for
x ∈ R.

It is clear that fζ (·, u), u ∈ U , ζ = 1, 2 and gl(·, ω), ω ∈ �, l = 1, 2 are 1st-SDSOS-
convex polynomials and that x̄ := 0 is a Pareto solution of the robust problem (PE1).
However, we assert that the SOC condition given in (8) is not valid at x̄ . To see this, suppose
by the contradiction that there exist (α0

1, α
0
2) ∈ R

2+\{0}, αi
ζ ∈ R, ζ = 1, 2, i = 1, 2,

μ0
l ∈ R+, μ

j
l ∈ R, l = 1, 2, j = 1, 2 and σ ∈ SDSOS8[x] such that
2∑

ζ=1

(α0
ζ p

0
ζ +

2∑

i=1

αi
ζ p

i
ζ ) +

2∑

l=1

(μ0
l h

0
l +

2∑

j=1

μ
j
l h

j
l ) −

2∑

ζ=1

α0
ζ Fζ (x̄) = σ, (20)

where F1(x̄) := max
u∈U {p01(x̄)+

2∑

i=1
ui pi1(x̄)} = 1 and F2(x̄) := max

u∈U {p02(x̄)+
2∑

i=1
ui pi2(x̄)} =

−1. We rearrange (20) and obtain that

(α0
1 + μ0

1 + μ0
2 − μ2

2)x
8 + (3α0

1 + 2α0
2 − α2

1 − α1
2 + 2μ0

1 + μ0
2 − μ1

2)x
2 − (2α0

1 + 3α0
2)x

= μ0
2 + σ(x) for all x ∈ R.

For each x ∈ R, as μ0
2 ≥ 0 and σ(x) ≥ 0, it entails that

(α0
1 + μ0

1 + μ0
2 − μ2

2)x
8 ≥ (2α0

1 + 3α0
2)x − (3α0

1 + 2α0
2 − α2

1 − α1
2 + 2μ0

1 + μ0
2 − μ1

2)x
2.

(21)
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Considering xζ := 1
ζ
, where ζ ∈ N, we claim by (21) that

α0
1 + μ0

1 + μ0
2 − μ2

2 ≥ ζ 6[(2α0
1 + 3α0

2)ζ − (3α0
1 + 2α0

2 − α2
1 − α1

2 + 2μ0
1 + μ0

2 − μ1
2)]

≥ (2α0
1 + 3α0

2)ζ − (3α0
1 + 2α0

2 − α2
1 − α1

2 + 2μ0
1 + μ0

2 − μ1
2)

for ζ large enough. This means that

α0
1 + μ0

1 + μ0
2 − μ2

2 ≥ (2α0
1 + 3α0

2)ζ − (3α0
1 + 2α0

2 − α2
1 − α1

2 + 2μ0
1 + μ0

2 − μ1
2) (22)

for all ζ large enough.Now, letting ζ → ∞ in (22),we arrive at a contradiction.Consequently,
the result of (i) in Theorem 1 is not true for this setting. The reason is that the Slater condition
fails for this problem.

Similarly as shown in [13, Example 2.7] that the 1st-SDSOS-convexity assumption in our
framework is also important for the validation of SOC conditions. That is, the conclusion
of (i) in Theorem 1 may fail for a robust multiobjective polynomial problem, where the
related functions are convex (but not 1st-SDSOS-convex) polynomials although the Slater
qualification holds.

We now show that the SOC conditions in (8), (9) and (10) are equivalent to the robust
Karush-Kuhn-Tucker (KKT) condition of problem (U). In doing so, we say that the robust
KKT condition is valid at x̄ ∈ C if there exist ω̄l ∈ �l , l = 1, . . . , q and α := (α1, . . . , αm) ∈
R
m+\{0}, λ := (λ1, . . . , λq) ∈ R

q
+, ūζ ∈ Uζ , ζ = 1, . . . ,m such that

m∑

ζ=1

αζ ∇1 fζ (x̄, ūζ ) +
q∑

l=1

λl∇1gl(x̄, ω̄l) = 0,

m∑

ζ=1

αζ fζ (x̄, ūζ ) −
m∑

ζ=1

αζ Fζ (x̄) = 0, λl gl(x̄, ω̄l) = 0, l = 1, . . . , q, (23)

where ∇1 fζ (resp., ∇1gl ) denotes the derivative of fζ (resp., gl ) with respect to the first
variable and Fζ (x̄) := max

uζ ∈Uζ

fζ (x̄, uζ ) for ζ = 1, . . . ,m. Note that if fζ (·, uζ ) := p0ζ for

all uζ ∈ Uζ , ζ = 1, . . . ,m (i.e., there is no uncertainty on the objective functions), then the
above robust KKT condition was examined in [11] for a class of SOS-convex polynomials,
and in [9] for a more general class of local Lipschitz nonsmooth functions.

Theorem 2 (SOC and robust KKT conditions) Let x̄ ∈ R
n be a robust feasible point of

problem (U). Then, the following conditions are equivalent:

(i) The SOC conditions given in (8), (9) and (10) hold.
(ii) The robust KKT condition is valid at x̄ .
(iii) There exist μ0

l ∈ R+, μ
j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and (α0

1, . . . , α
0
m) ∈

R
m+\{0}, αi

ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s such that
m∑

ζ=1

(
α0

ζ ∇ p0ζ (x̄) +
s∑

i=1

αi
ζ ∇ piζ (x̄)

) +
q∑

l=1

(
μ0
l ∇h0l (x̄) +

r∑

j=1

μ
j
l ∇h j

l (x̄)
) = 0,

m∑

ζ=1

(
α0

ζ p
0
ζ (x̄) +

s∑

i=1

αi
ζ p

i
ζ (x̄)

) −
m∑

ζ=1

α0
ζ Fζ (x̄) = 0, μ0

l h
0
l (x̄) +

r∑

j=1

μ
j
l h

j
l (x̄) = 0, l = 1, . . . , q,

(24)

‖Qζ (α1
ζ , . . . , αs

ζ )‖ ≤ √
ρζ α0

ζ , ζ = 1, . . . ,m, (25)

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , l = 1, . . . , q, (26)
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where Fζ (x̄) := max
uζ ∈Uζ

fζ (x̄, uζ ) for ζ = 1, . . . ,m.

Proof [(i) �⇒ (ii)] Suppose that the SOC conditions given in (8), (9) and (10) are valid.
Following the proof of (ii) in Theorem 1, we observe by (9) and (10) that there exist ûζ ∈
Uζ , ζ = 1, . . . ,m and ω̂l ∈ �l , l = 1, . . . , q such that

α0
ζ p

0
ζ (x) +

s∑

i=1

αi
ζ p

i
ζ (x) = α0

ζ fζ (x, ûζ ), ∀x ∈ R
n, ζ = 1, . . . ,m,

μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x) = μ0

l gl(x, ω̂l), ∀x ∈ R
n, l = 1, . . . , q. (27)

Now, we use (8) to find σ ∈ SDSOSη[x] such that

m∑

ζ=1

α0
ζ fζ (x, ûζ ) −

m∑

ζ=1

α0
ζ Fζ (x̄) = σ(x) −

q∑

l=1

μ0
l gl(x, ω̂l), ∀x ∈ R

n, (28)

where Fζ (x̄) := max
uζ ∈Uζ

fζ (x̄, uζ ) for ζ = 1, . . . ,m. Observe here that σ(x̄) −
q∑

l=1
μ0
l gl(x̄, ω̂l) ≥ 0 inasmuch as σ is an SDSOS polynomial and hence σ(x̄) ≥ 0, and

μ0
l gl(x̄, ω̂l) ≤ 0, l = 1, . . . , q as x̄ is a robust feasible point of problem (U). By estimating

(28) at x̄ , we obtain that
m∑

ζ=1
α0

ζ fζ (x̄, ûζ ) ≥
m∑

ζ=1
α0

ζ Fζ (x̄) and thus,

m∑

ζ=1

α0
ζ fζ (x̄, ûζ ) =

m∑

ζ=1

α0
ζ Fζ (x̄) (29)

due to the fact that α0
ζ ≥ 0, Fζ (x̄) ≥ fζ (x̄, ûζ ) for ζ = 1, . . . ,m. Substituting x := x̄ into

(28) and taking (29) into account, we arrive at σ(x̄)−
q∑

l=1
μ0
l gl(x̄, ω̂l) = 0. This ensures that

σ(x̄) = 0 and

μ0
l gl(x̄, ω̂l) = 0, l = 1, . . . , q. (30)

Therefore, σ(x) ≥ σ(x̄),∀x ∈ R
n , which means that x̄ is a minimizer of σ on Rn . It entails

that ∇σ(x̄) = 0, and so we get by (28) that

m∑

ζ=1

α0
ζ ∇1 fζ (x̄, ûζ ) +

q∑

l=1

μ0
l ∇1gl(x̄, ω̂l) = 0

which together with (29) and (30) shows that the robust KKT condition is valid at x̄ .
[(ii) �⇒ (iii)] Suppose that the robust KKT condition is valid at x̄ . This means that there

exist α := (α1, . . . , αm) ∈ R
m+\{0}, λ := (λ1, . . . , λq) ∈ R

q
+ and ūζ := (ū1ζ , . . . , ū

s
ζ ) ∈

Uζ , ζ = 1, . . . ,m, ω̄l := (ω̄1
l , . . . , ω̄

r
l ) ∈ �l , l = 1, . . . , q, such that (23) is valid. Let

α0
ζ := αζ ≥ 0, ζ = 1, . . . ,m, αi

ζ := α0
ζ ū

i
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s and μ0

l :=
λl ≥ 0, l = 1, . . . , q, μ

j
l := μ0

l ω̄
j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r . Arguing similarly as in

the proof of Theorem 1, we show that (25) and (26) hold and that
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αζ fζ (x, ūζ ) = α0
ζ p

0
ζ (x) +

s∑

i=1

αi
ζ p

i
ζ (x), ∀x ∈ R

n, ζ = 1, . . . ,m,

λl gl(x, ω̄l) = μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x), ∀x ∈ R

n, l = 1, . . . , q.

This together with (23) proves that (24) is valid.
[(iii) �⇒ (i)] Let μ0

l ∈ R+, μ
j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and (α0

1, . . . , α
0
m) ∈

R
m+\{0}, αi

ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s be such that (24), (25) and (26) hold. As above,
we use (25) and (26) to find ûζ ∈ Uζ , ζ = 1, . . . ,m and ω̂l ∈ �l , l = 1, . . . , q such that

α0
ζ p

0
ζ (x) +

s∑

i=1

αi
ζ p

i
ζ (x) = α0

ζ fζ (x, ûζ ), ∀x ∈ R
n, ζ = 1, . . . ,m,

μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x) = μ0

l gl(x, ω̂l), ∀x ∈ R
n, l = 1, . . . , q. (31)

Consider a function d : Rn → R defined by

d(x) :=
m∑

ζ=1

α0
ζ fζ (x, ûζ ) +

q∑

l=1

μ0
l gl(x, ω̂l) −

m∑

ζ=1

α0
ζ Fζ (x̄), x ∈ R

n .

As fζ (·, ûζ ), ζ = 1, . . . ,m and gl(·, ω̂l), l = 1, . . . , q are 1st-SDSOS-convex polynomials,
d is 1st-SDSOS-convex and hence, being a convex function. We show by (24) and (31) that

∇d(x̄) = 0,
m∑

ζ=1

α0
ζ fζ (x̄, ûζ ) −

m∑

ζ=1

α0
ζ Fζ (x̄) = 0, μ0

l gl(x̄, ω̂l) = 0, l = 1, . . . , q.

Then, the convexity of d entails that d(x) ≥ d(x̄) = 0 for all x ∈ R
n . This together with

the 1st-SDSOS-convexity of d guarantees that d ∈ SDSOSη[x] (cf. [8, Proposition 5.3]).
Taking (31) into account, we arrive at

m∑

ζ=1

(
α0

ζ p
0
ζ +

s∑

i=1

αi
ζ p

i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) −
m∑

ζ=1

α0
ζ Fζ (x̄) ∈ SDSOSη[x].

Consequently, the assertion in (i) holds. The proof is complete. ��

Remark 2 (i) The result in Theorem 2 provides new characterizations for the robust KKT
condition via the proposed SOC conditions in the setting of 1st-SDSOS-convex poly-
nomials. The interested reader is referred to [11, Proposition 2.10] for corresponding
characterizations for the robust KKT condition in terms of the linear matrix inequality
(LMI) conditions in the setting of SOS-convex polynomials.

(ii) In thedefinitionof robustKKTcondition in (23), ifα ∈ R
m+\{0} is replacedbyα ∈ intRm+,

then the corresponding condition is called robust strong KKT condition. Using a concept
of robust proper Pareto solution for our setting and proceeding similarly as in the proof of
Theorem 2, we could obtain some characterizations or at least some sufficient conditions
for the fulfillment of the robust strong KKT condition and thus for the validation of the
hypothesis (iii) of Theorem 1. This would be an interesting topic for a further study.
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3 Robust duality via second order cone conditions

In this section, we propose a dual multiobjective problem to the robust multiobjective opti-
mization problem (R) and explore duality relations between them. More precisely, we justify
that robust dual results characterize the SOC conditions as well as the robust KKT condi-
tion. This particularly shows a Pareto point of the primal robust multiobjective optimization
problem (R) by solving its dual problem, which is exhibited in terms of SOC conditions.

In connection with (R), we consider a dual multiobjective problem as follows:

max
(tζ ,α0

ζ ,αi
ζ ,μ0

l ,μ
j
l )

{
(t1, . . . , tm) ∈ R

m |
m∑

ζ=1

(
α0

ζ p
0
ζ +

s∑

i=1

αi
ζ p

i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

)

(D)

−
m∑

ζ=1

α0
ζ tζ ∈ SDSOSη[x], tζ ∈ R, ζ = 1, . . . ,m,

‖Qζ (α
1
ζ , . . . , α

s
ζ )‖ ≤ √

ρζ α
0
ζ , ζ = 1, . . . ,m,

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , l = 1, . . . , q,

(α0
1, . . . , α

0
m) ∈ R

m+ \ {0}, αi
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s,

μ0
l ∈ R+, μ

j
l ∈ R, j = 1, . . . , r , l = 1, . . . , q

}
.

It is worth noticing here that a Pareto solution (resp., a weak Pareto solution) of a “max”
multiobjective problem like the dual problem (D) is defined similarly as in Definition 1 by
replacing −R

m+ \ {0} (resp., −intRm+) by R
m+ \ {0} (resp., intRm+). We also recall here the

notation F := (F1, . . . , Fm) with Fζ (x) := max
uζ ∈Uζ

fζ (x, uζ ), ζ = 1, . . . ,m for x ∈ R
n .

The following theorem provides weak and strong duality relations between the dual prob-
lem (D) and the primal problem (R).

Theorem 3 (i) (Robust weak duality) Let (tζ , α0
ζ , α

i
ζ , μ

0
l , μ

j
l , ζ = 1, . . . ,m, i = 1, . . . , s,

j = 1, . . . , r , l = 1, . . . , q) be a feasible point of problem (D) and let x̂ be a feasible point
of problem (R). We have

F(x̂) − (t1, . . . , tm) /∈ −intRm+. (32)

(ii) (Robust strong dual characterization) Let x̄ be a weak Pareto solution of problem (R).
The robust KKT condition is valid at x̄ if and only if there exists a weak Pareto solution
of problem (D), say (t̄ζ , ᾱ0

ζ , ᾱ
i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l =

1, . . . , q), such that

F(x̄) = (t̄1, . . . , t̄m).
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Proof (i) As (tζ , α0
ζ , α

i
ζ , μ

0
l , μ

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l = 1, . . . , q) is

a feasible point of problem (D), we find σ ∈ SDSOSη[x] such that

m∑

ζ=1

(
α0

ζ p
0
ζ (x) +

s∑

i=1

αi
ζ p

i
ζ (x)

) +
q∑

l=1

(
μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x)

) −
m∑

ζ=1

α0
ζ tζ = σ(x), ∀x ∈ R

n,

(33)

‖Qζ (α1
ζ , . . . , αs

ζ )‖ ≤ √
ρζ α0

ζ , ζ = 1, . . . ,m, (34)

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , l = 1, . . . , q, (35)

where (α0
1, . . . , α

0
m) ∈ R

m+ \ {0} αi
ζ ∈ R, tζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s and μ0

l ∈
R+, μ

j
l ∈ R, j = 1, . . . , r , l = 1, . . . , q . As shown in the proof of (ii) of Theorem 1, we

show by (34) and (35) that there exist ûζ ∈ Uζ , ζ = 1, . . . ,m and ω̂l ∈ �l , l = 1, . . . , q
such that

α0
ζ p

0
ζ (x) +

s∑

i=1

αi
ζ p

i
ζ (x) = α0

ζ fζ (x, ûζ ), ∀x ∈ R
n, ζ = 1, . . . ,m,

μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x) = μ0

l gl(x, ω̂l), ∀x ∈ R
n, l = 1, . . . , q.

Note further that σ(x̂) ≥ 0 as σ is an SDSOS polynomial and that gl(x̂, ω̂l) ≤ 0, l =
1, . . . , q, as x̂ is a feasible point of problem (R). We now estimate (33) at x̂ to arrive at

m∑

ζ=1

α0
ζ Fζ (x̂) ≥

m∑

ζ=1

α0
ζ fζ (x̂, ûζ ) ≥

m∑

ζ=1

α0
ζ tζ , (36)

wherewe should remind that Fζ (x̂) := max
uζ ∈Uζ

fζ (x̂, uζ ) ≥ fζ (x̂, ûζ ) for all ζ = 1, . . . ,m. On

account of (α0
1, . . . , α

0
m) ∈ R

m+\{0}, we conclude by (36) that F(x̂)−(t1, . . . , tm) /∈ −intRm+,
which concludes that (32) holds.

(ii) Let x̄ be aweak Pareto solution of problem (R). Suppose that the robust KKT condition
is valid at x̄ . By Theorem 2, the SOC conditions hold, i.e., there exist μ̄0

l ∈ R+, μ̄
j
l ∈ R, l =

1, . . . , q, j = 1, . . . , r and (ᾱ0
1, . . . , ᾱ

0
m) ∈ R

m+\{0}, ᾱi
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s

such that
m∑

ζ=1

(
ᾱ0

ζ p
0
ζ +

s∑

i=1

ᾱi
ζ p

i
ζ

) +
q∑

l=1

(
μ̄0
l h

0
l +

r∑

j=1

μ̄
j
l h

j
l

) −
m∑

ζ=1

ᾱ0
ζ Fζ (x̄) ∈ SDSOSη[x],

‖Qζ (ᾱ
1
ζ , . . . , ᾱ

s
ζ )‖ ≤ √

ρζ ᾱ
0
ζ , ζ = 1, . . . ,m,

‖El(μ̄
1
l , . . . , μ̄

r
l )‖ ≤ √

τl μ̄
0
l , l = 1, . . . , q,

where Fζ (x̄) := max
uζ ∈Uζ

fζ (x̄, uζ ) for ζ = 1, . . . ,m. Letting t̄ζ := Fζ (x̄), ζ = 1, . . . ,m, it

holds that

F(x̄) = (t̄1, . . . , t̄m)

and that (t̄ζ , ᾱ0
ζ , ᾱ

i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l = 1, . . . , q) is a

feasible point of problem (D).
We assert further that (t̄ζ , ᾱ0

ζ , ᾱ
i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l =

1, . . . , q) is a weak Pareto solution of problem (D). To see this, assume on the contrary that
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there exists another feasible point of problem (D), say (t̃ζ , α̃0
ζ , α̃

i
ζ , μ̃

0
l , μ̃

j
l , ζ = 1, . . . ,m, i =

1, . . . , s, j = 1, . . . , r , l = 1, . . . , q), such that (t̃1, . . . , t̃m) − (t̄1, . . . , t̄m) ∈ intRm+, which
amounts to the following relation:

F(x̄) − (t̃1, . . . , t̃m) ∈ −intRm+.

This clearly shows a contradiction to the robust weak duality of (i).
Conversely, let (t̄ζ , ᾱ0

ζ , ᾱ
i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l =

1, . . . , q) be a weak Pareto solution of problem (D) such that F(x̄) = (t̄1, . . . , t̄m). Then, we
obtain that

m∑

ζ=1

(
ᾱ0

ζ p
0
ζ +

s∑

i=1

ᾱi
ζ p

i
ζ

) +
q∑

l=1

(
μ̄0
l h

0
l +

r∑

j=1

μ̄
j
l h

j
l

) −
m∑

ζ=1

ᾱ0
ζ Fζ (x̄) ∈ SDSOSη[x],

‖Qζ (ᾱ
1
ζ , . . . , ᾱ

s
ζ )‖ ≤ √

ρζ ᾱ
0
ζ , ζ = 1, . . . ,m,

‖El(μ̄
1
l , . . . , μ̄

r
l )‖ ≤ √

τl μ̄
0
l , l = 1, . . . , q,

where (ᾱ0
1, . . . , ᾱ

0
m) ∈ R

m+\{0}, ᾱi
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s and μ̄0

l ∈ R+, μ̄
j
l ∈

R, l = 1, . . . , q, j = 1, . . . , r . In other words, the SOC conditions given in Theorem 1 hold,
and so, by Theorem 2, the robust KKT condition is valid at x̄ as well. ��

In the forthcoming corollary, we derive a robust strong duality relation under the validation
of the Slater condition, which is an easy-to-verify condition in practice.

Corollary 1 (Robust strong duality with the Slater condition) Suppose that the Slater condi-
tion (7) is satisfied. Let x̄ be a weak Pareto solution of problem (R). Then, there exists a weak
Pareto solution of problem (D), say (t̄ζ , ᾱ0

ζ , ᾱ
i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j =

1, . . . , r , l = 1, . . . , q), such that

F(x̄) = (t̄1, . . . , t̄m),

where F := (F1, . . . , Fm) with Fζ (x̄) := max
uζ ∈Uζ

fζ (x̄, uζ ), ζ = 1, . . . ,m.

Proof Let x̄ be a weak Pareto solution of problem (R). Under the Slater condition (7), we
employ Theorem 1(i) to conclude that the SOC conditions given in (8), (9) and (10) hold. In
view of Theorem 2, it is equivalent to saying that the robust KKT condition is valid at x̄ . To
finish the proof of the theorem, it remains to invoke Theorem 3(ii). ��

In the following theorem, we present a robust converse duality relation between the robust
multiobjective problem (R) and its dual problem (D).

Theorem 4 (Robust converse duality) Let the feasible set C in (3) be compact and the Slater
condition (7) hold. If (t̄ζ , ᾱ0

ζ , ᾱ
i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l =

1, . . . , q) is a weak Pareto solution of problem (D), then there exists a weak Pareto solution
of problem (R), denoted by x̄ , such that

F(x̄) − (t̄1, . . . , t̄m) ∈ −R
m+. (37)
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Proof Let (t̄ζ , ᾱ0
ζ , ᾱ

i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l = 1, . . . , q) be

a weak Pareto solution of problem (D). Then, it is clear that

m∑

ζ=1

(
ᾱ0

ζ p
0
ζ +

s∑

i=1

ᾱi
ζ p

i
ζ

) +
q∑

l=1

(
μ̄0
l h

0
l +

r∑

j=1

μ̄
j
l h

j
l

) −
m∑

ζ=1

ᾱ0
ζ t̄ζ ∈ SDSOSη[x], (38)

‖Qζ (ᾱ
1
ζ , . . . , ᾱ

s
ζ )‖ ≤ √

ρζ ᾱ
0
ζ , ζ = 1, . . . ,m, (39)

‖El(μ̄
1
l , . . . , μ̄

r
l )‖ ≤ √

τl μ̄
0
l , l = 1, . . . , q, (40)

where (ᾱ0
1, . . . , ᾱ

0
m) ∈ R

m+\{0}, ᾱi
ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s and μ̄0

l ∈ R+, μ̄
j
l ∈

R, l = 1, . . . , q, j = 1, . . . , r .
Put X := {F(x) + w | x ∈ C, w ∈ R

m+}, where F := (F1, . . . , Fm) with Fζ (x) :=
max
uζ ∈Uζ

fζ (x, uζ ), ζ = 1, . . . ,m for x ∈ R
n . Since Fζ , ζ = 1, . . . ,m are convex functions

finite on R
n , it holds that X is a closed convex set, and we claim that

(t̄1, . . . , t̄m) ∈ X . (41)

Indeed, if this is not the case, i.e., (t̄1, . . . , t̄m) /∈ X . By a classical strong separation theorem
in convex analysis (see e.g., [30, Theorem 2.2]), there exists λ := (λ1, . . . , λm) ∈ R

m+ \ {0}
such that

∑m
ζ=1 λζ t̄ζ < inf

{
λT v | v ∈ X

}
. This entails that

m∑

ζ=1

λζ t̄ζ < inf
{ m∑

ζ=1

λζ Fζ (x) | x ∈ C
}
. (42)

Observe that the (scalar) optimization problem on the right hand-side of (42) has an optimal
solution as the feasible set C is compact and Fζ , ζ = 1, . . . ,m are convex functions finite
on R

n and thus being continuous. Then, there exists an optimal solution x∗ ∈ C such that

m∑

ζ=1

λζ t̄ζ <

m∑

ζ=1

λζ Fζ (x∗) (43)

and that

{
x ∈ R

n |
m∑

ζ=1

λζ Fζ (x) −
m∑

ζ=1

λζ Fζ (x∗) < 0, ζ = 1, . . . ,m, Gl(x) < 0, l = 1, . . . , q
} = ∅,

where Gl(x) := max
ωl∈�l

gl(x, ωl), for x ∈ R
n, l = 1, . . . , q. Invoking a classical alternative

theorem in convex analysis (see e.g., [32, Theorem 21.1]), we find λ0 ≥ 0, γl ≥ 0, l =
1, . . . , q , not all zero, such that

λ0
( m∑

ζ=1

λζ Fζ (x) −
m∑

ζ=1

λζ Fζ (x∗)
) +

q∑

l=1

γlGl(x) ≥ 0, ∀x ∈ R
n . (44)

On account of the Slater condition (7), we assert by (44) that λ0 > 0, and so there is no loss
of generality in assume that λ0 := 1. Consequently, we arrive at

m∑

ζ=1

λζ Fζ (x) −
m∑

ζ=1

λζ Fζ (x∗) +
q∑

l=1

γlGl(x) ≥ 0, ∀x ∈ R
n .
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Now, following the same lines (after (12)) as in the proof of Theorem 1(i), we can find
αi∗

ζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s and μ0∗
l ∈ R+, μ

j∗
l ∈ R, l = 1, . . . , q, j = 1, . . . , r

such that
m∑

ζ=1

(
λζ p

0
ζ +

s∑

i=1

αi∗
ζ piζ

) +
q∑

l=1

(
μ0∗
l h0l +

r∑

j=1

μ
j∗
l h j

l

) −
m∑

ζ=1

λζ Fζ (x∗) ∈ SDSOSη[x],

‖Qζ (α
1∗
ζ , . . . , αs∗

ζ )‖ ≤ √
ρζ λζ , ζ = 1, . . . ,m,

‖El(μ
1∗
l , . . . , μr∗

l )‖ ≤ √
τlμ

0∗
l , l = 1, . . . , q. (45)

Letting γ := 1∑m
ζ=1 λζ

( m∑

ζ=1
λζ Fζ (x∗) −

m∑

ζ=1
λζ t̄ζ

)
, we conclude by (43) that γ > 0 and, by

(45), that

m∑

ζ=1

(
λζ p

0
ζ +

s∑

i=1

αi∗
ζ piζ

) +
q∑

l=1

(
μ0∗
l h0l +

r∑

j=1

μ
j∗
l h j

l

) −
m∑

ζ=1

λζ (t̄ζ + γ ) ∈ SDSOSη[x].

Therefore, (t̄ζ + γ, λζ , α
i∗
ζ , μ0∗

l , μ
j∗
l , ζ = 1, . . . ,m, i = 1, . . . , s, j = 1, . . . , r , l =

1, . . . , q) is a feasible point of problem (D), and

(t̄1 + γ, . . . , t̄m + γ ) − (t̄1, . . . , t̄m) = (γ, . . . , γ ) ∈ intRm+.

This contradicts the fact that (t̄ζ , ᾱ0
ζ , ᾱ

i
ζ , μ̄

0
l , μ̄

j
l , ζ = 1, . . . ,m, i = 1, . . . , s, j =

1, . . . , r , l = 1, . . . , q) is a weak Pareto solution of problem (D). Hence, our assertion
in (41) is valid.

Granting this, we find x̄ ∈ C and w̄ := (w̄1, . . . , w̄m) ∈ R
m+ such that

(t̄1, . . . , t̄m) = F(x̄) + w̄, (46)

which concludes that (37) holds. By (38) and (46), we find σ ∈ SDSOSη[x] such that

m∑

ζ=1

(
ᾱ0

ζ p
0
ζ +

s∑

i=1

ᾱi
ζ p

i
ζ

) +
q∑

l=1

(
μ̄0
l h

0
l +

r∑

j=1

μ̄
j
l h

j
l

) −
m∑

ζ=1

ᾱ0
ζ

(
Fζ (x̄) + w̄ζ

) = σ.

This, together with
∑m

ζ=1 ᾱ0
ζ w̄ζ ≥ 0, guarantees that

m∑

ζ=1

(
ᾱ0

ζ p
0
ζ +

s∑

i=1

ᾱi
ζ p

i
ζ

) +
q∑

l=1

(
μ̄0
l h

0
l +

r∑

j=1

μ̄
j
l h

j
l

) −
m∑

ζ=1

ᾱ0
ζ Fζ (x̄)

=
m∑

ζ=1

ᾱ0
ζ w̄ζ + σ ∈ SDSOSη[x]. (47)

In view of Theorem 1(ii), we get by (39), (40) and (47) that x̄ is a weak Pareto solution of
problem (R), and so the proof of the theorem is complete. ��

4 Finding robust efficient solutions via SOCP relaxations

In this section, we show how to find a robust (weak) Pareto solution of the uncertain multi-
objective problem (U) by using a second-order cone programming (SOCP) relaxation. This
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is done by establishing robust solution relationships between the uncertain multiobjective
problem (U) and an SOCP relaxation of a corresponding weighted-sum optimization pro-
gram.

For a given ν := (ν1, . . . , νm) ∈ R
m+ \ {0}, let us consider a corresponding weighted-sum

optimization problem of (R) as follows:

inf
x∈Rn

{ m∑

ζ=1

νζ Fζ (x) | gl(x, ωl) ≤ 0, ∀ωl ∈ �l , l = 1, . . . , q
}
, (Pν)

where Fζ (x) := max
uζ ∈Uζ

fζ (x, uζ ), ζ = 1, . . . ,m for x ∈ R
n .

A second-order cone programming (SOCP) dual program of problem (Pν) is defined by

sup
(t,λiζ ,μ0

l ,μ
j
l )

{
t |

m∑

ζ=1

(
νζ p

0
ζ +

s∑

i=1

λiζ p
i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) − t ∈ SDSOSη[x], t ∈ R,

(Dν)

‖Qζ (λ
1
ζ , . . . , λ

s
ζ )‖ ≤ √

ρζ νζ , λiζ ∈ R, i = 1, . . . , s, ζ = 1, . . . ,m,

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , μ

0
l ∈ R+, μ

j
l ∈ R, j = 1, . . . , r , l = 1, . . . , q

}
,

where Qζ , ζ = 1, . . . ,m and El , l = 1, . . . , q are square matrices such that Aζ = QT
ζ Qζ

and Bl = ET
l El as previously.

We also consider an SOCP relaxation program of problem (Pν) as

inf
(y,ξζ ,ξ̃l ,zζ ,z̃l )

{ s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α yα +

m∑

ζ=1

νζ
√

ρζ ξζ |
s(η,n)∑

α=1

(h0l )α yα + √
τl ξ̃l ≤ 0, l = 1, . . . , q,

(D∗
ν)

s(η,n)∑

α=1

(piζ )α yα + (Qi
ζ )

T zζ = 0, ‖zζ ‖ ≤ ξζ , i = 1, . . . , s, ζ = 1, . . . ,m,

s(η,n)∑

α=1

(h j
l )α yα + (E j

l )T z̃l = 0, ‖z̃l‖ ≤ ξ̃l , j = 1, . . . , r , l = 1, . . . , q,

‖
(

2(M η
2
(y))i j

(M η
2
(y))i i − (M η

2
(y)) j j

)
‖ ≤ (M η

2
(y))i i + (M η

2
(y)) j j , 1 ≤ i, j ≤ s(

η

2
, n),

y := (yα) ∈ R
s(η,n), y1 = 1,

ξζ ∈ R, zζ ∈ R
s, ζ = 1, . . . ,m, ξ̃l ∈ R, z̃l ∈ R

r , l = 1, . . . , q
}
,

where Qi
ζ , i = 1, . . . , s are the columns of the matrix Qζ for ζ = 1, . . . ,m and E j

l , j =
1, . . . , r are the columns of the matrix El for l = 1, . . . , q.

The following lemma is needed for our analysis in the sequel.

Lemma 1 (Jensen’s inequalitywith 1st-SDSOS-convex polynomials, cf. [8, Proposition 6.1])
Consider a 1st-SDSOS-convex polynomial d on R

n with degree η := 2	. Let y = (yα) ∈
R
s(η,n) with y1 = 1 and 1 ≤ i, j ≤ s(	, n),

‖
(

2(M	(y))i j
(M	(y))i i − (M	(y)) j j

)
‖ ≤ (M	(y))i i + (M	(y)) j j . (48)
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Then, one has

L y(d) ≥ d
(
Ly(x1), . . . , Ly(xn)

)
,

where L y is given as in (4) and xi denotes the polynomial which maps a vector x in Rn to its
i th coordinate.

Robust solution relationships between the uncertain multiobjective optimization prob-
lem (U) and an SOCP relaxation (D∗

ν) of the corresponding weighted-sum optimization
problem (Pν) is now ready to be established. This result illustrates, in particular, that we can
find robust (weak) Pareto solutions of program (U) by solving the (scalar) SOCP relaxation
problem (D∗

ν). In addition, we obtain strong SOCP duality-exact SOCP relaxation among
the dual problem (Dν), the relaxation (D∗

ν) and the weighted-sum optimization problem (Pν)
that might be of independent interest.

Theorem 5 Let the Slater qualification condition (7) be valid. Then, we have the following
statements:

(i) If x̄ := (x̄1, . . . , x̄n) is a robust weak Pareto solution of problem (U), then there exist
ν ∈ R

m+\{0} and ξζ ∈ R, ξ̃l ∈ R, zζ ∈ R
s, z̃l ∈ R

r , ζ = 1, . . . ,m, l = 1, . . . , q such
that

min (Pν) = max (Dν) = min (Dν) (49)

and (ȳ, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm, z̃1, . . . , z̃q) is an optimal solution of prob-
lem (D∗

ν), where ȳ := (1, x̄1, . . . , x̄n, x̄21 , x̄1 x̄2, . . . , x̄
2
2 , . . . , x̄

2
n , . . . , x̄

η
1 , . . . , x̄η

n ).
(ii) Consider L ȳ given as in (4) and xi being the polynomial which maps a vector x in R

n

to its i th coordinate. Let ν ∈ R
m+ \ {0} be such that the problem (Pν) admits an optimal

solution. If (ȳ, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm, z̃1, . . . , z̃q) with ȳ := (ȳα) ∈ R
s(η,n)

is an optimal solution of problem (D∗
ν), then x̄ := (L ȳ(x1), . . . , L ȳ(xn)) ∈ R

n is a robust
weak Pareto solution of problem (U). Moreover, if ν ∈ intRm+, then x̄ is a robust Pareto
solution of problem (U).

Proof (i) Let x̄ := (x̄1, . . . , x̄n) be a robust weak Pareto solution of problem (U). In view
of Theorem 1(i), there exist μ0

l ∈ R+, μ
j
l ∈ R, l = 1, . . . , q, j = 1, . . . , r and ν :=

(ν1, . . . , νm) ∈ R
m+\{0}, λiζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s such that

m∑

ζ=1

(
νζ p

0
ζ +

s∑

i=1

λiζ p
i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) −
m∑

ζ=1

νζ Fζ (x̄) ∈ SDSOSη[x], (50)

‖Qζ (λ
1
ζ , . . . , λ

s
ζ )‖ ≤ √

ρζ νζ , ζ = 1, . . . ,m, (51)

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , l = 1, . . . , q, (52)

where Fζ (x̄) := max
uζ ∈Uζ

fζ (x̄, uζ ) for ζ = 1, . . . ,m.

Step 1. Let us first prove that

min (Pν) =
m∑

ζ=1

νζ Fζ (x̄) = max (Dν). (53)
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By (50), we find σ ∈ SDSOSη[x] such that
m∑

ζ=1

(
νζ p

0
ζ (x) +

s∑

i=1

λiζ p
i
ζ (x)

) = σ(x) −
q∑

l=1

(
μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x)

) +
m∑

ζ=1

νζ Fζ (x̄), ∀x ∈ R
n .

(54)

As shown in the proof of (ii) in Theorem 1, we show by (51) and (52) that there exist
ûζ ∈ Uζ , ζ = 1, . . . ,m and ω̂l ∈ �l , l = 1, . . . , q such that

νζ p
0
ζ (x) +

s∑

i=1

λiζ p
i
ζ (x) = νζ fζ (x, ûζ ), ∀x ∈ R

n, ζ = 1, . . . ,m,

μ0
l h

0
l (x) +

r∑

j=1

μ
j
l h

j
l (x) = μ0

l gl(x, ω̂l), ∀x ∈ R
n, l = 1, . . . , q.

Let x̂ be an arbitrary feasible point of problem (Pν). This entails that gl(x̂, ω̂l) ≤ 0, l =
1, . . . , q . Note further that Fζ (x̂) := max

uζ ∈Uζ

fζ (x̂, uζ ) ≥ fζ (x̂, ûζ ) for all ζ = 1, . . . ,m and

that σ(x̂) ≥ 0 as σ is an SDSOS polynomial. Estimating (54) at x̂ , we arrive at

m∑

ζ=1

νζ Fζ (x̂) ≥
m∑

ζ=1

νζ fζ (x̂, ûζ ) ≥
m∑

ζ=1

νζ Fζ (x̄). (55)

This concludes that x̄ is an optimal solution of problem (Pν), and so min (Pν) =∑m
ζ=1 νζ Fζ (x̄).
To proceed, let

ν∗ := sup
(t,λiζ ,μ0

l ,μ
j
l )

{
t |

m∑

ζ=1

(
νζ p

0
ζ +

s∑

i=1

λiζ p
i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) − t ∈ SDSOSη[x], t ∈ R,

‖Qζ (λ1ζ , . . . , λsζ )‖ ≤ √
ρζ νζ , λiζ ∈ R, i = 1, . . . , s, ζ = 1, . . . ,m,

‖El (μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , μ

0
l ∈ R+, μ

j
l ∈ R, j = 1, . . . , r , l = 1, . . . , q

}
.

By putting t̄ := ∑m
ζ=1 νζ Fζ (x̄), we get by (50) that (t̄, λiζ , μ

0
l , μ

j
l , i = 1, . . . , s, ζ =

1, . . . ,m, j = 1, . . . , r , l = 1, . . . , q) is a feasible point of problem (Dν) and so, t̄ ≤ ν∗.
Let us show that

ν∗ ≤ min (Pν). (56)

To see this, assume that (t, λiζ , μ
0
l , μ

j
l , i = 1, . . . , s, ζ = 1, . . . ,m, j = 1, . . . , r , l =

1, . . . , q) is a feasible point of problem (Dν). Then, μ0
l ∈ R+, μ

j
l ∈ R, l = 1, . . . , q, j =

1, . . . , r and λiζ ∈ R, ζ = 1, . . . ,m, i = 1, . . . , s satisfying

m∑

ζ=1

(
νζ p

0
ζ +

s∑

i=1

λiζ p
i
ζ

) +
q∑

l=1

(
μ0
l h

0
l +

r∑

j=1

μ
j
l h

j
l

) − t ∈ SDSOSη[x],

‖Qζ (λ
1
ζ , . . . , λ

s
ζ )‖ ≤ √

ρζ νζ , ζ = 1, . . . ,m,

‖El(μ
1
l , . . . , μ

r
l )‖ ≤ √

τlμ
0
l , l = 1, . . . , q.

By similar arguments as in (54) to (55), we come to the conclusion
∑m

ζ=1 νζ Fζ (x̄) ≥ t ,
which proves that (56) is valid due to min (Pν) = ∑m

ζ=1 νζ Fζ (x̄). Consequently, (53) holds.
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Step 2. Denote ȳ := x̄ (η) = (1, x̄1, . . . , x̄n, x̄21 , x̄1 x̄2, . . . , x̄
2
2 , . . . , x̄

2
n , . . . , x̄

η
1 , . . . , x̄η

n ). We
now prove that there exist ξζ ∈ R, ξ̃l ∈ R, zζ ∈ R

s, z̃l ∈ R
r , ζ = 1, . . . ,m, l = 1, . . . , q

such that
(ȳ, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm, z̃1, . . . , z̃q) is an optimal solution of problem (D∗

ν)
and

min (Pν) = min (Dν) =
s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α ȳα +

m∑

ζ=1

νζ
√

ρζ ξζ . (57)

Since x̄ is a feasible point of problem (Pν), it is true that

max
ωl :=(ω1

l ,...,ω
r
l )∈�l

{h0l (x̄) +
r∑

j=1

ω
j
l h

j
l (x̄)} ≤ 0, l = 1, . . . , q.

This entails that

[ωl := (ω1
l , . . . , ω

r
l ) ∈ R

r , ‖Elωl‖ ≤ √
τl ]

⇒ h0l (x̄) +
r∑

j=1

ω
j
l h

j
l (x̄) ≤ 0, l = 1, . . . , q. (58)

Letting ω̂l := 0r ∈ R
r , we have ‖El ω̂l‖ <

√
τl , i.e., the strict feasibility condition holds

for (58). This allows us to employ the strong duality in second-order cone programming (see
e.g., [6, Theorem 7.1]) to assert that there exist z̃l ∈ R

r , ξ̃l ∈ R, l = 1, . . . , q such that
‖z̃l‖ ≤ ξ̃l , l = 1, . . . , q and

h0l (x̄) + √
τl ξ̃l ≤ 0, l = 1, . . . , q,

h j
l (x̄) + (E j

l )T z̃l = 0, j = 1, . . . , r , l = 1, . . . , q.

Similarly, by Fζ (x̄) := max
uζ :=(u1ζ ,...,usζ )∈Uζ

{p0ζ (x) +
s∑

i=1
uiζ p

i
ζ (x)}, ζ = 1, . . . ,m, we have

[uζ := (u1ζ , . . . , u
s
ζ ) ∈ R

s, ‖Qζ uζ ‖ ≤ √
ρζ ]

⇒ p0ζ (x̄) +
s∑

i=1

uiζ p
i
ζ (x̄) ≤ Fζ (x̄), ζ = 1, . . . ,m,

and so, we can find zζ ∈ R
s, ξζ ∈ R, ζ = 1, . . . ,m such that ‖zζ ‖ ≤ ξζ , ζ = 1, . . . ,m and

p0ζ (x̄) + √
ρζ ξζ ≤ Fζ (x̄), ζ = 1, . . . ,m,

piζ (x̄) + (Qi
ζ )

T zζ = 0, i = 1, . . . , s, ζ = 1, . . . ,m. (59)

As ȳ := x̄ (η) = (1, x̄1, . . . , x̄n, x̄21 , x̄1 x̄2, . . . , x̄
2
2 , . . . , x̄

2
n , . . . , x̄

η
1 , . . . , x̄η

n ), it holds that
ȳ1 := 1 and

L ȳ(p
i
ζ ) =

s(η,n)∑

α=1

(piζ )α ȳα =
s(η,n)∑

α=1

(piζ )α x̄
(η)
α = piζ (x̄), i = 0, 1, . . . , s, ζ = 1, . . . ,m,

L ȳ(h
j
l ) =

s(η,n)∑

α=1

(h j
l )α ȳα =

s(η,n)∑

α=1

(h j
l )α x̄

(η)
α = h j

l (x̄), j = 0, 1, . . . , r , l = 1, . . . , q, (60)
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where Ly is defined as in (4). Furthermore, by the definition of the moment matrix (cf. (5)
and (6)), we see that

M η
2
(ȳ) =

s(η,n)∑

α=1

ȳαMα =
s(η,n)∑

α=1

x̄
(

η
2 )

α Mα = x̄ (
η
2 )(x̄ (

η
2 ))T � 0,

which ensures that for each 1 ≤ i, j ≤ s( η
2 , n),

‖
(

2(M η
2
(ȳ))i j

(M η
2
(ȳ))i i − (M η

2
(ȳ)) j j

)
‖ ≤ (M η

2
(ȳ))i i + (M η

2
(ȳ)) j j .

Consequently, (ȳ, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm, z̃1, . . . , z̃q) is a feasible point of prob-
lem (D∗

ν), and it in turn implies that

inf (Dν) ≤
s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α ȳα +

m∑

ζ=1

νζ
√

ρζ ξζ ≤
m∑

ζ=1

νζ Fζ (x̄) = min (Pν), (61)

where the second inequality holds by (59) and (60), while the equality holds by (53).
We now justify that min (Pν) ≤ inf (Dν). Let (y, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm,

z̃1, . . . , z̃q) be a feasible point of problem (D∗
ν), where y := (yα) ∈ R

s(η,n), and denote
x̃ := (Ly(x1), . . . , Ly(xn)). Then,

s(η,n)∑

α=1

(h0l )α yα + √
τl ξ̃l ≤ 0, l = 1, . . . , q, (62)

s(η,n)∑

α=1

(piζ )α yα + (Qi
ζ )

T zζ = 0, ‖zζ ‖ ≤ ξζ , i = 1, . . . , s, ζ = 1, . . . ,m,

s(η,n)∑

α=1

(h j
l )α yα + (E j

l )T z̃l = 0, ‖z̃l‖ ≤ ξ̃l , j = 1, . . . , r , l = 1, . . . , q, (63)

y1 = 1, (64)

‖
(

2(M η
2
(y))i j

(M η
2
(y))i i − (M η

2
(y)) j j

)
‖ ≤ (M η

2
(y))i i + (M η

2
(y)) j j , 1 ≤ i, j ≤ s(

η

2
, n). (65)

Considering any l ∈ {1, . . . , q}, we verify that

s(η,n)∑

α=1

(h0l )α yα + √
τl ξ̃l ≥ max

ωl :=(ω1
l ,...,ω

r
l )∈�l

{h0l (x̃) +
r∑

j=1

ω
j
l h

j
l (x̃)}, (66)

where x̃ := (Ly(x1), . . . , Ly(xn)). It suffices to show that for any ωl ∈ �l , it holds that

s(η,n)∑

α=1

(h0l )α yα + √
τl ξ̃l ≥ h0l (x̃) +

r∑

j=1

ω
j
l h

j
l (x̃). (67)
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Since ωl := (ω1
l , . . . , ω

r
l ) ∈ �l , it holds that ||El(ω

1
l , . . . , ω

r
l )|| ≤ √

τl . This together with
(63) ensures that

√
τl ξ̃l ≥ ‖z̃l‖‖El(ω

1
l , . . . , ω

r
l )‖ ≥ −z̃Tl El(ω

1
l , . . . , ω

r
l )

= −
r∑

j=1

ω
j
l (E

j
l )T z̃l =

r∑

j=1

ω
j
l

( s(η,n)∑

α=1

(h j
l )α yα).

Therefore, we have

s(η,n)∑

α=1

(h0l )α yα + √
τl ξ̃l ≥

s(η,n)∑

α=1

(h0l )α yα +
r∑

j=1

ω
j
l

( s(η,n)∑

α=1

(h j
l )α yα) = Ly

(
h0l +

r∑

j=1

ω
j
l h

j
l

)
,

(68)

where Ly is defined as in (4). Note that the polynomial h0l + ∑r
j=1 ω

j
l h

j
l is 1st-SDSOS-

convex by our assumption. On account of (64) and (65), we invoke the Jensen’s inequality
given in Lemma 1 to claim that

Ly
(
h0l +

r∑

j=1

ω
j
l h

j
l

) ≥ (
h0l +

r∑

j=1

ω
j
l h

j
l

)
(Ly(x1), . . . , Ly(xn)) = h0l (x̃) +

r∑

j=1

ω
j
l h

j
l (x̃),

which together with (68) shows that (67) holds. So, (66) is true. Granting this, we conclude
from (62) that x̃ is a feasible point of problem (Pν) and hence,

min (Pν) ≤
m∑

ζ=1

νζ Fζ (x̃). (69)

Similarly, we can verify that

s(η,n)∑

α=1

(p0ζ )α yα + √
ρζ ξζ ≥ max

uζ ∈Uζ

{p0ζ (x̃) +
s∑

i=1

uiζ p
i
ζ (x̃)}, ζ = 1, . . . ,m,

and so

s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α yα +

m∑

ζ=1

νζ
√

ρζ ξζ ≥
m∑

ζ=1

νζ Fζ (x̃).

Hence, by (69), it follows that

inf (Dν) ≥ min (Pν).

Granting this, we invoke (61) to conclude that

min (Pν) = min (Dν) =
s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α ȳα +

m∑

ζ=1

νζ
√

ρζ ξζ ,

i.e., (57) is valid and (ȳ, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm, z̃1, . . . , z̃q) is an optimal solution
of problem (D∗

ν).
(ii) Let ν := (ν1, . . . , νm) ∈ R

m+ \ {0} be such that the problem (Pν) admits an optimal
solution. Suppose that x̂ is an optimal solution of problem (Pν). Arguing similarly as in the

123



924 Journal of Global Optimization (2024) 88:901–926

proof of Step 2 of (i), we arrive at

min (Pν) = min (Dν). (70)

Let (ȳ, ξ1, . . . , ξm, ξ̃1, . . . , ξ̃q , z1, . . . , zm, z̃1, . . . , z̃q) with ȳ := (ȳα) ∈ R
s(η,n) be an opti-

mal solution of problem (D∗
ν). Then, we have ξζ ∈ R, ξ̃l ∈ R, zζ ∈ R

s, z̃l ∈ R
r , ζ =

1, . . . ,m, l = 1, . . . , q and

min (Dν) =
s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α ȳα +

m∑

ζ=1

νζ
√

ρζ ξζ , (71)

s(η,n)∑

α=1

(h0l )α ȳα + √
τl ξ̃l ≤ 0, l = 1, . . . , q, (72)

s(η,n)∑

α=1

(piζ )α ȳα + (Qi
ζ )

T zζ = 0, ‖zζ ‖ ≤ ξζ , i = 1, . . . , s, ζ = 1, . . . ,m, (73)

s(η,n)∑

α=1

(h j
l )α ȳα + (E j

l )T z̃l = 0, ‖z̃l‖ ≤ ξ̃l , j = 1, . . . , r , l = 1, . . . , q, (74)

ȳ1 = 1, (75)

‖
(

2(M η
2
(ȳ))i j

(M η
2
(ȳ))i i − (M η

2
(ȳ)) j j

)
‖ ≤ (M η

2
(ȳ))i i + (M η

2
(ȳ)) j j , 1 ≤ i, j ≤ s(

η

2
, n). (76)

Denote x̄ := (L ȳ(x1), . . . , L ȳ(xn)) ∈ R
n . As shown in (i), under the validation of (72), (74),

(75) and (76), we can verify that x̄ is a feasible point of problem (Pν), and so

min (Pν) ≤
m∑

ζ=1

νζ Fζ (x̄). (77)

Similarly, we derive from (73), (75) and (76) that

s(η,n)∑

α=1

(

m∑

ζ=1

νζ p
0
ζ )α ȳα +

m∑

ζ=1

νζ
√

ρζ ξζ ≥
m∑

ζ=1

νζ Fζ (x̄).

Combining this with (77), (71) and (70) shows that min (Pν) = ∑m
ζ=1 νζ Fζ (x̄), and so x̄ is

an optimal solution of problem (Pν). We can make conclusion that x̂ is a robust weak Pareto
solution of problem (U). In the case of ν ∈ intRm+, we obtain that x̄ is a robust Pareto solution
of problem (U). The proof is accomplished. ��

5 Conclusions

In this paper, we have presented necessary and sufficient optimality conditions in terms of
second order cone conditions for robust (weak) Pareto solutions of an uncertainmultiobjective
optimization problem. We have also addressed a dual problem to the robust multiobjective
optimization problem and examined robust converse, robust weak and robust strong duality
relations between the primal and dual problems. Furthermore, robust solution relationships
between the uncertain multiobjective optimization program and (scalar) second order cone
programming (SOCP) dual and relaxation problems have been established by using the
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duality theory in second order cone programming. Particularly, it has been shown that one
can calculate a robust (weak) Pareto solution of the uncertain multiobjective optimization
problem by solving a related second order cone programming relaxation.

The results obtained in this paper are conceptual dual/relaxation schemes that have poten-
tially numerical experiments for a subclass of robust convex multiobjective polynomial
optimization problems. It would be of great interest to see how we can develop associated
algorithms that allow to find robust (weak) Pareto solutions of an uncertain multiobjective
optimization problem via its SOCP dual or relaxation programs.
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