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Abstract
We consider the nonconvex nonsmooth minimization problem over abstract sets, whose
objective function is the sumof a proper lower semicontinuous biconvex function of the entire
variables and two smooth nonconvex functions of their private variables. Fully exploiting the
problem structure, we propose an alternating structure-adapted Bregman proximal (ASABP
for short) gradient descent algorithm, where the geometry of the abstract set and the function
is captured by employing generalized Bregman function. Under the assumption that the
underlying function satisfies the Kurdyka–Łojasiewicz property, we prove that each bounded
sequence generated by ASABP globally converges to a critical point. We then adopt an
inertial strategy to accelerate the ASABP algorithm (IASABP), and utilize a backtracking
line search scheme to find “suitable” step sizes,making the algorithm efficient and robust. The
global O(1/K ) sublinear convergence ratemeasured byBregman distance is also established.
Furthermore, to illustrate the potential of ASABP and its inertial version (IASABP), we apply
them to solving the Poisson linear inverse problem, and the results are promising.
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1 Introduction

Let X ⊂ R
n and Y ⊂ R

m be nonempty open convex sets whose closures are denoted by
X , Y respectively. Let F : Rn → R ∪ {+∞} and G : Rm → R ∪ {+∞} be proper lower
semicontinuous nonconvex functions; and let H : Rn ×R

m → R∪ {+∞} be a proper lower
semicontinuous biconvex function. In this paper, we consider the optimization problem

min
x∈X , y∈Y

�(x, y) = F(x) + G(y) + H(x, y), (1)

which captures numerous applications, such as Poisson inverse problems (see, for instance,
the recent review paper [6, 8] and references therein), nonnegative matrix factorization [1,
2], parallel magnetic resonance imaging [7], multi-modal learning for image classification
[29].

An intuitive method for solving problem (1) is the alternating minimization method (also
known as the Gauss-Seidel method or the block coordinate descent method), which was
originally proposed for the case X = R

n, Y = R
m ,

{
xk+1 ∈ argmin {�(x, yk) : x ∈ R

n},
yk+1 ∈ argmin {�(xk+1, y) : y ∈ R

m}. (2)

If� is continuously differentiable and strictly convex with respect to one argument while the
other one is fixed, every limit point of the sequence

{
(xk, yk)

}
generated by scheme (2) min-

imizes � [9, 10]. A classical technique to relax the strict convexity condition is the proximal
alternating minimization method [3, 4]. However, minimizing�(·, y) or�(x, ·)which is the
sum of two functions per iteration is not an easy task. To alleviate the computational cost,
Bolte et al. [11] considered linearizing H and proposed the proximal alternating linearized
minimization (PALM) algorithm,⎧⎨

⎩
xk+1 ∈ argmin

{
F(x) + 〈∇x H(xk, yk), x − xk〉 + 1

2ςk
‖x − xk‖2 : x ∈ R

n
}

,

yk+1 ∈ argmin
{
G(y) + 〈∇y H(xk+1, yk), y − yk〉 + 1

2�k
‖y − yk‖2 : y ∈ R

m
}

.
(3)

The step sizes ςk and �k are computed according to

ςk ∈ (0, (Lip(∇x H(·, yk)))−1), �k ∈ (0, (Lip(∇y H(xk+1, ·)))−1),

where “Lip(·)” denotes the Lipschitz constant. Under the assumption that � satisfies the
Kurdyka–Łojasiewicz (KL) property (see Def. 2.14 for its definition) and a few other con-
ditions, PALM globally converges to a critical point of �. This scheme has great advantage
when the functions F andG are simple in the sense that their proximal operators have closed-
form expressions or can be evaluated via a fast scheme, while the stepsizes need to change
with the iteration sequence.

When the coupling term H has a good structure, e.g., it is a quadratic function [11, 21,
27], the difficulties in solving the minimization problems of (2) and (3) may be caused by the
component functions F and G. For this case, Nikolova and Tan [20] proposed the alternating
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structure-adapted proximal (ASAP) gradient descent algorithm,⎧⎨
⎩
xk+1 ∈ argmin

{
H(x, yk) + 〈∇F(xk), x − xk〉 + 1

2ς̄ ‖x − xk‖2 : x ∈ R
n
}

,

yk+1 ∈ argmin
{
H(xk+1, y) + 〈∇G(yk), y − yk〉 + 1

2�̄‖y − yk‖2 : y ∈ R
m
}

,
(4)

where

ς̄ ∈ (0, (Lip(∇F))−1), �̄ ∈ (0, (Lip(∇G))−1).

ASAP (4) is much suitable for the case that the component function H has a good structure in
the sense of being simple with respect to each variable x and y so that the proximal operators
of H(·, y) and H(x, ·) have closed-form expressions.

ASAP (4) is a good alternative to PALM (3). Nevertheless, both algorithms are restricted
to the case that there is no abstract sets, while in many applications, there are abstract sets in
the model (1), i.e., either X �= R

n or Y �= R
m , or both X �= R

n and Y �= R
m [6, 8]. Certainly,

one can use the indicator functions δX (x) and δY (y) to equivalently convert problem (1) to

min
x∈Rn , y∈Rm

F(x) + G(y) + H(x, y),

where

H(x, y) = H(x, y) + δX (x) + δY (y).

However, in this case, the subproblems in ASAP algorithm (4) are constrained minimization
problems, which unavoidably degrades its efficiency. Another key point of the ASAP algo-
rithm is that, F andG are assumed to be globally Lipschitz smooth on the entire spaces, which
is very restrictive and excludes many applications. Furthermore, the proximal parameters ς̄

and �̄ in (4), playing essential roles in numerical implementations, depend on the estimation
of the Lipschitz constants of ∇F and ∇G, which is not an easy task.

There are several techniques that can be utilized to handle some of these difficulties [6,
12, 13, 15, 25]. For example, [13, 15] chose Legendre or Bregman functions to absorb the
abstract sets and hence automatically kept the iterates in the abstract sets; Bauschke et al.
[6] introduced a NoLips algorithm, avoiding the dependence of the Lipschitz smoothness,
which is then extended to the nonconvex case [5, 12, 17, 18, 25, 26, 28]. However, the
convergence of this powerful algorithm is limited to the convex case, or the nonconvex case
but with the assumptions that X = R

n, Y = R
m . Moreover, for the nonconvex case, the

Lipschitz smoothness is still required, which contradicts to the original main intention of
NoLips algorithm.

In this paper, we propose an alternating structure-adapted Bregman proximal (ASABP)
gradient descent algorithm,⎧⎨

⎩
xk+1 ∈ argmin

{
H(x, yk) + 〈∇F(xk), x − xk〉 + 1

τk
Dh(x, xk) : x ∈ X

}
,

yk+1 ∈ argmin
{
H(xk+1, y) + 〈∇G(yk), y − yk〉 + 1

σk
Dψ(y, yk) : y ∈ Y

}
,

(5)

where we choose the generalized Bregman functions h and ψ , such that the pairs (F, h) and
(G, ψ) are GL-smad on X and Y (see Definition 2.6 and Definition 2.12). By associating the
generalized Bregman functions h andψ to the objective functions F and G in a suitable way,
ASABP can absorb the abstract sets and result in the subproblems unconstrained ones.Merely
assuming that the underlying function satisfies the Kurdyka–Łojasiewicz (KL) property yet
without the Lipschitz smoothness, we establish the global convergence to a critical point.
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This result paves a new way for analyzing the NoLips algorithms in solving nonsmooth
nonconvex optimization problems with abstract sets.

Numerically, the vectors xk and yk and the parameters τk and σk influent the performance
of the algorithm greatly. To improve the numerical performance, wemerge an inertial strategy
[22] into the proposed ASABP algorithm, leading to the inertial alternating structure-adapted
Bregman proximal (IASABP) gradient descent algorithm (see Algorithm 2). The inertial
stepsizes are judiciously selected by backtracking line search strategy. Undermild conditions,
we can get the O(1/K ) convergence rate of the sequence generated by IASABP measured
by Bregman distance.

The rest of this paper is organized as follows. In Sect. 2, we list some basic notations and
preliminary materials. In Sect. 3, we present the new alternating structure-adapted Bregman
proximal (ASABP) gradient descent algorithm and its inertial version IASABP in detail, and
give the convergence analysis results. To show the ability of IASABP and ASABP in dealing
with non-Lipschitz problem with abstract sets, we implement them to solve the Poisson
linear inverse problem and perform numerical experiment in Sect. 4. Finally, we make some
conclusions in Sect. 5.

2 Preliminaries

In this section, we summarize some notations and elementary facts to be used for further
analysis.

The Euclidean scalar product in Rd and its corresponding norm are respectively denoted
by 〈·, ·〉 and ‖ · ‖. If F : Rn ⇒ R

m is a point-to-set mapping, its graph is defined by

Graph F := {(x, y) ∈ R
n × R

m : y ∈ F(x)}.
Similarly the graph of a real-extended-valued function f : Rd → R ∪ {+∞} is defined by

Graph f := {(x, s) ∈ R
d × R : s = f (x)}.

Given a function f : R
d → R ∪ {+∞}, its domain is

dom f := {x ∈ R
d : f (x) < +∞},

and f is proper if and only if dom f �= ∅. The proximal operator associated with f is given
by

prox f (x) = argmin
u∈Rd

{
f (u) + 1

2
‖u − x‖2

}
for any x ∈ R

d . (6)

The indicator function of a nonempty set C is defined by

δC (x) =
{
0 if x ∈ C,

+∞ otherwise.

The normal cone of a nonempty closed convex set C ⊂ R
d at x ∈ C is defined by

NC (x) = {d ∈ R
d : 〈d, y − x〉 ≤ 0, ∀y ∈ C};

and if x /∈ C , we set NC (x) = ∅. For any subset C ⊂ R
d and any x ∈ R

d , the distance from
x to C , denoted by dist(x,C), is defined as

dist(x,C) := inf
y∈C ‖y − x‖.

When C = ∅, we set dist(x,C) = +∞ for all x ∈ R
d .
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2.1 Subdifferentials and partial subdifferentials

Let us first recall a few definitions and results concerning subdifferentials of a given function.

Definition 2.1 [3] Let f : R
d → R ∪ {+∞} be a proper lower semicontinuous function.

(i) For each x ∈ dom f , the Fréchet subdifferential of f at x , written as ∂̂ f (x), is the set of
vectors u ∈ R

d which satisfy

lim inf
y �=x y→x

f (y) − f (x) − 〈u, y − x〉
‖y − x‖ ≥ 0.

If x /∈ dom f , we set ∂̂ f (x) = ∅.
(ii) The set

∂ f (x) :=
{
u ∈ R

d : ∃ xk → x, f (xk) → f (x), uk ∈ ∂̂ f (xk) → u
}

,

is the limiting subdifferential, or simply the subdifferential for short, of f at x ∈ dom f .

Remark 2.2 [24] From Definition 2.1, we have the following conclusions.

(i) ∂̂ f (x) ⊂ ∂ f (x) for each x ∈ R
d ; both sets are closed; and ∂̂ f (x) is convex while ∂ f (x)

is not necessarily convex.
(ii) Let (xk, uk) ∈ Graph ∂ f be a sequence that converges to (x, u). If f (xk) converges to

f (x) as k → +∞, then (x, u) ∈ Graph ∂ f .
(iii) (Fermat’s rule) Anecessary but not sufficient condition for x ∈ R

d to be a localminimizer
of f is that x is a critical point, that is,

0 ∈ ∂ f (x).

The set of critical points of f is denoted by cri t f .
(iv) If f : Rd → R∪{+∞} is proper lower semicontinuous and h : Rd → R is continuously

differentiable, then for any x ∈ dom f , ∂( f + h)(x) = ∂ f (x) + ∇h(x).

In first order alternatingmethods (e.g., scheme (5)), each iteration is equivalent to finding a
minimizer of the auxiliary function, which is characterized by Fermat’s rule. Since Fermat’s
rule is defined on subgradients, applying alternating schemes leads us to consider partial
subgradients defined as follows.

Definition 2.3 [20] Given H : Rn ×R
m → R∪ {+∞}, the subdifferential of H at

(
x+, y+)

is denoted by ∂H
(
x+, y+)

. In addition, ∂x H
(
x+, y+)

and ∂y H
(
x+, y+)

are the partial
subdifferentials of H(·, y+) at x+ and H(x+, ·) at y+ respectively.

Remark 2.4 Note that the desired critical point is characterized by its whole subgradient,
namely (0, 0) ∈ ∂H(x∗, y∗). Let H : Rn × R

m → R ∪ {+∞} be proper function. Then
∂H(x, y) ⊂ ∂x H(x, y) × ∂y H(x, y), ∀ (x, y) ∈ domH ,

holds naturally [24]. If the function H also satisfies

∂x H(x, y) × ∂y H(x, y) ⊂ ∂H(x, y), ∀ (x, y) ∈ domH , (7)

at least for (x, y) = (0, 0), then 0 ∈ ∂x H(x∗, y∗) × ∂y H(x∗, y∗) means that (x∗, y∗) is a
critical point. (7) is automatically satisfied in the form as shown in the following example,
which gives a sufficient condition.
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Example 1 Let H : R
n × R

m → R ∪ {+∞} be of the form
H(x, y) = h(x, y) + ξ(x) + η(y),

where h : R
n × R

m → R is continuously differentiable; ξ : R
n → R ∪ {+∞} and

η : R
m → R ∪ {+∞} are proper lower semicontinuous functions. Then, for any (x, y) ∈

domH = domξ × domη, H satisfies (7).

More details and examples can refer to [20]. Besides condition (7), another property,
closely linked to the closedness of the partial subdifferential, is crucial.

Definition 2.5 [20] (Parametric closedness of the partial subdifferentials) Let H : R
n ×

R
m → R ∪ {+∞} be a function, {(xk, yk)}k∈N and (x+, y+) ∈ domH such that for k →

+∞,

(xk, yk) → (x+, y+), H(xk, yk) → H(x+, y+). (8)

The x-partial subdifferentail of H is said to be parametrically closed at (x+, y+)with respect
to the sequence {(xk, yk)}k∈N if, for any sequence {pkx }k∈N,

∂x H(xk, yk) � pkx → p+
x , k → +∞,

then p+
x ∈ ∂x H(x+, y+). Similarly, we can define the parametrically closeness of y-partial

subdifferentail of H at (x+, y+)with respect to the sequence {(xk, yk)}k∈N. The x-partial and
y-partial subdifferentials of H are said to be parametrically closed if they are parametrically
closed at any point (x+, y+) ∈ domH with respect to any sequence satisfying (8).

Example 2 [20] Let H : R
n × R

m → R ∪ {+∞} be a biconvex function continuous on its
domain. Then its partial subdifferentials are parametrically closed at any point (x+, y+) ∈
domH .

2.2 Generalized Bregman function and Bregman distance

To define the Bregman distance, we first give the definition of generalized Bregman function.

Definition 2.6 (Generalized Bregman function) Let� be a nonempty convex open subset of
R
d , and � denotes its closure. Associated with �, a function h : Rd → R∪ {+∞} is called

a generalized Bregman function if it satisfies the following:

(i) h is proper lower semicontinuous and convex with domh ⊂ �.
(ii) dom∂h = � = int domh.
(iii) h is strictly convex on int domh.
(iv) If {xk} ∈ � converges to x̄ ∈ ∂� (the boundary of �), then lim

k→+∞〈∇h(xk), u − xk〉 =
−∞ for all u ∈ �.

We denote the class of generalized Bregman functions by G(�).

Definition 2.7 (Bregman distance) Given h ∈ G(�), the Bregman distance associated to h,
denoted by Dh : domh × int domh → R+, is defined by

Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉.
Remark 2.8 We give some remarks on Definition 2.6 and Definition 2.7.
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(i) The class of functions which satisfy (i) and (ii) in Definition 2.6 are the Kernel generating
distance [12]. And the class of functions satisfying (i)-(iii) are Legendre functions [6].

(ii) Definition 2.6 (ii) is equivalent to the statement that h is essentially smooth [23, 25],
which means that ∂h(x) = {∇h(x)} when x ∈ int domh, while ∂h(x) = ∅ when
x /∈ int domh.

(iii) Given h ∈ G(�). If h is continuous on �, Definition 2.6 (iv) holds if and only if
lim

k→+∞ Dh(u, xk) = +∞ for all u ∈ � and all sequence {xk} ∈ � which converges

to a point x̄ ∈ ∂�.
(iv) Note that the structural form of Dh is also useful when h is not convex, and still enjoys

two simple but remarkable properties,

• The three point identity: For any y, z ∈ int domh and x ∈ domh, we have

Dh(x, z) − Dh(x, y) − Dh(y, z) = 〈∇h(y) − ∇h(z), x − y〉.
• Linear additivity: For any α, β ∈ R, and any functions h1 and h2, we have

Dαh1+βh2(x, y) = αDh1(x, y) + βDh2(x, y),

for any (x, y) ∈ (domh1
⋂

domh2)2 such that both h1 and h2 are differentiable at y.

It is obvious that Bregman distance is, in general, not symmetric. It is thus natural to
introduce a measure for the symmetry of Dh .

Definition 2.9 [6] (Symmetry coefficient) Given h ∈ G(�), its symmetry coefficient is
defined by

α(h) = inf{Dh(x, y)/Dh(y, x)|(x, y) ∈ int domh × int domh, x �= y} ∈ [0, 1].
Remark 2.10 The symmetry coefficient has the following properties:

(i) Clearly, the closer α(h) gets to 1, the more symmetric Dh is.
(ii) For any x, y ∈ int domh,

α(h)Dh(x, y) ≤ Dh(y, x) ≤ 1

α(h)
Dh(x, y),

where we have adopted the convention that 1
0 = +∞ and+∞×r = +∞ for any r ≥ 0.

Lemma 2.11 Given h ∈ G(�), for any proper lower semicontinuous convex function � :
R
d → R ∪ {+∞} and any z ∈ int domh, if

z+ = argmin
x∈�

{�(x) + Dh(x, z)},

then for any x ∈ domh,

�(z+) + Dh(z+, z) ≤ �(x) + Dh(x, z) − Dh(x, z+).

2.3 Generalized L-smooth adaptable and extended descent lemma

We denote G( f , h) the set of pair of functions ( f , h) satisfies

(i) h ∈ G(�),
(ii) f : Rd → R ∪ {+∞} is proper lower semicontinuous nonconvex with domh ⊂ dom f ,

which is continuously differentiable on �.
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Definition 2.12 (Generalized L-smooth adaptable) A pair of functions ( f , h) ∈ G( f , h)

is called generalized L-smooth adaptable (GL-smad) on � if there exists L > 0 such that
Lh + f and Lh − f are convex on �.

From the above definition we immediately obtain the two-sided descent lemma, which
complements and extends the NoLips descent lemma derived in [6].

Lemma 2.13 (Extended descent lemma) The pair of functions ( f , h) ∈ G( f , h) is GL-smad
on � if and only if

| f (x) − f (y) − 〈∇ f (y), x − y〉| ≤ LDh(x, y), ∀x ∈ domh, ∀y ∈ int domh.

Due to the structural form of D f , the extended descent lemma reads equivalently as
∣∣ f (x) − f (z) − 〈∇ f (y), xz〉 + D f (z, y)

∣∣ ≤ LDh(x, y),

for any x, z ∈ domh and any y ∈ int domh.

When the function f is assumed to be convex, the convexity condition of Lh + f naturally
holds. In this case, the NoLips descent lemma given in [6] is recovered. When h(z) = 1

2‖z‖2
and consequently Dh(x, y) = 1

2‖x − y‖2, Lemma 2.13 would be reduced to the descent
lemma [19],

| f (x) − f (y) − 〈∇ f (y), x − y〉| ≤ L

2
‖x − y‖2, ∀x ∈ domh, ∀y ∈ int domh.

2.4 Kurdyka–ojasiewicz property

Let f : Rd → R ∪ {+∞} be a proper lower semicontinuous function. For −∞ < η1 <

η2 ≤ +∞, define

[η1 < f < η2] := {x ∈ R
d : η1 < f (x) < η2}.

Definition 2.14 [4] (Kurdyka–Łojasiewicz property) The function f is said to have the
Kurdyka–Łojasiewicz (KL) property at x̄ ∈ dom∂ f if there exist η ∈ (0,+∞], a neighbor-
hood U of x̄ and a continuous concave function ϕ : [0, η) → R+ such that

(i) ϕ(0) = 0;
(ii) ϕ is C1 on (0, η);
(iii) for all s ∈ (0, η), ϕ′(s) > 0;
(iv) for all x in U ∩ [ f (x̄) < f < f (x̄) + η], the Kurdyka–Łojasiewicz inequality holds,

i.e.,

ϕ′( f (x) − f (x̄))dist(0, ∂ f (x)) ≥ 1.

Remark 2.15 (i) If f satisfies the KL property at each point of dom∂ f , then f is called a
KL function;

(ii) For convenience, denote the class of functions which satisfy (i), (ii) and (iii) in Defini-
tion 2.14 as �η.

The following lemma gives the important uniformized KL property. More properties and
examples can refer to [3, 11, 14].
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Lemma 2.16 [11] (Uniformized KL property) Let C be a compact set and let f : Rd →
R ∪ {+∞} be a proper lower semicontinuous function. Assume that f is constant on C and
satisfies the KL property at each point of C . Then, there exist ε > 0, η > 0 and ϕ ∈ �η such
that for any x̄ ∈ C and all x in the following intersection,

{x ∈ R
n : dist(x,C) < ε} ∩ [ f (x̄) < f (x) < f (x̄) + η],

one has,

ϕ′( f (x) − f (x̄))dist(0, ∂ f (x)) ≥ 1.

3 Algorithms and convergence

In this section, we first describe our alternating structure-adapted Bregman proximal
(ASABP) gradient descent algorithm and its inertial version (IASABP algorithm) for solving

min
x∈X , y∈Y

�(x, y) = F(x) + G(y) + H(x, y),

where X ⊂ R
n and Y ⊂ R

m are open convex sets with nonempty interiors, and X and Y
are their closures, respectively. Then we present their convergence rate results and establish
the global convergence result for ASABP algorithm. Throughout the rest of this section, we
suppose the following assumption, which guarantees that the algorithms are well-defined.

Assumption 3.1 (i) inf{�(x, y) : (x, y) ∈ X × Y } > −∞ and � is coercive.
(ii) h ∈ G(X) and ψ ∈ G(Y ) such that the pairs (F, h) ∈ G(F, h) and (G, ψ) ∈ G(G, ψ)

are GL-smad on X and Y with coefficients Lh and Lψ respectively.
(iii) For the sequence {xk}k∈N ∈ int domh and x ∈ domh, ‖xk −x‖ → 0 ⇐⇒ Dh(x, xk) →

0. Similarly, ‖yk− y‖ → 0 ⇐⇒ Dψ(y, yk) → 0 for any sequence {yk}k∈N ∈ int domψ

and y ∈ domψ ,.
(iv) H : Rn × R

m → R ∪ {+∞} is a proper lower semicontinuous biconvex function.

3.1 The ASABP and IASABP algorithm

We now first introduce the alternating structure-adapted Bregman proximal (ASABP) gradi-
ent descent algorithm.

Algorithm 1 ASABP

1: Start with arbitrary initial points x0 ∈ int domh, y0 ∈ int domψ , 0 < τk < 1
Lh

and

0 < σk < 1
Lψ

.

2: For each k = 0, 1, · · ·, {(xk, yk)}k∈N is generated as follows:
Compute

xk+1 ∈ argmin

{
H(x, yk) + 〈∇F(xk), x − xk〉 + 1

τk
Dh(x, x

k) : x ∈ X

}
. (9)

Then compute

yk+1 ∈ argmin

{
H(xk+1, y) + 〈∇G(yk), y − yk〉 + 1

σk
Dψ(y, yk) : y ∈ Y

}
. (10)
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Under Assumption 3.1, xk+1 will be automatically in X and yk+1 will be automatically
in Y . Hence, the problems (9) and (10) are essentially unconstrained optimization problems,
which in many cases enable these problems to possess closed-form solutions.

Note that the efficiency of ASABP depends on the vectors xk and yk , and the parameters
τk and σk . For the first order algorithms, it was found that extrapolation can accelerate the
convergence, and the adaptive line search scheme can alleviate the difficulty in choosing
the parameters. Hence, we give the inertial variant of ASABP algorithm, i.e, the inertial
alternating structure-adaptedBregmanproximal gradient descent algorithm,whichwedenote
as IASABP for short.

Algorithm 2 IASABP

1: Start with arbitrary initial points x−1 = x0 ∈ int domh, y−1 = y0 ∈ int domψ ,
0 < τk < 1

Lh
and 0 < σk < 1

Lψ
. Fix 0 < η < 1 and 0 < θ < 1.

2: For each k = 0, 1, · · ·, {(xk, yk)}k∈N is generated as follows:

(i) Take α0
k ∈ [0, 1) and C1

k =
1
τk

1
τk

+Lh
. Find the smallest nonnegative integer j satisfying

Dh(x
k, xk + η jα0

k (x
k − xk−1)) ≤ θC1

k Dh(x
k, xk−1). (11)

Set αk = η jα0
k . Compute

x̄ k = xk + αk(x
k − xk−1),

then

xk+1 = argmin

{
H(x, yk) + 〈∇F(x̄ k), x − x̄ k〉 + 1

τk
Dh(x, x̄

k) : x ∈ X

}
. (12)

(ii) Take β0
k ∈ [0, 1) andC2

k =
1
σk

1
σk

+Lψ
. Find the smallest nonnegative integer i satisfying

Dψ(yk, yk + ηiβ0
k (y

k − yk−1)) ≤ θC2
k Dψ(yk, yk−1). (13)

Set βk = ηiβ0
k . Compute

ȳk = yk + βk(y
k − yk−1),

then

yk+1 = argmin

{
H(xk+1, y) + 〈∇G(ȳk), y − ȳk〉 + 1

σk
Dψ(y, ȳk) : y ∈ Y

}
.

(14)

Remark 3.1 (i) Notice that (11) and (13) hold naturally when taking α0
k = 0 and β0

k = 0 for
all k ≥ 0. In this case, the inertial strategy makes no difference, i.e., x̄ k = xk, ȳk = yk .
IASABP algorithm then reduces to the ASABP algorithm.

(ii) (Finite termination of line search) There exists Jk ∈ N in step (11) such that for any
j ≥ Jk , αk = η jα0

k satisfies

Dh(x
k, xk + αk(x

k − xk−1)) ≤ θC1
k Dh(x

k, xk−1).

Similarly, we can get βk via finite number of step (13).

123



Journal of Global Optimization (2023) 87:277–300 287

We then verify that the ASABP and IASABP algorithms are well defined. To this end,
choose arbitrarily u ∈ int domh and stepsize 0 < τ < 1

Lh
. Fixed y ∈ int domψ , we define

the Bregman proximal mapping,

Bτ (u; y) = argmin

{
H(x, y) + 〈∇F(u), x − u〉 + 1

τ
Dh(x, u) : x ∈ X

}

= argmin

{
H(x, y) + 〈∇F(u), x − u〉 + 1

τ
Dh(x, u) : x ∈ R

n
}

,

where the second equality follows from the fact that domh ⊂ X . Observe that xk+1 ∈
Bτk (u

k; yk), where uk = xk in ASABP algorithm and uk = x̄ k for IASABP algorithm.
Hence from Proposition 3.2, (9) and (12) are well defined, and so are the (10) and (14).

Proposition 3.2 Suppose that Assumption 3.1 holds. Let y ∈ int domψ , u ∈ int domh and
0 < τ < 1

Lh
. Then the set Bτ (u; y) is a nonempty compact single valued mapping from

int domh to int domh.

Proof Fix any y ∈ int domψ , u ∈ int domh and 0 < τ < 1
Lh
. For any x ∈ R

n , we define

�h(x, u; y) = H(x, y) + F(u) + G(y) + 〈∇F(u), x − u〉 + 1

τ
Dh(x, u),

so that Bτ (u; y) = argminx∈Rn �h(x, u; y). Since h is strictly convex and H is biconvex as
assumed in Assumption 3.1, the objective �h(x, u; y) have at most one minimizer. Taking
into account that (F, h) is GL-smad with Lh ,

�h(x, u; y) = �(x, y) −
(
F(x) − F(u) − 〈∇F(u), x − u〉 − 1

τ
Dh(x, u)

)

≥ �(x, y).

According to Assumption 3.1 (i), it holds that

lim‖x‖→+∞ �h(x, u; y) ≥ lim‖x‖→+∞ �(x, y) = +∞.

Since�h is also proper and lower semicontinuous, invokingWeierstrass’s theorem, it follows
that the set Bτ (u; y) is nonempty and compact. Furthermore, the optimality condition for
Bτ (u; y) implies that ∂h(Bτ (u; y)) must be nonempty, and Definition 2.6 indicates that
Bτ (u; y) belongs to int domh. ��

3.2 Rate of convergence

In this subsection, we establish the global sublinear rate of convergence for ASABP and
IASABP, measured by Bregman distance. Using the extended descent lemma, we obtain the
following key estimation for the objective function �, which will play an important role in
deriving our main convergence results.

Lemma 3.3 Suppose thatAssumption 3.1holds. Let
{
(xk, yk)

}
k∈N be the sequence generated

by IASABP, then we have

�(xk+1, yk+1) + α(h)

τk
Dh(x

k+1, xk) + α(ψ)

σk
Dψ(yk+1, yk)

≤ �(xk, yk) + θ

τk
Dh(x

k, xk−1) + θ

σk
Dψ(yk, yk−1),
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where α(h) and α(ψ) are the symmetric coefficients of h, ψ respectively.

Proof Applying Lemma 2.11 with �(x) = τk
(
H(x, yk) + 〈∇F(x̄ k), x − x̄ k〉), it yields that

for any x ∈ domh,

H(xk+1, yk) − H(x, yk)

≤ 〈∇F(x̄ k), x − xk+1〉 + 1

τk
Dh(x, x̄

k) − 1

τk
Dh(x, x

k+1) − 1

τk
Dh(x

k+1, x̄ k)

≤ F(x) − F(xk+1) + LhDh(x, x̄
k) + DF (xk+1, x̄ k)

+ 1

τk
Dh(x, x̄

k) − 1

τk
Dh(x, x

k+1) − 1

τk
Dh(x

k+1, x̄ k)

≤ F(x) − F(xk+1) +
(
1

τk
+ Lh

)
Dh(x, x̄

k)

− 1

τk
Dh(x, x

k+1) −
(
1

τk
− Lh

)
Dh(x

k+1, x̄ k),

where the second inequality follows from Lemma 2.13 and the last inequality follows from
the GL-smad property of (F, h). Particularly, taking x = xk , together with 0 < τk < 1

Lh
and

the nonnegativity of Bregman distance Dh , we obtain

H(xk+1, yk) + F(xk+1) −
(
H(xk, yk) + F(xk)

)

≤
(
1

τk
+ Lh

)
Dh(x

k, x̄ k) − 1

τk
Dh(x

k, xk+1).

If x̄ k = xk we get Dh(xk, x̄ k) = 0. Hence,

H(xk+1, yk) + F(xk+1) + 1

τk
Dh(x

k, xk+1) ≤ H(xk, yk) + F(xk).

If x̄ k �= xk , according to (11), we have Dh(xk, x̄ k) ≤ θC1
k Dh(xk, xk−1). Recalling the

definition of C1
k , we have

H(xk+1, yk) + F(xk+1) + 1

τk
Dh(x

k, xk+1)

≤ H(xk, yk) + F(xk) +
(
1

τk
+ Lh

)
θC1

k Dh(x
k, xk−1)

≤ H(xk, yk) + F(xk) + θ

τk
Dh(x

k, xk−1).

Consequently, for any case we conclude that for any k ∈ N,

H(xk+1, yk) + F(xk+1) + 1

τk
Dh(x

k, xk+1)

≤ H(xk, yk) + F(xk) + θ

τk
Dh(x

k, xk−1). (15)

We can obtain the following inequality in a similar way,

H(xk+1, yk+1) + G(yk+1) + 1

σk
Dψ(yk, yk+1)

≤ H(xk+1, yk) + G(yk) + θ

σk
Dψ(yk, yk−1). (16)
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Adding (15) and (16) and we can obtain that for any k ∈ N,

�(xk+1, yk+1) + 1

τk
Dh(x

k, xk+1) + 1

σk
Dψ(yk, yk+1)

≤ �(xk, yk) + θ

τk
Dh(x

k, xk−1) + θ

σk
Dψ(yk, yk−1).

Combining with Remark 2.10 (ii) completes the proof. ��
Equipped with Lemma 3.3, we introduce the following useful notations,

ukI := (xk , yk , xk−1, yk−1), τ ≤ inf{τk} ≤ sup{τk} ≤ τ̄ , σ ≤ inf{σk} ≤ sup{σk} ≤ σ̄ , ∀k ∈ N.

And we define an auxiliary sequence by

J (ukI) = �(xk, yk) + M1Dh(x
k, xk−1) + M2Dψ(yk, yk−1),

where M1 = 1
2

(
θ
τ

+ α(h)
τ̄

)
and M2 = 1

2

(
θ
σ

+ α(ψ)
σ̄

)
. Choosing θ < min

{
τα(h)

τ̄
,

σα(ψ)

σ̄

}
,

we have

δ1=min

{
M1− θ

τ
,

α(h)

τ̄
− M1

}
> 0 and δ2=min

{
M2− θ

σ
,

α(ψ)

σ̄
− M2

}
> 0.

(17)

Lemma 3.4 Suppose thatAssumption3.1holds. Let
{
zkI = (xk, yk)

}
k∈N ,

{
z̄kI = (x̄ k, ȳk)

}
k∈N

be the sequences generated by IASABP.

(i) The sequence {J (ukI)}k∈N ismonotonically nonincreasing and in particular for all k ≥ 0,

δI

(
Dh(x

k, xk−1) + Dψ(yk, yk−1) + Dh(x
k+1, xk) + Dψ(yk+1, yk)

)

≤ J (ukI) − J (uk+1
I ),

(18)

where δI = min{δ1, δ2} and δ1, δ2 are defined as (17). Moreover,
{
J (ukI)

}
k∈N converges

to some finite value, denoted by J ∗.
(ii) We have

+∞∑
k=0

(
Dh(x

k+1, xk) + Dψ(yk+1, yk)
)

< +∞,

andhence lim
k→+∞ Dh(x

k+1, xk) = 0, lim
k→+∞ Dψ(yk+1, yk) = 0.Moreover, lim

k→+∞ ‖zk+1
I −

zkI‖ = 0 and lim
k→+∞ ‖zkI − z̄kI‖ = 0.

(iii) (Convergence rate) For any K ≥ 0, it holds that

min
0≤k≤K

{
Dh(x

k+1, xk) + Dψ(yk+1, yk)
}

≤ 1

δI(K + 1)

(
J (u0I) − J ∗) .

Proof (i)Choose θ < min
{

τα(h)

τ̄
,

σα(ψ)
σ̄

}
and δ1, δ2 as in (17), then (18) follows immediately

fromLemma3.3.Meanwhile,� is assumed to be bounded belowand J is also bounded below.
Hence

{
J (ukI)

}
k∈N converges to some real number J ∗.

(ii) Using the inequality (18), we have for all k ≥ 0,

Dh(x
k+1, xk) + Dψ(yk+1, yk) ≤ 1

δI

(
J (ukI) − J (uk+1

I )
)

.
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For K ≥ 0, summing from k = 0 to K and using the statement (i) yields

K∑
k=0

(
Dh(x

k+1, xk) + Dψ(yk+1, yk)
)

≤ 1

δI

(
J (u0I) − J (uK+1

I )
)

≤ 1

δI

(
J (u0I) − J ∗) < +∞.

(19)

Taking the limit as K → +∞ leads to

+∞∑
k=0

(
Dh(x

k+1, xk) + Dψ(yk+1, yk)
)

< +∞,

which deduces that limk→+∞ ‖zkI − zk+1
I ‖ = 0. And from IASABP algorithm, we have

lim
k→+∞ ‖zkI − z̄kI‖ = 0.

(iii) Using (19) yields

K∑
k=0

(
Dh(x

k+1, xk) + Dψ(yk+1, yk)
)

≤ 1

δI

(
J (u0I) − J ∗) .

Hence, we obtain

min
0≤k≤K

{
Dh(x

k+1, xk) + Dψ(yk+1, yk)
}

≤ 1

δI(K + 1)

(
J (u0I) − J ∗) .

��

Similar to Lemma3.3 andLemma3.4,we have the following sublinear rate of convergence
for ASABP.

Lemma 3.5 Suppose thatAssumption 3.1holds. Let
{
(xk, yk)

}
k∈N be the sequence generated

by ASABP. Then

(i) The sequence
{
�(xk, yk)

}
k∈N is monotonically nonincreasing and in particular for all

k ≥ 0,

�(xk+1, yk+1) ≤ �(xk, yk) − 1

τk
Dh(x

k, xk+1) − 1

σk
Dψ(yk, yk+1)

≤ �(xk, yk) − 1

τ̄
Dh(x

k, xk+1) − 1

σ̄
Dψ(yk, yk+1)

≤ �(xk, yk) − δ
(
Dh(x

k, xk+1) + Dψ(yk, yk+1)
)

,

(20)

where δ = min{ 1
τ̄
, 1

σ̄
}. And {

�(xk, yk)
}
k∈N converges to some finite value, denoted by

�∗.
(ii) (Convergence rate) For any K ≥ 0, it holds that

min
0≤k≤K

{
Dh(x

k, xk+1) + Dψ(yk, yk+1)
}

≤ 1

δ(K + 1)

(
�(x0, y0) − �∗) .
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3.3 Global convergence of ASABP

The analysis in Sect. 3.2 can only give themonotonically nonincreasing property of the poten-
tial function of ASABP and IASABP algorithms. In this subsection, without the Lipschitz
continuity requirement on the gradients of F and G, we aim to prove that the sequence gen-
erated by ASABP algorithm is a Cauchy sequence, which hence converges to a critical point
of model (1). It is worth noticing that all the NoLips algorithms for the nonconvex case [5,
12, 18, 25], the global convergence results were limited to the case that X = R

n, Y = R
m

and the Lipschitz smoothness condition holds.
We start our analysis by specializing the assumptions on the coupling term H .

Assumption 3.2 (i) The subdifferential of H obeys

∂x H(x, y) × ∂y H(x, y) ⊂ ∂H(x, y), ∀(x, y) ∈ domH .

(ii) The domain of H is closed.
Moreover, H satisfies one of the following conditions.
(iii) H is continuous on its domain.
(iv) H : R

n × R
m → R ∪ {+∞} has the form

H(x, y) = φ(x, y) + w(x),

wherew : R
n → R∪{+∞} is continuously differentiable on its domain; φ : R

n ×
R
m → R ∪ {+∞} is continuous on domH , such that φ(·, y) is differentiable on

R
n of gradient ∇xφ for any y ∈ Dy = {y ∈ R

m |(x, y) ∈ domH} �= ∅. For each
bounded subset Bx ×By ⊂ domH , there exists ξ > 0 such that, for any x̄ ∈ Bx and
any (y, ȳ) ∈ B2

y ,

‖∇xφ(x̄, y) − ∇xφ(x̄, ȳ)‖ ≤ ξ‖y − ȳ‖.
Remark 3.6 We give some remarks on Assumption 3.2.

(i) Since F andG are continuous differentiable on X andY respectively,Assumption3.2 (i) is
equivalent to having ∂x�(x, y)×∂y�(x, y) ⊂ ∂�(x, y) for any (x, y) ∈ X×Y∩domH ,
which is nonempty and closed.

(ii) Assumption 3.2 (iii) and (iv) aim at guaranteeing that the cluster points of the sequence
generated by the algorithm are critical points. However, they are sufficient but not nec-
essary, and the results presented in this paper can be established for a broader class of
functions H .

(iii) Note that for Assumption 3.2 (iv), the regularity assumptions on H are not symmetric in
x and y. In particular, φ(x, ·) does not need to be differentiable.

Theorem 3.7 Suppose thatAssumptions 3.1 and 3.2hold. If the sequence
{
zk = (xk, yk)

}
k∈N

generated by ASABP converges to ẑ = (x̂, ŷ), then it is a critical point of the problem (1)
with the abstract sets X , Y , i.e.,

∃ Ĥ ∈ ∂H(ẑ), 0 ∈ Ĥ + ∇F(x̂) × ∇G(ŷ) + NX×Y (ẑ),

where NX×Y (ẑ) denotes the normal cone of X × Y at ẑ.

Proof The first order optimality condition of the subproblem (9) shows that there exists
Ĥ k+1
x ∈ ∂x H(xk+1, yk),〈

x − xk+1, Ĥ k+1
x + ∇F(xk) + 1

τk

(
∇h(xk+1) − ∇h(xk)

)〉
≥ 0, ∀x ∈ X , (21)
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or equivalently,

0 ∈ ∂x H(xk+1, yk) + ∇F(xk) + 1

τk

(
∇h(xk+1) − ∇h(xk)

)
+ NX (xk+1).

We first investigate the behavior of the following term,

〈x − xk+1,∇h(xk+1) − ∇h(xk)〉.
Fix some arbitrary x ∈ X . We consider the following two possible cases.

The fist case is that the sequence {Dh(x, xk)} converges. For this case, the three point
identity (see Remark 2.8) yields

lim
k→+∞〈∇h(xk+1) − ∇h(xk), x − xk+1〉

= lim
k→+∞

(
Dh(x, x

k) − Dh(x, x
k+1)

)
− lim

k→+∞ Dh(x
k+1, xk)

= 0.

Combining with the facts that H is biconvex and F is continuously differentiable on X ,
passing to the limit in the optimality condition (21), we obtain〈

x − x̂, ∂x H(ẑ) + ∇F(x̂)
〉 ≥ 0, ∀x ∈ X ,

i.e.,

0 ∈ ∂x H(ẑ) + ∇F(x̂) + NX (x̂). (22)

In particular, if xk → x̂ ∈ X , one has that limk→+∞ ‖∇h(xk+1) − ∇h(xk)‖ = 0 because
of the continuity of ∇h on X . The problem (1) in this case is equivalent to an unconstrained
problem and (22) holds naturally. Certainly, the sequence {Dh(x, xk)} must be convergent
for this situation.

The second case is that the sequence {Dh(x, xk)} fails to converge. For this case, since
{Dh(x, xk)} is nonnegative, it cannot be monotonically decreasing. Thus, there are infinitely
many k ∈ N such that Dh(x, xk+1) ≥ Dh(x, xk). Let {kl} ⊂ N be a subsequence with
Dh(x, xkl+1) ≥ Dh(x, xkl ) for arbitrary l. Then for all x ∈ X ,

0 ≥ lim sup
l→+∞

(
Dh(x, x

kl ) − Dh(x, x
kl+1)

)

= lim sup
l→+∞

〈
∇h(xkl+1) − ∇h(xkl ), x − xkl+1

〉
+ lim

l→+∞ Dh(x
kl+1, xkl )

= lim sup
l→+∞

〈
∇h(xkl+1) − ∇h(xkl ), x − xkl+1

〉
.

This means that

∇h(xkl+1) − ∇h(xkl ) ∈ NX (xkl+1).

Hence, (
∇h(xkl+1) − ∇h(xkl )

)
+ NX (xkl+1) ⊂ NX (xkl+1).

Since the corresponding subsequence also converges to x̂ , passing to the limit l → +∞ in the
optimality condition, 0 ∈ ∂x H(ẑ)+∇F(x̂)+NX (x̂) holds. Especially, if xk → x̂ ∈ ∂X (the
boundary of X ), for any x ∈ X , the sequence {Dh(x, xk)} fails to converge due to Remark 2.8
(iii). It provides a sufficient condition for this case.
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Similarly, we have

0 ∈ ∂y H(ẑ) + ∇G(ŷ) + NY (ŷ).

Combining with Assumption 3.2, we complete the proof. ��
Denote the set of cluster points of the sequence

{
zk = (xk, yk)

}
k∈N generated by ASABP

by �∗, i.e.,

�∗ ={z∗ = (x∗, y∗) : ∃ an increasing sequence of integer {kl}l∈N,

such that zkl → z∗ as l → +∞}.
Lemma 3.8 Suppose that Assumptions 3.1 and 3.2 hold. Let

{
zk = (xk, yk)

}
k∈N be the

sequence generated byASABPwhich is assumed to be bounded. Then the following assertions
hold.

(i) �∗ is a nonempty compact set, and

lim
k→+∞ dist(zk,�∗) = 0. (23)

(ii) limk→+∞ �(zk) = �(z∗) and � is constant on �∗.

Proof (i) �∗ is nonempty because the sequence
{
zk

}
k∈N generated by ASABP is bounded.

By definition, it is trivial that the set �∗ is compact. We now prove (23) by contradiction.
Suppose that {dist(zk,�∗)}k∈N does not converge to zero. Then there exist C > 0 and an
increasing sequence {k j } j∈N such that, for any j ∈ N, dist(zk j ,�∗) > C . However, since{
zk j

}
j∈N is a subsequence of the bounded sequence

{
zk

}
k∈N, it has a convergent subsequence{

zk jn
}
n∈N with limit z∗ ∈ �∗. Then,

C < dist(zk jn ,�∗) ≤ ‖zk jn − z∗‖ → 0,

which leads to a contradiction.
(ii) Taking an arbitrary point z∗ ∈ �∗, then there exists a subsequence

{
zk j

}
j∈N of

{
zk

}
k∈N

converging to z∗. Notice that (xk j , yk j ) ∈ X × Y ∩ domH , which is assumed to be closed.
Hence, (x∗, y∗) ∈ X × Y ∩ domH , and by continuity one has

lim
k→+∞ �(zk j ) = �(z∗).

Since
{
�(zk)

}
k∈N is a convergent sequence by Lemma 3.5, this proves assertion (ii). ��

To establish the convergence of the sequence generated by ASABP, we need some extra
assumptions on the Bregman functions h and ψ , which are also required in [5, 12, 18, 25].

Assumption 3.3 (i) h, ψ are strongly convex functions with coefficients μh, μψ respec-
tively.

(ii) ∇h, ∇ψ are Lipschitz continuous with coefficients L1, L2 respectively on any bounded
subsets.

Remark 3.9 (i) It is worth noticing that Assumption 3.3 (i) is not actually stringent. For
example, Burg’s entropy h(x) = − log x with domh = (0,+∞) is a generalized
Bregman function which is not strongly convex. However, regularized Burg’s entropy
ĥ(x) = −μ log x + σ

2 x
2 with σ,μ > 0, is strongly convex with coefficient σ on

domh = (0,+∞).
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(ii) Combining linear additivity of Bregman distance (see Remark 2.8), Assumption 3.1
(ii) and Assumption 3.3 (ii), ∇F is Lipschitz continuous with coefficient LhL1 on any
bounded subset in X . Similarly, ∇G is Lipschitz continuous with coefficient Lψ L2 on
any bounded subset in Y .

Proposition 3.10 Suppose thatAssumptions 3.1, 3.2 with (iv) andAssumption 3.3 hold. Let{
zk = (xk, yk)

}
k∈N be the sequence generated by ASABP which is assumed to be bounded.

For all k ≥ 0, define

Ak+1 = (Ak+1
x , Ak+1

y ),

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ak+1
x =∇F(xk+1) − ∇F(xk) − 1

τk

(
∇h(xk+1) − ∇h(xk)

)
+ ∇xφ(xk+1, yk+1) − ∇xφ(xk+1, yk)

∈∇F(xk+1) − ∇F(xk) − 1

τk

(
∇h(xk+1) − ∇h(xk)

)
+ ∂x H(xk+1, yk+1) − ∂x H(xk+1, yk),

Ak+1
y =∇G(yk+1) − ∇G(yk) − 1

σk

(
∇ψ(yk+1) − ∇ψ(yk)

)
.

Then Ak+1 ∈ ∂�(zk+1) and there exists δ̂ > 0 such that

‖Ak+1‖ ≤ δ̂‖zk − zk+1‖,
where δ̂ = √

2max
{
LhL1 + L1

τ
, Lψ L2 + L2

σ
+ ξ

}
.

Proof The first order optimality conditions of (9) and (10) yield

0 ∈ ∂x H(xk+1, yk) + ∇F(xk) + 1

τk

(
∇h(xk+1) − ∇h(xk)

)
,

and

0 ∈ ∂y H(xk+1, yk+1) + ∇G(yk) + 1

σk

(
∇ψ(yk+1) − ∇ψ(yk)

)
,

respectively. Following from these relations and Assumption 3.2, it is clear that Ak+1 ∈
∂�(zk+1). Combining with Assumption 3.3, we get that

‖Ak+1
x ‖ ≤

∥∥∥∥∇F(xk+1) − ∇F(xk) − 1

τk

(
∇h(xk+1) − ∇h(xk)

)∥∥∥∥ + ξ‖yk+1 − yk‖

≤
(
LhL1 + L1

τ

)
‖xk+1 − xk‖ + ξ‖yk+1 − yk‖.

Similarly, we can get

‖Ak+1
y ‖ =

∥∥∥∥∇G(yk+1) − ∇G(yk) − 1

σk

(
∇ψ(yk+1) − ∇ψ(yk)

)∥∥∥∥
≤

(
Lψ L2 + L2

σ

)
‖yk+1 − yk‖.

Rearranging the terms and completing the proof. ��
We are now ready for proving the main result of this section.

123



Journal of Global Optimization (2023) 87:277–300 295

Theorem 3.11 Let the objective function � be a KL function. Suppose thatAssumptions 3.1,
3.2 with (iv) and Assumption 3.3 hold. Let

{
zk = (xk, yk)

}
k∈N be the sequence generated

by ASABP which is assumed to be bounded. Then

+∞∑
k=0

‖zk+1 − zk‖ < +∞,

and as a sequence, we have {zk}k∈N converges to a critical point of model (1)with the abstract
sets X , Y .

Proof From Lemma 3.8, we get that

lim
k→+∞ �(zk) = �(z∗).

Then we consider the following two cases.
First, if there exists an integer k′ for which �(zk

′
) = �(z∗), according to the strongly

convexity of h and ψ and (20), we have that for any k > k′,

δ̄‖zk − zk+1‖2 ≤ δ
(
Dh(x

k+1, xk) + Dψ(yk+1, yk)
)

≤ �(zk) − �(zk+1),

(24)

where δ̄ = δmin
{

μh
2 ,

μψ

2

}
. Combining with the monotonically nonincreasing of �(zk),

one can obtain that zk+1 = zk for any k ≥ k′, and the assertion holds.
Then we consider the case that �(zk) > �(z∗) for all k ≥ 0. Since limk→+∞ �(zk) =

�(z∗), it follows that for any η > 0, there exists a nonnegative integer k0 such that �(zk) <

�(z∗) + η for all k ≥ k0. From (23), we know that limk→+∞ dist(zk,�∗) = 0. This means
that for any ε > 0, there exists a positive integer k1 such that dist(zk,�∗) < ε for all k ≥ k1.
Consequently, for all k > l := max{k0, k1},

dist(zk,�∗) < ε, �(z∗) < �(zk) < �(z∗) + η.

Applying Lemma 2.16 and Lemma 3.8, we deduce that for any k > l,

ϕ′ (�(zk) − �(z∗)
)
dist(0, ∂�(zk)) ≥ 1.

From Proposition 3.10,

ϕ′ (�(zk) − �(z∗)
)

≥ 1

δ̂‖zk − zk−1‖ . (25)

On the other hand, from the concavity of ϕ, we get that

ϕ
(
�(zk) − �(z∗)

)
− ϕ

(
�(zk+1) − �(z∗)

)

≥ ϕ′ (�(zk) − �(z∗)
) (

�(zk) − �(zk+1)
)

. (26)

For convenience, we define

�k = ϕ
(
�(zk) − �(z∗)

)
− ϕ

(
�(zk+1) − �(z∗)

)
.

Combining (24) with (25) and (26) yields that, for any k > l,

�k ≥ δ̄
∥∥zk − zk+1

∥∥2
δ̂‖zk − zk−1‖ ,
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or equivalently,

‖zk − zk+1‖ ≤
√

δ̂

δ̄
�k‖zk − zk−1‖ 1

2 .

Using the fact that 2
√

αβ ≤ α + β for all α, β > 0, we have

2‖zk − zk+1‖ ≤ ‖zk − zk−1‖ + δ̂

δ̄
�k . (27)

Summing up (27) for k = l + 1, · · · ,m yields

2
m∑

k=l+1

‖zk − zk+1‖ ≤
m∑

k=l+1

‖zk−1 − zk‖ +
m∑

k=l+1

δ̂

δ̄
�k

=
m∑

k=l+1

‖zk−1 − zk‖ + δ̂

δ̄

(
ϕ

(
�(zl+1) − �(z∗)

)
− ϕ

(
�(zm+1) − �(z∗)

))

≤
m∑

k=l+1

‖zk−1 − zk‖ + δ̂

δ̄
ϕ

(
�(zl+1) − �(z∗)

)
,

where the last inequality due to ϕ(�(zm+1) − �(z∗)) ≥ 0. Letting m → +∞ yield

+∞∑
k=l+1

‖zk+1 − zk‖ ≤ ‖zl+1 − zl‖ + δ̂

δ̄
ϕ

(
�(zl+1) − �(z∗)

)
.

Equipped with the fact that δ̄ is bounded below, we have

+∞∑
k=0

‖zk+1 − zk‖ < +∞,

and the sequence {zk}k∈N is a Cauchy sequence. Combining with Theorem 3.7, {zk}k∈N
converges to a critical point of model (1) with the abstract sets X , Y . ��

4 Numerical experiment

In this section, we numerically verify the ability ofASABP and IASABP analyzed in previous
sections. All experiments are performed in MATLAB R2014a on a 64-bit PC with an Intel
Core i7-8550U CPU (1.80GHz) and 16GB of RAM.

We consider the Poisson linear inverse problems [6], which can be conveniently described
as follows. Given a matrix A ∈ R

m×n+ modeling the experimental protocol, and b ∈ R
m+ the

vector of measurement, the goal is to reconstruct the signal or image x ∈ R
n+ from the noisy

measurement b such that Ax � b. Often these problems can be represented as a minimize
problem like

min{d(b, Ax) + λg(x) : x ∈ R
n+}, (28)

where λ > 0 is used to control the trade-off between matching the data fidelity criteria and
the weight given to its regularizer, and d(·, ·) denotes a convex proximity measure between
two vectors. Poisson linear inverse problems emerged in many fields, like astronomy, nuclear
medicine, electronicmicroscopy, statistical and image science [6, 8, 16]. Therefore, the design
of methods for such problems has been studied intensively.
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By introducing an auxiliary variable y ∈ R
n , we can solve (28) approximately according

to the following optimization problem

min
x∈Rn+, y∈Rn

F(x) + G(y) + H(x, y), (29)

by defining

F(x) = d(b, Ax), G(y) = λg(y), H(x, y) = μ

2
‖x − y‖2,

where μ is a positive penalization parameter.
Adopting the above model (29), we take the first component in the objective function

based on the Boltzmann-Shannon entropy,

d(b, Ax) =
m∑
i=1

{(Ax)i − bi log(Ax)i }.

It is easy to find that F(x) = d(b, Ax) has no globally Lipschitz continuous gradient [6],
but satisfies GL-samd condition with a generalized Bregman function called Burg’s entropy,
denoted as

h(x) = −
n∑
j=1

log x j , domh = R
n++,

and so now the Bregman distance is given by

Dh(x, z) =
n∑
j=1

{
x j
z j

− log

(
x j
z j

)
− 1

}
,

and for any Lh satisfying Lh ≥ ‖b‖1 = ∑m
i=1 bi , the function Lhh − F is convex on Rn+. In

this case, the iterates in subproblem (9) and (12) reduce to solve n one-dimensional convex
problems. Note that Assumption 3.3 does not hold for this case.

We consider Tikhonov regularization in model (29), i.e., the regularizer is G(y) =
λg(y) = λ

2‖y‖2. Take Energy ψ = 1
2‖y‖2, which corresponding Bregman distance is

defined as Dψ(y, z) = 1
2‖y− z‖2, and for any Lψ satisfying Lψ ≥ λ, the function Lψψ −G

is convex on Rn . It is worth noticing that the objective function in model (29) in this case is
KL function according to [3, 11].

Now we give the setting for the model to be tested. For the model (29), the entries of
A ∈ R

m×n+ and b ∈ R
m+ are generated following independent uniform distributions over the

interval [0, 1]; we set λ = 1 and the penalization parameter μ as large as the conditions
permit. We initialize all the algorithms at the vector generated by uniform distribution over

the interval (0, 1), and terminate it when Error := ‖xk−xk−1‖
max{1,‖xk‖} ≤ 10−6. We also terminate

the algorithms when the number of iteration hits 100.
As thesemethods can be applied to overdetermined (m > n) and underdetermined (m < n)

problems, we have preformed numerical tests on both cases. As commented before, the main
parameters in IASABP are setting as follows: η is a random number between 0.90 and 0.95
and θ = 0.99; α0

k = β0
k = 1 for all k; Lh = ‖b‖1 and Lψ = λ.

For this Poisson linear inverse problem, Fig. 1 records the trend of the residual functions
of ASABP and IASABP with respect to the overdetermined and underdetermined situations.
We can see that IASABP converges faster than ASABP. It shows that the IASABP algorithm
has an advantage over ASABP, giving an interesting option for real problems.
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Fig. 1 Poisson linear inverse problem. First row: m = 1000; Second row: n = 1000

5 Conclusions

We have proposed an alternating structure-adapted Bregman proximal (ASABP) gradient
descent algorithm for solving the nonconvex nonsmoothminimization problemswith abstract
sets. An improved versionwith inertial accelerated scheme and line search strategy (IASABP)
was also presented. Undermild conditions, we proved that bothASABP and IASABPpossess
an O(1/K ) sublinear rate of convergence, measured by Bregman distance. Furthermore,
if the objective function has Kurdyka–Łojasiewicz property, we proved that the sequence
generated byASABPconverges to the critical point of the constrained problem.Theoretically,
our results are extension of the recent NoLips algorithms, which are either limited to the
convex case, or the nonconvex case but there is no abstract sets. Numerically, our results
avoid the estimation of the Lipschitz constants, an annoying task in implementation. We
applied ASABP and IASABP to Poisson linear inverse problem, and their performance is
very promising.
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