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Abstract
We attempt to provide an algorithm for approximating a solution of the quasiconvex equilib-
rium problem that was proved to exist by K. Fan 1972. The proposed algorithm is an iterative
procedure, where the search direction at each iteration is a normal-subgradient, while the
step-size is updated avoiding Lipschitz-type conditions. The algorithm is convergent to a
ρ- quasi-solution with any positive ρ if the bifunction f is semistrictly quasiconvex in its
second variable, while it converges to the solution when f is strongly quasiconvex. Neither
monotoniciy nor Lipschitz property is required. The main subprogram needed to solve at
each iteration is a proximal regularized minimization problem whose objective function is
the sum of a quasiconvex function and the one ‖.‖2. We also discuss several cases where this
global optimization problem can be solved efficiently.

Keywords Equilibria · Quasiconvexity · Normal subgradient · Linesearch

Mathematics Subject Classification 90C33 · 65K10 · 90C26

1 Introduction

Let C be a nonempty closed convex set in R
n and f : Rn × R

n → R be a given bifunction
such that f (x, x) = 0 for every x ∈ C . We consider the problem

Find x∗ ∈ C : f (x∗, y) ≥ 0 ∀y ∈ C . (EP)

Inwhat followswe call Problem (EP) a convex (resp. quasiconvex) equilibriumproblem if the
function f (x, .) is convex (resp. quasiconvex) on C for any x ∈ C . The inequality appeared
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in Problem (EP) first was used by Nikaido and Isoda in 1955 [1] in a non-cooperative convex
game. In recent years this problem attracted much attention of many authors as it contains
a lot numbers of important problems such as optimization, variational inequality, Kakutani
fixed point, Nash equilibrium problems and others as special cases, see e.g. the interesting
monographs [2, 3], the papers [4–12] and the references cited therein.

Many algorithms have been developed for solving (EP) under the assumption that the
bifunction is convex and subdifferentiable with respect to the second variable while the first
one beingfixed.Almost all of these algorithms are based upon the auxiliary problemprinciple,
which states that when f (x, .) is convex, subdifferentiable onC , then the solution-set of (EP)
coincides with that of the regularized problem

find x∗ ∈ C : fρ(x∗, y) := f (x∗, y) + 1

2ρ
‖y − x∗‖2 ≥ 0 ∀y ∈ C, (REP)

with any ρ > 0 (see [2, 8]). The main advantage of the latter problem is that the regularized
bifunction fρ is strongly convex in the second variable when the first one is fixed.

A basicmethod for solving Problem (REP) is the extragradient one, where at each iteration
k, having xk ∈ C , a main operation is of solving the mathematical subprogram

min{ fρ(xk, y) := f (xk, y) + 1

2ρ
‖y − xk‖2 : y ∈ C}. (MP)

Thanks to convexity of the function f (xk, .) this problem is a strongly convex program, and
therefore it is uniquely solvable. However, when f (x, .) is quasiconvex rather than convex,
Problem (MP), in general, is not strongly convex, even not quasiconvex.

In the seminal paper [13] in 1972, K. Fan called Problem (EP) a minimax inequality and
established solution existence results for it, whenC is convex, compact and f is quasiconvex
on C .

Itworthmentioning thatwhen f (x, .) is convex and subdifferentiable onC , the equilibrium
problem (EP) can be reformulated as the following multivalued variational inequality

find x∗ ∈ C, v∗ ∈ F(x∗) : 〈v∗, x − x∗〉 ≥ 0 ∀x ∈ C, (MVI)

where F(x∗) = ∂2 f (x∗, x∗) with ∂2 f (x∗, x∗) being the diagonal subdifferential of f at
x∗, that is the subdifferential of the convex function f (x∗, .) at x∗. In the case f (x, .) is
semi-strictly quasiconvex rather than convex, Problem (EP) can take the form of (MVI) with
F(x) := Na f (x,x)\{0}, where Na f (x,x) is the normal cone of the adjusted sublevel set of
the function f (x, .) at the level f (x, x), see [14]. More details about the links between
equilibrium problems and variational inequalities can be found in [15].

Based upon the auxiliary principle, different methods such as the fixed point, projection,
extragradient, regularization, gap function ones have been developed for solving equilibrium
problem (EP) by usingmathematical programming techniques, where the bifunction involved
possesses certain monotonicity properties. Almost all of them require that the bifunction is
convex with respect to its second variable, see e.g. the comprehensive monograph [2] and
the references therein.

In [16], the authors studied an infeasible interior proximal algorithm for solving quasicon-
vex equilibrium problems with polyhedral constraints. At each iteration k of this algorithm,
having xk it requires globally solving a nonconvex mathematical programming problem,
where the objective function is the sum of f (xk, .) and a strongly convex function defined by
a distance function. The convergence of this algorithm is proved under an assumption depend-
ing on the iterates xk and xk+1. Very recently, Iusem and Lara [17] proposed an algorithm
for solving quasiconvex equilibrium problem (EP). Their algorithm can be considered as a
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standard proximal point method for optimization problems applied to the quasiconvex func-
tion f (x, .). The convergence has been proved when f is pseudomonotone, Lipschitz-type
and strongly quasi-convex.

In our recent papers [18, 19], by using the normal subdifferential of quasiconvex functions,
we have proposed projection algorithms for Problem (EP) when the bifunction is pseudo and
paramonotone.

In this paper, we continue our work by modifying the linesearch extragradient algorithm
commonly used for convex equilibrium problem (EP) to solve quasiconvex equilibrium prob-
lems without requiring any monotonicity and Lipschitz-type properties of the bifunction
involved. More precisely, after the next section that contains preliminaries on normal sub-
differentials of a quasiconvex function, in the third section, we describe an extragradient
linesearch algorithm for this quasiconvex equilibrium problem. Then by observing that the
solution set of the regularized problem coincides with that of the Minty (dual) one for semi-
strictly quasiconvex bifunction, we prove that the algorithm converges to a quasi (prox)
solution when the bifunction involved is semi-strictly quasiconvex in its second variable,
which is the unique solution when the bifunction is strongly quasiconvex in its second vari-
able. As the algorithms in [17, 20], at each iteration of our algorithm, it requires globally
solving a problem, whose objective function is the sum of a quasiconvex function and the
one ‖.‖2. We discuss several special cases where this subprogram can be solved efficiently.
We close the paper by presenting some computational results showing the efficiency and
behavior of the proposed algorithm.

2 Preliminaries on quasiconvexity, normal subdifferentials and
monotonicity

Definition 1 ([15, 21, 22]) Let C be a convex set in R
n . Let ϕ : Rn → R ∪ {+∞} such that

C ⊆ domϕ. The function ϕ is said to be

(i) Quasiconvex on C if and only if for every x, y ∈ C and λ ∈ [0, 1], one has

ϕ[(1 − λ)x + λy] ≤ max[ϕ(x), ϕ(y)]. (1)

(ii) Semi-strictly quasi-convex on C if it is quasiconvex and for every x, y ∈ C and λ ∈
(0, 1), one has

ϕ(x) < ϕ(y) ⇒ ϕ[(1 − λ)x + λy] < ϕ(y). (2)

(iii) Strongly quasiconvex on C with modulus γ > 0 if for every λ ∈ [0, 1]

ϕ(λx + (1 − λ)y) ≤ max{ϕ(x), ϕ(y)} − λ(1 − λ)
γ

2
‖x − y‖2 ∀x, y ∈ C .

(iv) Pseudoconvex on on C if it is differentiable on an open set containing C and

〈∇ϕ(x), y − x〉 ≥ 0 ⇒ ϕ(y) ≥ ϕ(x) ∀x, y ∈ C .

(v) Proximal convex on C with modulus α > 0 (shortly α-prox-convex) if there exists
α > 0 such that for any z ∈ C , proxϕ(C, z) �= ∅ and

p ∈ proxϕ(C, z) ⇒ α〈x − p, z − p〉 ≤ ϕ(x) − ϕ(p) ∀x ∈ C,

where proxϕ(C, z) is the proximal mapping of ϕ at z on C , that is

proxϕ(C, z) := argmin{ϕ(y) + 1

2
‖y − z‖2 : y ∈ C}.
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It is well known that strongly quasiconvex ⇒ semi-strictly quasiconvex ⇒ essentially qua-
siconvex ⇒ quasiconvex but the converses are not true. Clearly, ϕ is quasiconvex if and only
if, for every α ∈ R, the strict level set at the level α, that is

Lα := {y : ϕ(y) < α}
is convex. The class of proximal-convex functions has recently been introduced in [21]. It is
easy to see that when α = 1, it returns to the classical concept of convex functions. It can be
seen from [21, Corollary 3.1] and [23, Proposition 7] that if φ is lower semicontinuous and
strongly quasiconvex on C and p ∈ proxφ(C, z) then φ is prox-convex on the complement
of its sublevel set at level φ(p).

Recall that the (Hadamard) directional derivative of a function ϕ at x with direction d is
defined as

ϕ′(x, d) := lim inf
t↘0,u→d

ϕ(x + tu) − f (x)

t
.

A point x ∈ C is said to be a stationary point of ϕ on C if ϕ′(x, d) ≥ 0 for every d . A point
is a minimizer of ϕ on C then it is a stationary point. The converse direction is true when ϕ

is convex or pseudoconvex on C .
The Greenberg-Pierskalla subgradient of a quasiconvex function [24] is defined as

∂GPϕ(x) := {g ∈ R
n : 〈g, y − x〉 > 0 ⇒ ϕ(y) ≥ ϕ(x)}.

A variation of this subdifferential is the star-subdifferential that is defined as

∂∗ϕ(x) := {g ∈ R
n : 〈g, y − x〉 < 0 ∀y ∈ Lϕ(x)},

where Lϕ(x) stands for the strict level set of ϕ with level ϕ(x). It is well known [24, 25] that
if ϕ is continuous on Rn , then ∂∗ϕ(x) contains nonzero vector and

∂∗ϕ(x) ∪ {0} = cl(∂∗ϕ(x)) = ∂GPϕ(x),

where cl(A) stands for the closure of the set A. Thus the star-subdifferential is also called
the normal-subdifferential. Various calculus rules for normal subdifferential can be found in
[25]. The normal and Greenberg- Pierskalla subdifferentials are among the most commonly
used types in quasiconvex analysis. They were used to design subgradient type methods for
solving quasiconvex optimization problems (see [26–29]). It is worth mentioning that it is
not an easy task to compute a subgradient for a general quasiconvex function. Fortunately,
for some special classes of quasiconvex functions, a subset of these subdifferentials can be
computed (for example, see [26]). The notion of the star subdifferential was also introduced
by Penot ([30]), but it is not exactly the definition that we used in this paper.

The following concepts are commonly used in the field of equilibrium problem [2].

Definition 2 Let f : C × C → R

(i) f is said to be stronglymonotone onC withmodulusη ≥ 0 (shortlyη-stronglymonotone)
if

f (x, y) + f (y, x) ≤ −η‖x − y‖2 ∀x, y ∈ C .

If η = 0 it is also called monotone on C .
(ii) f is said to be paramonotone on C if x is a solution of (EP) and y ∈ C , f (x, y) =

f (y, x) = 0 then y is also a solution of (EP).
(iii) f is said to be pseudomonotone onC if f (x, y) ≥ 0 then f (y, x) ≤ 0 for every x, y ∈ C .
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(iv) f is said to be Lipschitz-type on C if

f (x, y) + f (y, z) ≥ f (x, z) − L1‖x − y‖2 − L2‖y − z‖2 ∀x, y, z ∈ C .

Clearly, in the case of optimization when f (x, y) := ϕ(y) − ϕ(x) it possesses both the
paramonotonicity and Lipschitz-type property.

The following lemma will be used to prove our main theorem in the next section.

Lemma 1 (see e.g. [11]) Let {ak} and {bk} be nonnegative sequences of real numbers satis-
fying

ak+1 ≤ ak + bk ∀k,
with

∑+∞
k=1 bk < +∞. Then the sequence {ak} is convergent.

3 Algorithm and its convergence

A problem closely related to Problem (EP) is the Minty (or dual) equilibrium one that is
defined as

Find z∗ ∈ C such that f (y, z∗) ≤ 0 ∀y ∈ C . (DEP)

Let us denote by S and Sd the solution set of (EP) and (DEP) respectively. It is clear that if
f is pseudomonotone on C then S ⊆ Sd . Conversely, Sd ⊆ S if f is upper semi-continuous
with respect to the first variable and convex with respect to the second variable (see for
example [31]).

In what follows we always suppose that f (., y) is upper semi-continuous for any y ∈ C .
In the following lemma, we prove that the inclusion Sd ⊆ S still holds true when f is

semi-strictly quasiconvex with respect to the second variable.

Lemma 2 Assume that f (x, .) is semi-strictly quasiconvex on C for any x ∈ C. Then Sd ⊆ S.

Proof Let z∗ ∈ Sd . If z∗ /∈ S, then there would exist y ∈ C such that f (z∗, y) < 0.
For λ ∈ (0, 1), set yλ = λz∗ + (1 − λ)y. Since f (., y) is upper semi-continuous, there

exists 0 < λ < 1 such that f (yλ, y) < 0. Since z∗ ∈ Sd , f (yλ, z∗) ≤ 0.
We consider two cases

• Case 1: f (yλ, z∗) < 0. By the quasiconvexity of f (yλ, .),

0 = f (yλ, yλ) ≤ max{ f (yλ, z∗), f (yλ, y)} < 0.

This is a contradiction.
• Case 2: f (yλ, z∗) = 0. By the semi-strictly quasiconvexity of f (yλ, .) and the fact that

f (yλ, y) < 0 = f (yλ, z∗), which would imply

0 = f (yλ, yλ) < max{ f (yλ, z∗), f (yλ, y)} = 0.

This is also a contradiction.

When the bifunction is convex with respect to its second variable, the extragradient-type
methods had been proposed for solving (EP) without monotonicity and Lipschitz properties
(see for example [2, 10]). The following algorithm can be considered as a modification of
the extragradient algorithm in [10] for solving Problem (EP) in the quasiconvex case. The
conditions for the stepsizes are borrowed from the subgradient-projection algorithms for
nonsmooth quasiconvex minimization problem (see [26]).
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Algorithm 3.1 Take α, θ ∈ (0, 1) and two sequences {ρk}k≥0,{σk}k≥0 of positive numbers
such that

ρk nonincreasingly converges to some ρ > 0,
+∞∑

k=0

σk = +∞,

+∞∑

k=0

σ 2
k < +∞.

Initialization: Pick x0 ∈ C.
Iteration k = 0, 1...

• Find yk such that

yk ∈ argminy∈C
{

f (xk, y) + 1

2ρk
‖xk − y‖2

}

. (3)

• If yk = xk , then stop: xk is a stationary point or a solution.
If yk �= xk , find the smallest positive integer m such that zk,m = (1− θm)xk + θm yk and

f (zk,m, xk) − f (zk,m, yk) ≥ α

2ρk
‖yk − xk‖2, (4)

and set zk = zk,m.
• Take

gk ∈ ∂∗
2 f (zk, xk) :=

{
g ∈ R

n : 〈g, y − xk〉 < 0 if f (zk, y) < f (zk, xk)
}

, (5)

and normalize it to obtain ‖gk‖ = 1 (gk �= 0, see Proposition 3.2 below).
Compute

xk+1 = PC (xk − σkg
k). (6)

If xk+1 = xk then stop: xk is a solution, else set k := k + 1.

Remark 1 (i) The existence of solution for (3) can be guaranteed under the assumption that
the function f (xk, .) is lower semicontinuous and 2−weakly coercive (see [21]), i.e.,

lim inf‖y‖→+∞
f (xk, y)

‖y‖2 ≥ 0.

IfC is bounded, the 2−weakly coercivity assumption canbedropped. If f (x, .) is strongly
quasiconvex on C , then it is 2−weakly coercive (see [17] Lemma 2).

(ii) The subproblem (3) may have more than one solution even in the case the function
f (xk, .) is strongly quasiconvex. The uniqueness of the solution for this problem can be
guaranteed under the assumption that f (xk, .) + 1

2ρk
‖xk − .‖2 is strongly quasiconvex

(see [23]).
(iii) The proximal operator has not only been extensively studied in the convex case but

also in the nonconvex case (see [21, 32, 33]). This operator plays an important role in
many algorithms (for example in [20, 32, 34]) for nonconvex and nonsmooth problems.
Recently, in [23], the proximal point method for minimizing a strongly quasiconvex
function has been implemented. When f is quasiconvex rather convex on C , problem
(3), in general is not convex, even not quasiconvex. In general, it is not easy to solve
this global optimization problem. However, in some special cases (see examples below)
one can choose reqularization parameter ρk such that problem (3) is strongly convex,
and therefore it is uniquely solvable. In the paper [20], Attouch et al have developed an
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algorithm based upon the proximal method for solving a mixed equilibrium problem,
when the subprogram defining the iterate xk+1 at iteration k is the one that is the same
as problem of type (3).

Example 1 Now we consider an example ([33]) in which the optimization problem (3) can
be solved efficiently. Suppose that bifunction f (x, y) := maxi∈I gi (x, y), where I ⊂ R

is compact, and each gi (x, .) is quasiconvex on C for every fixed x ∈ C . Then f (x, .) is
quasiconvex. Suppose that each gi (x, .) (i ∈ I ) is differentiable and its derivative is Lipschitz
with constant Li (x) > 0. Let ρ < 1

L(x) with L(x) := maxi∈I Li (x) and

fρ(x, y) := f (x, y) + 1

2ρ
‖y − x‖2.

Then fρ(x, .) is strongly convex on C . Indeed, for any u, v ∈ C and i ∈ I , consider the
function gi,ρ(x, y) := gi (x, y) + 1

2ρ ‖y − x‖2. Then we have
〈∇2gi,ρ(x, u) − ∇2gi,ρ(x, v), u − v〉

= 〈∇2gi (x, u) + 1

ρ
(u − x) − ∇2gi (x, v) − 1

ρ
(v − x), u − v〉

≥ −L(x)‖u − v‖2 + 1

ρ
‖u − v‖2 = (

1

ρ
− L(x))‖u − v‖2.

Hence fρ(x, .) is strongly convex whenever ρ < 1
L(x) . The above example belongs to the

class of the lower -C2 functions considered by some authors see e.g. [35–37].

In contrast to the convex case, in the algorithm, yk = xk does not necessarily imply that
xk is a solution. But, part (i) of the following proposition shows that it is a solution restricted
to a part of C , while in the rest part it is only a stationary point.

Proposition 1 Assume that f (x, .) is semi-strictly quasiconvex on C for any x ∈ C and
yk = xk .

(i) If xk is not a solution of (EP), that means

�(xk) :=
{
y ∈ C : f (xk, y) < 0

}
.

is nonemty, then for any y ∈ �(xk)

f ′
xk (x

k, y − xk) = 0,

where fxk := f (xk, .).
(ii) If f (xk, .) is pseudoconvex on C or strongly quasiconvex on C, then xk is a solution of

(EP).

Proof (i) For y ∈ �(xk), set d = y−xk . For λ ∈ (0, 1), set yλ = xk+λd = λy+(1−λ)xk .
Since f (xk, xk) = 0, by the semi-strictly quasiconvexity of f (xk, .), we have

f (xk, yλ) < 0.

So,

f (xk, xk + λd) − f (xk, xk)

λ
< 0. (7)
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From

xk = yk ∈ argmin{ f (xk, y) + 1

2ρk
‖y − xk‖2 : y ∈ C},

it follows that for any y ∈ C ,

f (xk, y) + 1

2ρk
‖y − xk‖2 ≥ 0.

Let y = yλ, then

f (xk, yλ) + 1

2ρk
λ2‖y − xk‖2 ≥ 0.

Therefore,

f (xk, xk + λd) − f (xk, xk)

λ
≥ −λ

1

2ρk
‖d‖2. (8)

By combining (7), (8) and letting λ → 0+, we obtain f ′
xk

(xk, d) = 0.

(ii) Assume that f (xk, .) is pseudoconvex on C , then f (xk, .) is differentiable on an open
set containing C and for any y, y′ ∈ C , we have

∇2 f (x
k, y)(y′ − y) ≥ 0 ⇒ f (xk, y′) ≥ f (xk, y).

From xk = yk , it implies from part (i) that 〈∇2 f (xk, xk), y − xk〉 ≥ 0 for every y ∈ C .
Therefore, f (xk, y) ≥ 0 for y ∈ C .
Now, we consider the case where f (xk, .) is strongly quasiconvex with modulus γ > 0.
Since xk = yk with yk being the solution of subproblem (3), we have

0 ≤ f (xk, y) + 1

2ρk
‖y − xk‖2 ∀y ∈ C . (9)

Let y := λx + (1−λ)xk with any x ∈ C and λ ∈ [0, 1]. Then applying (9), by the strong
quasiconvexity of f (xk, .), we obtain

0 ≤ f (xk, λx + (1 − λ)xk) + 1

2ρk
‖λx + (1 − λ)xk − xk‖2

≤ max{ f (xk, xk), f (xk, x)} − λ(1 − λ)
γ

2
‖x − xk‖2 + 1

2ρk
‖λx + (1 − λ)xk − xk‖2.

Thus for any λ ∈ [0, 1] we have

0 ≤ max{ f (xk, x), 0} +
[ λ2

2ρk
− γ

λ(1 − λ)

2

]
‖x − xk‖2 ∀x ∈ C . (10)

The right hand side of (10) is a quadratic function on λ. At λ = 0, this function takes
value 0 and its derivative is negative, therefore

0 < max{ f (xk, x), 0} ∀x ∈ C .

Hence f (xk, x) > 0 for every x ∈ C .

Proposition 2 Assume that f (., y) is continuous on C for any y ∈ C. If yk �= xk then the
following statements hold:

(i) There exists a positive integer m satisfying (4).
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(ii) If f (x, .) is semi-strictly quasiconvex on C for any x ∈ C, then f (zk, xk) > 0.
(iii) 0 /∈ ∂∗

2 f (zk, xk).

Proof (i) If there does not exist m satisfying (4), then for every positive integer m, we have

f (zk,m, xk) − f (zk,m, yk) <
α

2ρk
‖yk − xk‖2. (11)

Let m → +∞, we have zk,m → xk and (11) becomes

− f (xk, yk) ≤ α

2ρk
‖yk − xk‖2. (12)

On the other hand, (3) means that for all y ∈ C ,

f (xk, yk) + 1

2ρk
‖yk − xk‖2 ≤ f (xk, y) + 1

2ρk
‖y − xk‖2.

By choosing y = xk , we obtain

f (xk, yk) + 1

2ρk
‖yk − xk‖2 ≤ 0. (13)

Combining (12) with (13), it follows that α ≥ 1. This is a contradiction because α ∈
(0, 1).

(ii) From (4), f (zk, xk) > f (zk, yk). By the semi-strictly quasiconvexity of f (zk, .) on C ,
it follows

0 = f (zk, zk) < f (zk, xk).

(iii) It follows from part (ii) that

0 = f (zk, zk) < f (zk, xk).

By the definition of ∂∗
2 f (zk, xk), it is clear that 0 /∈ ∂∗

2 f (zk, xk).

Proposition 3 If xk+1 = xk then zk is a solution of (EP) provided f (x, .) is semi-strictly
quasiconvex on C for any x ∈ C.

Proof By the algorithm, xk+1 = xk means that xk = PC (xk −σkgk), which is equivalent to

〈gk, y − xk〉 ≥ 0 ∀y ∈ C . (14)

Remember that, by (5),

gk ∈ ∂∗
2 f (zk, xk) :=

{
g ∈ R

n : 〈g, y − xk〉 < 0 if f (zk, y) < f (zk, xk)
}

.

Thus, by (14), f (zk, y) ≥ f (zk, xk) for y ∈ C .
Note that, in part (ii) of Proposition 2, we have proved that if xk �= yk , then f (zk, xk) > 0.

So, we can conclude that f (zk, y) ≥ f (zk, xk) ≥ 0 for every y ∈ C , which means that zk is
a solution of (EP).

Proposition 4 Suppose that f (x, .) is semi-strictly quasiconvex for any x ∈ C and the
solution-set Sd of the Minty problem is nonempty. Let z∗ ∈ Sd , then

‖xk+1 − z∗‖2 ≤ ‖xk − z∗‖2 + σ 2
k , (15)
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and

lim inf
k→+∞〈gk, xk − z∗〉 = 0. (16)

Proof For y ∈ C , we have

‖xk+1 − y‖2 = ‖PC (xk − σkg
k) − y‖2

≤ ‖xk − σkg
k − y‖2

≤ ‖xk − y‖2 + σ 2
k + 2σk〈gk, y − xk〉.

With y = z∗ ∈ Sd , we have

‖xk+1 − z∗‖2 ≤ ‖xk − z∗‖2 + σ 2
k + 2σk〈gk, z∗ − xk〉. (17)

Since f (zk, z∗) ≤ 0 < f (zk, xk) and gk ∈ ∂∗
2 f (zk, xk), it follows that

〈gk, z∗ − xk〉 < 0.

Therefore,

‖xk+1 − z∗‖2 < ‖xk − z∗‖2 + σ 2
k .

From (17), for any k, it holds that

σk〈gk, xk − z∗〉 ≤ ‖xk − z∗‖2 − ‖xk+1 − z∗‖2 + σ 2
k .

By summing up over k, we obtain

+∞∑

k=0

σk〈gk, xk − z∗〉 ≤ ‖x0 − z∗‖ +
+∞∑

k=0

σ 2
k .

Note that
∑+∞

k=0 σ 2
k < +∞,

∑+∞
k=0 σk = +∞ and 〈gk, z∗ − xk〉 < 0, hence

lim inf
k→+∞〈gk, xk − z∗〉 = 0.

Following [38] we say that a point x ∈ C is ρ- quasi-solution (prox-solution) to Problem
(EP) if f (x, y) + 1

2ρ ‖y − x‖2 ≥ 0 for every y ∈ C .
For the convergence of the proposed algorithm we need the following assumptions.

(A0) f is continuous jointly in both variables on an open set containing C × C ;
(A1) f (x, .) is semistrictly quasiconvex on C for every x ∈ C ;
(A2) the solution-set Sd of the Minty problem is nonempty;
(A3) The sequence {yk} is bounded.
Theorem 1 Suppose that the algorithm does not terminate. Let {xk} be the infinite sequence
generated by the algorithm. Under the assumptions (A0),(A1),(A2),(A3), there exists a sub-
sequence of {xk} converging to a ρ- quasi solution x. If in addition, f (x, .) is strongly
quasiconvex for every x ∈ C, then {xk} converges to the unique solution of (EP).

Proof of Theorem 1 Let z∗ ∈ Sd . By part (i) Proposition 4 and
∑+∞

k=1 σ 2
k < +∞, the sequence

{‖xk − z∗‖2} is convergent by Lemma 1. Hence, {xk} is bounded.
Let {xk j } be a subsequence of {xk} such that xk j converges to some point x and

lim
j→+∞〈gk j , xk j − z∗〉 = lim inf

k→+∞〈gk, xk − z∗〉 = 0. (18)
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Since the sequence {yk j } j is bounded. {zk j } j is bounded too. By taking subsequences if
necessary, without loss of generality, we can assume that yk j converges to y and zk j converges
to z.

Step 1:We will prove that

f (z, x) = 0. (19)

Indeed, from part (ii) Proposition 2, f (zk, xk) > 0. In addition, by Assumption (A0),
f (., .) is continuous on C × C , we have

f (z, x) = lim
j→+∞ f (zk j , xk j ) ≥ 0.

Now, assume that f (z, x) = ε > 0. Then there exists j0 such that f (zk j , xk j ) > ε
2 for all

j ≥ j0.
Since z∗ ∈ Sd , we have f (z, z∗) ≤ 0. Again by (A0), there exist ε1, ε2 > 0 such that for

all z ∈ B(z, ε1), z′ ∈ B(z∗, ε2):

f (z, z′) <
ε

2
.

Since {zk j } converges to z, there exists j1 such that for any j ≥ j1 we have zk j ∈ B(z, ε1),
from which it follows that for j ≥ max( j0, j1), and z′ ∈ B(z∗, ε2), we have

f (zk j , z′) < f (zk j , xk j ).

By taking z′ = z∗ + ε2gk j and thanks to (5), we have for j ≥ max( j0, j1),

〈gk j , xk j − z∗〉 > ε2,

which contradicts (18). Thus f (z, x) = 0.
Step 2:We prove that

lim
j→+∞ ‖xk j − yk j ‖ = 0.

From (4), we know that for any k

f (zk, xk) > f (zk, yk).

So, f (z, y) ≤ f (z, x) = 0 (by Step 1).
Let θ j = θm j such that zk j = (1 − θ j )xk j + θ j yk j . Clearly, 0 < θ ≤ θ j < 1. Therefore,

z is a convex combination of x and y and z �= x .
Now if f (z, y) < 0, then z �= y. By the semi-strictly quasiconvexity of f (z, .), we have

0 = f (z, z) < f (z, x),

which is impossible. It implies that

f (z, y) = 0.

From (4),

f (zk j , xk j ) − f (zk j , yk j ) ≥ αρk j ‖yk j − xk j ‖2. (20)

Let j → +∞, and note that limk→+∞ ρk = ρ > 0, we obtain

lim
j→+∞ ‖xk j − yk j ‖ = 0.

123



Journal of Global Optimization

This means x = y. Note that

yk j ∈ argminy∈C

{

f (xk j , y) + 1

2ρk j
‖xk j − y‖2

}

.

then for any y ∈ C , we have

f (xk j , yk j ) + 1

2ρk j
‖xk j − yk j ‖2 ≤ f (xk j , y) + 1

2ρk j
‖xk j − y‖2.

Let j → +∞, by the continuity of f and x = y, we obtain for any y ∈ C ,

0 ≤ f (x, y) + 1

2ρ
‖x − y‖2. (21)

Assume, in addition, that f (x, .) is strongly quasiconvex on C with modulus γ > 0. For any
x ∈ C and λ ∈ [0, 1], take y = λx + (1 − λ)x . By replacing it to (21) we obtain

0 ≤ f (x, λx + (1 − λ)x) + 1

2ρ
‖x − (λx + (1 − λ)x‖2.

Then using the definition of strong quasiconvexity, by the same argument as in the proof of
part (ii) in Proposition 3.1, we can see that f (x, x) ≥ 0 for every x ∈ C .

Let

Sρ := {x ∈ C : f (x, y) + 1

2ρ
‖x − y‖2 ≥ 0 ∀y ∈ C}.

Remark 2 (i) In virtue of Lemma 2 we have Sd ⊆ S. Thus, if Sρ = Sd , then x ∈ Sd = S.
Remember that the sequence {‖xk − x‖2} is convergent we can conclude that the whole
sequence {xk} converges to x which is a solution of (EP).

(ii) Since for any ρ, one can choose a sequence {ρk} such that ρk → ρ. Thus, from
f (x, y) + ρ‖x − y‖2 ≥ 0 ∀y ∈ C , it can be seen that for any ε > 0, there exists ρ > 0
small enough such that f (x, y) ≥ −ε provided C is bounded. So one can consider x as an
approximate solution.

In the case f is pseudomonotone, then by Lemma 2 S = Sd . Clearly, S ⊆ Sρ for every
ρ > 0. In addition, if f (x, .) is pseudoconvex and continuously differentiable for any x ∈ C ,
then S = Sρ for every ρ > 0. Hence x is a solution.

(iii) Clearly, Assumption (A3) may be dropped if C is bounded (often in practice), more-
over, one can see that this assumption is not needed if the optimization problem (3) admits
a unique solution for every k.

The boundedness of {yk} can also be ensured under the following assumption:
(A3’) For any closed and bounded set � ⊆ C , there exists a real number ρ0 > 0 such

that the function f (x, y) + ρ0
2 ‖x − y‖2 is bounded from below on � ×C . That means there

exists a real number c such that for any x ∈ �, y ∈ C , one has

f (x, y) + ρ0

2
‖x − y‖2 ≥ c.

Under Assumption (A3’), by choosing the sequence ρk that converges to ρ > ρ0, one can
ensure that {yk} is bounded. Indeed, if the sequence {yk} is unbounded, then there exists a
subsequence {yk j } of {yk} such that lim j→+∞ ‖yk j ‖ = +∞. Since {xk} is bounded, there
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exists a closed and bounded set � ⊆ C such that {xk} ⊂ �. By assumption (A3’), there
exists numbers ρ0 > 0 and c such that for any k ∈ N and y ∈ C ,

f (xk, y) + ρ0

2
‖xk − y‖2 ≥ c,

with implies that, for any k,

f (xk, yk) + ρk

2
‖xk − yk‖2 ≥ c + ρk − ρ0

2
‖xk − yk‖2.

Since yk is a solution of (3), we obtain

f (xk, yk) + ρk

2
‖xk − yk‖2 ≤ f (xk, xk) = 0.

On the other hand, since {xk j } is bounded and lim j→+∞ ‖yk j ‖ = +∞, we have

lim
j→+∞

(
c + ρk − ρ0

2
‖xk j − yk j ‖2) = +∞,

which leads to a contradiction.
The idea of Condition (A3’) comes from the prox-bounded property which is widely

used to study the proximal mapping (see e.g. [13,32]). In the case of optimization when the
bifunction f takes the form f (x, y) = h(y)−h(x)with h being continuous onC , Condition
(A3’) is ensured under the prox-boundedness of h on C .

This condition is also satisfied when f (x, .) is convex and its diagonal subdifferential
∂2 f (x, x) is bounded on any bounded set. It is worth to note that this assumption has been
usually used in the field of equilibria.

The following simple example shows that a ρ- quasi-solution with any ρ > 0 may not be a
solution.

Example 2 Let C := [−1, 0], f (x, y) := y3 − x3, Clearly, with x∗ = 0, we have f (x∗, y)+
1
2ρ (y− x∗)2 = y3 + 1

2ρ y
2 ≥ 0, ∀y ∈ C if ρ > 0 small enough, for example ρ < 1/2. Thus,

0 is ρ- prox-solution, but f (x∗, y) = y3 < 0 with y = −1 ∈ C . So the auxiliary problem
principle fails to appy to semi-strictly quasiconvex equilibrium problems.

4 Numerical experiments

We present here two examples to illustrate the behavior of our linesearch extragradient algo-
rithm (for short LEQEP) for quasiconvex equilibrium problems. The algorithm is implemeted
in Python 3 running on a Laptop with AMD Ryzen 7 5800H with Radeon Graphics 3.20
GHz and 8GB RAM memory.

Example 3 We consider the following 1-dim strongly quasiconvex equilibrium problem ([17,
Example 4.2])

C = [0, δ] ;
f (x, y) = √

y − √
x + r x(y − x);

where α, δ > 0. It is easy to see that the solution set is S = {0}.
We test LEQEP on this example with r = 2 and δ = 10. We take x0 = 5, ρ = 1, α = 0.5,

θ = 0.5 and stop the algorithm if |xk − yk | < 10−3 or |xk+1 − xk | < 10−3. Our algorithm
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Fig. 1 Behavior of LEQEP in Example 3

reach the unique solution x∗ = 0 after 84 iterations if we choose σk = 1
k+1 and 8 iterations

if we choose σk = 2
k+1 . Figure1 illustrates the behavior of LEQEP for this example.

Example 4 We consider the bifunction

f (x, y) = max{ f1(x, y), f2(x, y)},
where

f1(x, y) = 〈A1x + b1,
E1y + f1
cT1 y + d1

− E1x + e1
cT1 x + d1

〉,

f2(x, y) = 〈A2x + b2,
E2y + f2
cT2 y + d2

− E2x + e2

cT2 x + d2
〉,
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Fig. 2 Behavior of LEQEP in Example 4 for m = n = 2

with A1, A2, E1, E2 ∈ R
m×n , b1, b2, e1, e2 ∈ R

m , c1, c2 ∈ R
n and d1, d2 ∈ R. We also

assume that

C ⊂ {x : cT1 x + d1 > 0} ∩ {x : cT2 x + d2 > 0}.

In this example, we test our algorithm with m = n = 2 and 5, 10, 20, 50. In the first
experiment, we take m = n = 2 and

A1 = A2 = I2, b1 = b2 = 02,

E1 = I2, e1 = 12, c1 = 02, d1 = 1,

E2 =
[
1 2
3 4

]

, e2 = c2 = 12, d2 = 2,

C = [0, 5]2 .
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Fig. 3 Behavior of LEQEP in Example 4 for m = n = 10

For any x ∈ C , the functions f1(x, .) and f2(x, .) are linear fractional functions and therefore
strictly quasiconvex on C (see [26, Lemma 4]). Consequently, f (x, .) is strictly quasiconvex
on C for any x ∈ C . We test LEQEP on this example with x0 = [

5 5
]T

, ρ = 1, α = 0.5,
θ = 0.8 and stop the algorithm if ‖xk − yk‖ < 10−5 or ‖xk+1 − xk‖ < 10−5. Our algorithm
reach an approximate solution of x∗ = [

0 0
]T

after 129 iterations if we take σk = 1
k+1 and

after 13 iterations if we take σk = 3
2(k+1) . Figure2 illustrates the behavior of LEQEP in this

example.
In the second experiment, we take m = n = 10 and
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Table 1 Algorithm with αk = n
k+1

n N. of prob CPU-times(s) Error

5 100 0.0018502084016799928 3.0083411036103923e−05

10 100 0.002031816816329956 6.697999417359917e−06

20 100 0.0020687472820281982 4.7459739660895515e−06

50 100 0.011073581838607788 0.004554847325973183

A1 = A2 = I10, b1 = b2 = 010,

E1 = I10, f1 = 110, c1 = 010, d1 = 1,

E2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 4 2 4 2 2 3 2 1 2
1 3 0 3 0 1 1 0 2 2
2 3 0 2 2 2 1 1 2 2
3 2 3 0 1 1 2 4 1 1
1 4 3 0 2 1 4 3 0 3
0 4 1 4 2 3 4 3 4 2
3 0 4 4 0 4 1 1 1 2
1 2 2 3 1 0 3 0 0 0
2 0 0 3 0 3 3 4 4 2
0 2 4 4 0 4 3 0 3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, f2 = c2 = 110, d2 = 2,

C = [0, 5]2 .

We test LEQEP on this example with x0 = 5 ∗ 110, ρ = 1, α = 0.5, θ = 0.8 and stop the
algorithm if ‖xk − yk‖ < 10−5 or ‖xk+1 − xk‖ < 10−5. Figure3 illustrates the behavior of
LEQEP in this example.

In the last experiment, each entry of the matrices A1, A2, E1, E2, vectors b1, b2, c1, c2,
f1, f2 and number d1, d2 is randomly generated in the interval [0, 5]. We test LEQEP for
m = n = 5, 10, 20, 50, x0 = 5 ∗ 1n , ρ = 1, α = 0.5, θ = 0.8 and stop the algorithm if
‖xk − yk‖ < 10−8 or ‖xk+1 − xk‖ < 10−8 or the number of iterations exceed 1000. The
average time and average error min(‖xk − yk‖, ‖xk − xk+1‖) for each size are reported in
Table 1 with different sizes, a hundred of problems have been tested for each size.

We also record the average errors of ‖xk − yk‖ and ‖xk − xk+1‖ in the first 1000 iterations
in Fig. 4.

5 Conclusion

We have proposed an extragradient linesearch algorithm for approximating a solution of
equilibrium problems with quasiconvex bifunctions. The sequence of the iterates generated
by the proposed algorithm converges to a proximal-solution when the bifunction is semi-
strictly quasiconvex with respect to its second variable, which is an equilibrium solution
provided the bifunction is strongly quasiconvex. Neithermonotonicity nor Lischitz properties
are required. From an efficient point of view, this algorithm needs an efficient algorithm for
the typical problem of type (3).
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Fig. 4 Behavior of LEQEP for
random input
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