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Abstract
We present a method to solve a special class of parameter identification problems for an ellip-
tic optimal control problem to global optimality. The bilevel problem is reformulated via the
optimal-value function of the lower-level problem. The reformulated problem is nonconvex
and standard regularity conditions like Robinson’s CQ are violated. Via a relaxation of the
constraints, the problem can be decomposed into a family of convex problems and this is the
basis for a solution algorithm. The convergence properties are analyzed. It is shown that a
penalty method can be employed to solve this family of problems while maintaining conver-
gence speed. For an example problem, the use of the identity as penalty function allows for the
solution by a semismooth Newton method. Numerical results are presented. Difficulties and
limitations of our approach to solve a nonconvex problem to global optimality are discussed.
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1 Introduction

In this paperwe study an inverse problem inwhichwe aim to identify finitelymanyparameters
of an optimal control problem with a linear partial differential equation. This results in an
infinite-dimensional bilevel optimal control problem. The concept of bilevel optimization
is discussed in [1–4], while [5–8] present a comprehensive introduction to optimal control.
Bilevel optimal control problems are also studied in [9–12], for example. To be more precise,
we consider the parametric optimization problem

min
y∈Y , u∈U f (β, y, u)

s.t. Ay − Bu = 0,

u ∈ Uad,

(LL(β))

where β ∈ Q ⊂ R
n is a parameter, and the sets Q, Uad, the linear operators A, B, the

spaces U , Y , and the function f are such that Assumption 2.1 is satisfied. Here u ∈ Uad is
the control, y ∈ Y is the state, and Ay = Bu describes an elliptic PDE. Assumption 2.1
guarantees that the solution of (LL(β)) is unique for each β ∈ Q, see Lemma 2.2.

The problem (LL(β)) is also called the lower-level problem. The upper-level problem
under investigation is

min
β∈Rn

F(β, y, u)

s.t β ∈ Q,

(y, u) = �(β),

(UL)

where �(β) describes the unique solution of (LL(β)). Our main motivation for studying
(UL) is the purpose of identifying an unknown parameter β from some (possibly perturbed)
measurements of �(β), see also Sect. 5.

Together, the problems (LL(β)) and (UL) constitute the bilevel optimization problem.
Necessary optimality conditions of bilevel optimal control problems, i.e. hierarchical opti-
mization problems with two decision layers, where at least one decision maker has to solve
an optimal control problem, are derived in [13–18]. Recently solution theory for inverse
optimal control problems of partial differential equations was developed in [19, 20]. We also
note that optimal control problems with variational inequality constraints such as optimal
control of the obstacle problem (see [21]) can be viewed as a bilevel optimal control prob-
lem. Regarding the numerical solution of the presented problem type, there mainly exist
(to the best of our knowledge) methods for inverse optimal control problems with ordinary
differential equations, see [10, 22–24]. The corresponding algorithms tend to replace the
lower-level problem with their optimality conditions. A different approach was introduced in
[25], where the authors solved a special class of inverse problems of partial differential equa-
tions by exploiting the optimal-value function of the parametric optimal control problem.
The optimal-value function ϕ : Q → R of (LL(β)) is defined by

ϕ(β) := inf
{
f (β, y, u)

∣∣(y, u) ∈ Y ×Uad, Ay = Bu
} = f (β,�(β)). (1)

The idea of using the optimal-value function in bilevel optimization problems can be traced
back to [26]. With the help of the optimal-value function, the hierarchical problem (UL) can
be transformed into the single-level problem
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min
β,y,u

F(β, y, u)

s.t. β ∈ Q,

f (β, y, u) ≤ ϕ(β),

Ay − Bu = 0,

u ∈ Uad.

(OVR)

We call this optimization problem the optimal-value reformulation of (UL). This resulting
nonconvex surrogate problem does not satisfy standard constraint qualifications such as
Robinson’s CQ. However, in [25, Theorem 5.12] the authors were able to prove necessary
optimality conditions of Clarke-stationary type via a relaxation approach. Furthermore, [25,
Algorithm 1] introduces a solution algorithm using a piecewise affine approximation ξ of
the optimal-value function ϕ with ξ ≥ ϕ, which leads to the relaxed optimization problem

min
β,y,u

F(β, y, u)

s.t. β ∈ Q,

f (β, y, u) ≤ ξ(β),

Ay − Bu = 0,

u ∈ Uad.

(OVR(ξ))

If f and F are convex, this problem can be split into finitely many convex subproblems
for which a global solution can be obtained. The original problem can then be solved by
iteratively improving the approximation ξ of the optimal-value function, see [25, Theorem
6.5]. In this paper we start with the same approach to derive a global solution scheme. We
slightly deviate in the construction of the piecewise affine approximation by starting with
a triangulation of the admissible set for the upper-level control variable and subsequently
enforce some regularity on further divisions. In addition to proving convergence of the global
solution scheme in Theorem 3.2, this will allow us to link convergence speed to the size of
the elements of the partition (see Theorem 3.6). In order to solve (OVR(ξ)), we also consider
the penalty problem

min
β,y,u

F(β, y, u) + γ P( f (β, y, u) − ξ(β))

s.t. β ∈ Q,

Ay − Bu = 0,

u ∈ Uad.

(OVRP(ξ))

Here, P : R → R is a penalty function and γ > 0. Interestingly, we will see that it is possible
to choose the identity P(x) = x as a penalty function. This has several benefits. On the one
hand, we show in Lemma 4.7 that a finite penalty parameter can be chosen such that one
obtains the solution of (OVR(ξ)). On the other hand, the choice of the identity results in much
simpler derivatives of the objective of (OVRP(ξ)) and this enables us to use a semismooth
Newton method to solve the subproblems efficiently, see Sect. 5.3.

Solving nonconvex problems to global optimality is an intricate issue, and, hence, we
expect difficulties. Indeed, our approach has some limitations concerning the obtained conver-
gence speed, see Remark 3.7. Especially in a practical setting convergence speed deteriorates
with an increasing dimension of the upper-level variable (curse of dimensionality).

Let us describe the structure of this paper. In Sect. 2 we present the used notation as well
as the main governing assumption in addition to some preliminary theory related to optimal
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control problems. We proceed by introducing a global solution algorithm (Algorithm 1) in
Sect. 3 and prove its convergence in Theorem3.2. Furtherwe present some convergence speed
estimates in Theorem 3.6 related to the size and regularity of the elements in the partition.
To ensure this property, we derive a simple method for refining the partition in arbitrary
finite dimensions while keeping some regularity properties of the elements, see Lemma 3.3.
On top of this foundation we introduce our penalty approach (Algorithm 2) in Sect. 4. We
show that there exists a choice of the penalty parameter (see Lemma 4.7), for which one
can expect to find the solution to the subproblems from Algorithm 1. A method for solving
the penalty subproblems by means of a semismooth Newton method is presented in Sect. 5.
We show its superlinear convergence in Theorem 5.8. The corresponding implementation of
our algorithm for solving the inverse optimal control problem and a numerical example are
covered in Sect. 6.

2 Preliminaries

2.1 Notation

The norm in a (real) Banach space X is denoted by ‖ · ‖X . Let Bε
X (x) denotes the closed

ε-ball centered at x ∈ X with respect to ‖ · ‖X . Furthermore, X� is the topological dual of
X and 〈·, ·〉X : X� × X → R denotes the corresponding dual pairing. For a set A ⊂ X we
denote by conv A, cone A, cl A, int A and ∂A the convex hull, the conical hull, the closure,
interior and the boundary of A, respectively. For a Banach space Y , the space of all bounded
linear operators from X to Y is denoted by L[X , Y ] and for some operator F ∈ L[X , Y ] the
adjoint is called F� ∈ L[Y �, X�]. For a convex set C ⊂ X and a point x ∈ C we denote by

RC (x) := cone(C − x),

NC (x) := {x� ∈ X�
∣∣〈x�, y − x〉X ≤ 0, ∀y ∈ C}

the radial cone and the normal cone to the set C at the point x ∈ C , respectively. For x /∈ C ,
we set NC (x) := ∅.

The setRn denotes the usual n-dimensional real vector space, equippedwith the Euclidean
norm ‖ · ‖Rn . The sets R+, R− represent the nonnegative and nonpositive numbers respec-
tively. For an arbitrary bounded and open set 
 ⊂ R

d , the space of equivalence classes
of measurable, p-integrable functions is given by L p(
), p ∈ [1,∞). Similarly, L∞(
)

denotes the space of essentially bounded (equivalence classes of) measurable functions. Fur-
thermore, we use the notations H1

0 (
) and H−1(
):=H1
0 (
)� for the Sobolev space with

first order derivatives and homogeneous boundary conditions and its dual space.
A mapping J : X → Y is called Fréchet differentiable at x ∈ X if there exists an operator

J ′(x) ∈ L[X , Y ] such that

lim‖d‖X→0

‖J (x + d) − J (x) − J ′(x)d‖Y
‖d‖X = 0. (2)

In this case, J ′(x) is called the Fréchet derivative of J at x . If X � x �→ J ′(x) ∈ L[X , Y ] is
well defined and continuous in a neighborhood of x then J is said to be continuously Fréchet
differentiable at x .
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2.2 Assumptions

Throughout this work we utilize the following standing assumption.

Assumption 2.1 (Standing assumption)

(a) The spaces Y and U are (real) Hilbert spaces.
(b) The set Q ⊂ R

n is a nonempty bounded polyhedron, i.e., a nonempty and bounded
intersection of finitely many closed halfspaces. We assume that Q possesses a nonempty
interior.

(c) The set Uad ⊂ U is nonempty, closed and convex.
(d) The operator A ∈ L[Y , Y �] is an isomorphism and B ∈ L[U , Y �] is a linear bounded

operator. We denote by S := A−1B ∈ L[U , Y ] the control-to-state map.
(e) The functionals F : Q × Y × U → R and f : Q × Y × U → R are assumed to be

bounded from below, convex and continuously Fréchet differentiable.
(f) The functional F and the partial derivatives of f satisfy some specific Lipschitz-like

properties on bounded sets, i.e. for every M ≥ 0 there exists a constant LM ≥ 0, such
that

|F(β, y1, u1) − F(β, y2, u2)| ≤ LM (‖y1 − y2‖Y + ‖u1 − u2‖U )

‖ f ′
β(β1, y1, u1) − f ′

β(β2, y2, u2)‖Rn ≤ LM (‖β1 − β2‖Rn + ‖y1 − y2‖Y + ‖u1 − u2‖U )

‖ f ′
u(β1, S(u), u) − f ′

u(β2, S(u), u)‖U � ≤ LM ‖β1 − β2‖Rn

‖ f ′
y(β1, S(u), u) − f ′

y(β2, S(u), u)‖Y � ≤ LM‖β1 − β2‖Rn

hold for all β, β1, β2 ∈ Q, y1, y2 ∈ BM
Y (0) and u, u1, u2 ∈ Uad ∩ BM

U (0).
(g) The reduced lower-level objective u �→ f (β, S(u), u) is assumed to be strongly convex

with respect to the control with constant μ > 0 independent of β ∈ Q, i.e.,

f (β, S(u2), u2)≥ f (β, S(u1), u1)+〈 f ′
y(·), S(u2−u1)〉+〈 f ′

u(·), u2−u1〉+ μ

2
‖u2−u1‖2U

holds for all β ∈ Q and u1, u2 ∈ Uad. Here, f ′
y(·) and f ′

u(·) denote the partial derivatives
of f w.r.t. y and u at the point (β, S(u1), u1).

2.3 Preliminary results

Let the optimization problem
min
x∈X J (x)

s.t. g(x) ∈ C
(OP)

be given, with continuously Fréchet differentiable mappings J : X → R, g : X → Y
between Banach spaces X , Y and C ⊂ Y being nonempty, closed and convex. A feasible
point x ∈ X of (OP) satisfies the Karush-Kuhn-Tucker (KKT) conditions if

∃λ ∈ NC (g(x)) : J ′(x) + g′(x)�λ = 0. (3)

If x is a local solution of (OP) which satisfies Robinson’s constraint qualification

g′(x)X − RC (g(x)) = Y , (4)

then the KKT conditions hold, see [27] and [28, Theorem 3.9]. Due to Assumption 2.1, the
lower-level problem fits into the setting of (OP). The KKT system for the lower level for a
parameter β̃ in a solution (ỹ, ũ) then reads
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0 = f ′
y(β̃, ỹ, ũ) + A� p̃,

0 = f ′
u(β̃, ỹ, ũ) − B� p̃ + ν̃,

0 = Aỹ − Bũ,

ν̃ ∈ NUad (ũ),

(5)

where p̃ ∈ Y (we identify Y �� with Y ), ν̃ ∈ U � are multipliers. Note that Robinson’s CQ is
satisfied due to the surjectivity of A. Thus, for a minimizer of the lower-level problem there
exist multipliers such that the KKT system (5) is satisfied.

We can now prove that the assumption of strong convexity for the lower level implies a
quadratic growth condition in the solution.

Lemma 2.2 For every β ∈ Q, the lower-level problem (LL(β)) has a unique solution
(yβ, uβ). Moreover, the quadratic growth condition

f (β, S(u), u) ≥ f (β, yβ, uβ) + μ

2
‖u − uβ‖2U ∀u ∈ Uad (6)

is satisfied with the parameter μ > 0 from Assumption 2.1(g).

Proof Existence of a solution follows from the direct method of calculus of variations. Note
that the boundedness of the minimizing sequence follows from the strong convexity.

Let (yβ, uβ) denote a solution of (LL(β)). Utilizing the strong convexity in the solution
(β, yβ, uβ) yields

f (β, S(u), u) ≥ f (β, yβ, uβ) + 〈 f ′
u(·), u − uβ〉 + 〈 f ′

y(·), S(u − uβ)〉 + μ

2
‖u − uβ‖2U

for all u ∈ Uad, where f ′
u(·) and f ′

y(·) denote the partial derivatives of f in (β, yβ, uβ). By
using the KKT conditions with multipliers p, ν we obtain

〈 f ′
u(·), u − uβ〉 + 〈 f ′

y(·), S(u − uβ)〉 = 〈 f ′
u(·) + S� f ′

y(·), u − uβ〉
= 〈 f ′

u(·) − S�A� p, u − uβ〉
= 〈 f ′

u(·) − B� p, u − uβ〉
= 〈−ν, u − uβ〉 ≥ 0 ∀u ∈ Uad.

The last inequality holds since ν ∈ NUad (uβ) and u ∈ Uad. Hence, one gets the quadratic
growth condition (6). This also yields uniqueness of the solution. ��

Next, we introduce the solution operator for (LL(β)).

Definition 2.3 We denote by � : Q → Y ×U the solution mapping of the lower-level prob-
lem which maps β ∈ Q to the corresponding unique solution (yβ, uβ) given in Lemma 2.2.
We further denote byψ y(β) ∈ Y andψu(β) ∈ U the components of�(β). As an abbreviated
notation we introduce yβ :=ψ y(β) and uβ :=ψu(β).

We will now prove that the function � is globally Lipschitz continuous. Local Lipschitz
continuity follows already by [15, Lemma 3.1.6]. However, by Assumption 2.1(f) we have
a stronger assumption on the derivative of f . Thus, we can adopt the arguments from [15,
Lemma 3.1.6] to obtain global Lipschitz continuity.

Lemma 2.4 Let X , V be Banach spaces, and let C ⊂ X , Q̂ ⊂ V be nonempty, closed and
convex sets. Further, let J : X × V → R and μ > 0 be given such that for all p ∈ Q̂,
the function J (·, p) is strongly convex with parameter μ on the feasible set C and Fréchet
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differentiable. Then, the solution operator ψ : Q̂ → X for the parametrized optimization
problem

min
x

J (x, p)

s.t. x ∈ C

exists and we have the estimate

‖ψ(p2) − ψ(p1)‖X ≤ μ−1‖J ′
x (ψ(p2), p1) − J ′

x (ψ(p2), p2)‖X� ∀p1, p2 ∈ Q̂.

Proof The existence of ψ follows by standard arguments for convex optimization problems
with strongly convex objectives.

We now consider fixed elements p1, p2 ∈ Q̂ and their corresponding unique minimizers
ψ(pi ) = xi ∈ C , i ∈ {1, 2}. The associated optimality conditions are

〈J ′
x (xi , pi ), x̂ − xi 〉 ≥ 0 ∀x̂ ∈ C . (7)

If we now add these inequalities with the special choices x̂ = x3−i , we obtain the estimate

0 ≤ 〈J ′
x (x1, p1) − J ′

x (x2, p2), x2 − x1〉
≤ 〈J ′

x (x1, p1) − J ′
x (x2, p1) + J ′

x (x2, p1) − J ′
x (x2, p2), x2 − x1〉

≤ −μ‖x2 − x1‖2X + ‖J ′
x (x2, p1) − J ′

x (x2, p2)‖X�‖x2 − x1‖X .

In the last step, we have used the strong convexity of J (·, p1). Dividing the last inequality
by μ‖x2 − x1‖X yields the claim. ��
Corollary 2.5 The function � from Definition 2.3 is Lipschitz continuous on Q. Moreover,
there exists a constant M� ≥ 0 such that

‖β‖Rn , ‖ψ y(β)‖Y , ‖ψu(β)‖U ≤ M� ∀β ∈ Q.

Proof We start by proving the boundedness. From Lemma 2.2, we get

f (β, yβ, uβ) + μ

2
‖û − uβ‖2U ≤ f (β, S(û), û) ∀β ∈ Q

for a fixed û ∈ Uad. Further, f (·, S(û), û) : R
n → R is continuous, thus it is bounded on the

compact set Q. Hence, one has

f (β, yβ, uβ) + μ

2
‖û − uβ‖2U ≤ C ∀β ∈ Q

for some constant C ∈ R. Together with the assumption that f is bounded from below (see
Assumption 2.1(e)) we get an upper bound for ‖ψu(β)‖U = ‖uβ‖U . This also allows us to
bound ‖ψ y(β)‖Y = ‖S(ψu(β))‖Y ≤ ‖S‖‖ψu(β)‖U , since S is a linear bounded operator
by assumption. Since Q is bounded, β ∈ Q is bounded as well. We choose M� to be the
largest of the previously discussed bounds for ‖β‖Rn , ‖ψ y(β)‖Y and ‖ψu(β)‖U .

In order to prove the Lipschitzness of�, we want to apply Lemma 2.4 to the state-reduced
lower-level problem, i.e., with the setting

x = u, C = Uad, p = β, Q̂ = Q, J (x, p) = J (u, β) := f (β, S(u), u).

Assumption 2.1 yields that the assumptions of Lemma 2.4 are satisfied. From the chain rule,
we get

Jx (u, β) = f ′
u(β, S(u), u) + S� f ′

y(β, S(u), u).
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Now, Lemma 2.4 yields

‖ψu(β1) − ψu(β2)‖ ≤ μ−1
(∥∥ f ′

u
(
β1, ψ

y(β1), ψ
u(β1)

)− f ′
u
(
β2, ψ

y(β1), ψ
u(β1)

)∥∥
U �

+ ‖S�‖
∥∥∥ f ′

y
(
β1, ψ

y(β1), ψ
u(β1)

)− f ′
y
(
β2, ψ

y(β1), ψ
u(β1)

)∥∥∥
Y �

)
.

Owing to Assumption 2.1(f) with M = M� , this yields the desired Lipschitz continuity of
ψu . Consequently, the Lipschitz continuity of ψ y follows due to the continuity of S. ��

We can use this property to prove the existence of solutions for (OVR).

Theorem 2.6 There exists a solution for (OVR).

Proof The lower-level problem admits a unique solution. Therefore the solution operator
� of the lower-level optimization problem can be used to reduce (UL) to an optimization
problem in R

n :

min
β

F(β, ψ y(β), ψu(β))

s.t. β ∈ Q.

By Assumption 2.1(e) F is continuous. Thus with the Lipschitz continuity of � it follows
that β �→ F(β, ψ y(β), ψu(β)) is continuous. Moreover, Q ⊂ R

n is compact by Assump-
tion 2.1(b). The existence of a solution follows from the celebrated Weierstraß theorem.

��
We finally mention that more general results on the existence of solutions for bilevel

optimal control problems are given in [29]. In particular, our result is covered by the second
part of [29, Theorem 16.3.5].

In order to use interpolation error estimates, we prove regularity of the optimal-value
function ϕ.

Corollary 2.7 The optimal-value function is Fréchet differentiable on the interior of Q and
the derivative is Lipschitz continuous.

Proof The differentiability of ϕ can be shown as in [15, Theorem 3.2.6]. This also yields
the expression ϕ′(β) = f ′

β(β,ψ y(β), ψu(β)) for the derivative. By combining this with the
Lipschitz continuity of � (see Corollary 2.5) and Assumption 2.1(f), we get the Lipschitz
continuity of ϕ′ on the interior of Q. ��

3 Algorithm

In this section, we present an algorithm to solve (OVR) under the given Assumption 2.1. The
algorithm is similar to [25, Algorithm 1], with the main difference being the choice of the
function ξ which approximates the value function ϕ. In that reference, the functions ξk were
defined via

ξk(x) := min

{
m∑

i=1

μiϕ(xi )
∣∣0 ≤ μ,

m∑

i=1

μi = 1,
m∑

i=1

μi x
i = x

}

,

where Xk = {x1, . . . , xm} ⊂ R
n is a finite set. The sets Xk are assumed to be increasing

w.r.t. k and in order to achieve a uniform Lipschitz bound of ξk on Q, one has to require

123



Journal of Global Optimization (2023) 86:1025–1061 1033

Q ⊂ int conv X1, see [25, Lemma 6.1, Example 6.1]. The reason for this extra assumption
is that it is not possible to a priori control the shape and size of the simplices on which ξk is
affine.

We use a different method and choose a subdivision Tk of Q (recall that Q is a bounded
polyhedron) into closed simplices. On each simplex T ∈ Tk , we define ξT : T → R as the
affine interpolant of ϕ in the vertices of T . The function ξTk is obtained by combining ξT
for all T ∈ Tk , see (8) below. The advantage of this approach lies in the accessible way to
control the interpolation error ‖ξT − ϕ‖L∞(T ) by refining the subdivision Tk to get sufficient
decrease in diameter for new simplices.

We mention that our approach does not require continuity of ξTk . Therefore, we do not
need any special assumptions on the subdivision, in particular, we allow for hanging nodes.
In fact, it is enough to require

⋃

T∈Tk

T = Q.

Therefore, if we have two elements T , S ∈ Tk with T ∩ S �= ∅, the values of ξT and ξS may
not agree on T ∩ S. For the definition of ξTk : Q → R, we choose

ξTk (β) := max
T∈Tk

ξT (β). (8)

This definition of ξTk ensures upper semicontinuity.

Lemma 3.1 Let a simplex T ⊂ Q be given. Then, the interpolant ξT of ϕ satisfies the
interpolation error estimate

‖ϕ − ξT ‖L∞(T ) ≤ Cϕ

2
diam(T )2,

where Cϕ is the Lipschitz constant of ϕ′ on the interior of Q, see Corollary 2.7.

Proof We define the error e := ϕ − ξT . Since e is continuous, there exists z ∈ T such that
|e(z)| = ‖e‖L∞(T ). If z coincides with one of the vertices, we are done since e vanishes in
the vertices of T . Otherwise, we can find a vertex p of T and ε > 0 such that z ± εp ∈ T .
Since e attains its maximum or minimum in z, this gives e′(z)(p − z) = 0. Now, we use the
fundamental theorem of calculus to obtain

‖z‖L∞(T ) = |e(z)| = |e(p) − e(z)| =
∣∣∣∣

∫ 1

0
e′(z + t(p − z))(p − z)dt

∣∣∣∣

=
∣∣∣∣

∫ 1

0

[
e′(z + t(p − z)) − e′(z)

]
(p − z)dt

∣∣∣∣ .

By using the linearity of ξT , we can continue with

‖z‖L∞(T ) =
∣∣∣∣

∫ 1

0

[
ϕ′(z + t(p − z)) − ϕ′(z)

]
(p − z)dt

∣∣∣∣

≤
∫ 1

0

∣∣[ϕ′(z + t(p − z)) − ϕ′(z)
]
(p − z)

∣∣ dt ≤
∫ 1

0
Cϕ t‖p − z‖2dt = Cϕ

2
‖p − z‖2.

Using ‖p − z‖ ≤ diam(T ) finishes the proof. ��
The main idea in Algorithm 1 is to solve (OVR(ξ)) with ξ = ξTk and to successively

refine a simplex on which a solution is found. In order for Algorithm 1 to be well-defined,
we need to guarantee the existence of global minimizers of (OVR(ξ, T )). This can be shown
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Algorithm 1 Computation of global solutions to (UL)
(S1) Let T1 be a subdivision of Q and select a parameter q ∈ (0, 1). Further, set k := 1.
(S2) For each T ∈ Tk \ Tk−1 compute a global solution (βT , yT , uT ) of the convex optimization problem

min
β,y,u

F(β, y, u)

s.t. β ∈ T ,

0 ≥ f (β, y, u) − ξT (β),

0 = Ay − Bu,

u ∈ Uad.

(OVR(ξ, T ))

Select T̄k ∈ argminT∈Tk {F(βT , yT , uT )} and define (βk , yk , uk ) := (βT̄k
, yT̄k

, uT̄k
).

(S3) Compute ϕ(βk ). If f (βk , yk , uk ) = ϕ(βk ), then (βk , yk , uk ) is a global solution of (OVR) (and, thus,
of (UL)) and the algorithm terminates. Otherwise, we construct Tk+1 from Tk by a refinement of T̄k
such that diam(T ) ≤ q · diam(T̄k ) for all T ∈ Tk+1 \ Tk .

by the direct method of calculus of variations. The boundedness of β follows from β ∈ T
and the boundedness of (y, u) follows from f (β, y, u) ≤ ξT (β), cf. Assumption 2.1(g).

Under very mild assumptions we can show the convergence towards global minimizers
using Lemma 3.1.

Theorem 3.2 Algorithm 1 either stops at a global optimal solution of (OVR) or the computed
sequence (βk, yk, uk) is bounded and contains a weakly convergent subsequence in R

n ×
Y × U to a global optimal solution of (OVR). Every weakly convergent subsequence of
(βk, yk, uk) converges strongly. If (OVR) has a unique global solution (β̄, ȳ, ū), then the
entire sequence (βk, yk, uk) converges strongly to (β̄, ȳ, ū).

Proof The value function ϕ is convex and therefore ξTk (β) ≥ ϕ(β). Thus, the feasible set
of (OVR(ξTk )) contains the feasible set of (OVR). If the solution (βk, yk, uk) of (OVR(ξTk ))
is feasible for (OVR), it is globally optimal for (OVR). Hence, the stopping criterion of the
algorithm ensures that (βk, yk, uk) is globally optimal for (OVR). It remains to discuss the
case where Algorithm 1 does not terminate. We denote by (β̄, ȳ, ū) a global solution of
(OVR). Then

F(βk, yk, uk) ≤ F(β̄, ȳ, ū) (9)

by the same argument. The feasible set Q is compact by Assumption 2.1(b). This implies the
existence of N ∈ R with ϕ(β) ≤ N for all β ∈ Q. Therefore, the estimate

N ≥ ξTk (βk) ≥ f (βk, yk, uk) ≥ f (βk, yβk , uβk ) + μ

2
‖uβk − uk‖2U

(where we used (6) in the last step) together with the boundedness of uβk shows the bound-
edness of uk in U . The boundedness of yk in Y follows from the properties of the linear
operators A and B. Therefore the sequence (βk, yk, uk) is bounded by a constant M ≥ 0
and contains a weakly convergent subsequence (without relabeling) (βk, yk, uk)⇀(β̂, ŷ, û)

in R
n × Y × U . In particular, one has the strong convergence βk → β̄, since R

n is finite
dimensional.

In order to estimate the distance between ϕ and its interpolant ξTk , we use the interpolation
error estimate Lemma 3.1 on each simplex T ∈ Tk . To this end, we need to show that the
last step of Algorithm 1 ensures diam(T̄k) → 0. We proceed by proof of contradiction and
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assume v:= lim supk→∞ diam(T̄k) > 0. Thus, the set T̄0 := {T̄k
∣∣k ∈ N, diam(T̄k) ≥ v} is

infinite. Now there has to be at least one simplex T0 ∈ T1 that strictly contains infinitely
many simplices from T̄0, i.e., the set T̄1:={T ∈ T̄0

∣∣T � T0} is infinite. These simplices are
refined at least once and thus we have diam(T ) ≤ q diam(T0) for all T ∈ T̄1. Again, one
simplex in T̄1 has to contain infinitely many of the simplices from T̄1 and we can repeat the
above argument. This leads to a contradiction as the diameter of the simplices is bounded
from above by q−l diam(T0) and this contradicts the lower bound v > 0.

The interpolation error estimate in combination with diam(T̄k) → 0 yields

ϕ(β̂) ≤ f (β̂, ŷ, û) ≤ lim inf
k→∞ f (βk, yk, uk) ≤ lim sup

k→∞
f (βk, yk, uk) ≤ lim sup

k→∞
ξT̄k (βk)

≤ lim sup
k→∞

(
ϕ(βk) + Cϕ

2
diam(T̄k)

2
)

= ϕ(β̂).

(10)

Note that we have used the sequential weak lower semicontinuity of f which follows from
convexity and continuity in Assumption 2.1(e). Thus, (10) yields feasibility of (β̂, ŷ, û) for
(OVR). Similarly, F is sequentially weakly lower semicontinuous. Therefore, we can pass
to the limit k → ∞ in (9) and obtain

F(β̂, ŷ, û) ≤ lim inf
k→∞ F(βk, yk, uk) ≤ F(β̄, ȳ, ū). (11)

This shows that (β̂, ŷ, û) is a global solution for (OVR).
Next, we prove the strong convergence of yk and uk . Strong convergence of the control

uk can be obtained by exploiting the quadratic growth condition from Lemma 2.2: Note
that yk = S(uk) by feasibility of (βk, yk, uk) for (OVR(ξ, T̄k )). Thus, Lemma 2.2 and the
Lipschitz continuity of f ′

β(β̂, ·, ·) from Assumption 2.1(f) yield

f (βk, yk, uk) ≥ f (β̂, yk, uk) + 〈 f ′
β(β̂, yk, uk), βk − β̂〉

≥ f (β̂, yk, uk) − ‖ f ′
β(β̂, yk, uk)‖Rn‖βk − β̂‖Rn

≥ f (β̂, yk, uk)

−
(
‖ f ′

β(β̂, ŷ, û)‖Rn + LM‖yk − ŷ‖Y + LM‖uk − û‖U
)

‖βk − β̂‖Rn

≥ f (β̂, ŷ, û) + μ

2
‖uk − û‖2U − C‖βk − β̂‖Rn . (12)

Since (10) implies f (βk, yk, uk) → f (β̂, ŷ, û) and since βk → β̂, this inequality yields the
strong convergence uk → û in U . The continuity of the solution operator S now implies
strong convergence of the states.

If the solution to (OVR) is unique, the convergence of the entire sequence follows from a
usual subsequence-subsequence argument. ��

An important ingredient of Algorithm 1 is the refinement of the simplices in (S3) such
that the property diam(T ) ≤ q diam(T̄k) is obtained. In the two-dimensional case Q ⊂ R

2

this can be done by splitting the triangle T̄k into 4 similar triangles by using the midpoints of
the edges. However, already in three dimensions this is not straightforward since a general
tetrahedron cannot be divided into similar tetrahedrons. In particular, a regular tetrahedron
cannot be split into smaller regular tetrahedra. One, however, can use hypercubes to construct
a method of refinement that ensures that the diameter decreases sufficiently.

Lemma 3.3 For every (finite) subdivision T1, there exists a constant q ∈ (0, 1) such that the
refinement in (S3) of Algorithm 1 is always possible.
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Proof We first describe the splitting of reference simplices and then use a linear transforma-
tion to apply the procedure to an arbitrary simplex.

Let Sn denotes the permutations of {1, 2, . . . , n}. We consider the hypercube [0, 1]n and
a permutation π ∈ Sn . Then Tπ :={x ∈ R

n
∣∣0 ≤ xπ(1) ≤ · · · ≤ xπ(n) ≤ 1} describes a

simplex. For each point x in the hypercube there exists at least one permutation π for which
the definition of Tπ is consistent with the “≤”-ordering of the components of x , i.e., x ∈ Tπ .
Therefore

⋃
π∈Sn Tπ = [0, 1]n . If we consider a point x ∈ [0, 1]n with xi �= x j for all

i �= j , then there exists only one permutation π such that x ∈ Tπ since the components
of x have a uniquely determined order. Furthermore, those points are dense in [0, 1]n and
this implies that two simplices constructed with two different permutations cannot have a n-
dimensional intersection. Moreover, different simplices Tπ can be matched by a permutation
of the coordinates.

The hypercube can be split into 2n smaller cubes. By dividing these smaller cubes again
into simplices, we arrive at

T t
π :={x ∈ R

n
∣∣0 ≤ xπ(1) − tπ(1) ≤ · · · ≤ xπ(n) − tπ(n) ≤ 0.5} ⊂ t + [0, 0.5]n, (13)

where we consider all possible t ∈ {0, 0.5}n and π ∈ Sn . We observe that these simplices
are the translated and scaled versions of Tπ . In particular, we have T t

π = 1
2Tπ + t .

We argue that for all π ∈ Sn and t ∈ {0, 0.5}n , there exists π̂ ∈ Sn with T t
π ⊂ Tπ̂ . Indeed,

for x ∈ T t
π , the coordinates xi with ti = 0 are smaller (or equal) than the coordinates x j

with t j = 0.5. Further, we have xπ(i1) ≤ xπ(i2) if tπ(i1) = tπ(i2) and i1 ≤ i2. Thus, we can
construct π̂ by first taking the indices π(i) with tπ(i) = 0 and afterwards the indices π( j)

with tπ( j) = 0.5. This implies that every Tπ can be divided into 2n smaller simplices T t (i)

π(i)

with i = 1, . . . , 2n .
Each vertex of Tπ is a vertex of the original hypercube [0, 1]n and each vertex of T t (i)

π(i) is

a vertex of the smaller cube t (i) + [0, 0.5]n . Since these two cubes share exactly one vertex,
at most one vertex of the divided simplex T t (i)

π(i) is a vertex of Tπ .
Finally, we map each simplex T ∈ T1 to Tπ for some fixed π ∈ Sn by an (invertible)

affine transformation aT : T → Tπ . The first part of the proof shows that Tπ can be divided
into smaller simplices. By applying the inverse transformation a−1

T , we get a subdivision
{Ti
∣∣i = 1, . . . , 2n} of T . For the children of T , we reuse the transformation aT . Thus, only

finitely many shapes appear for all the descendants of T . Since the diameter of a simplex is
only attained at pairs of vertices and since each child Ti shares at most one vertex with T we
find q̄T ∈ (0, 1) with diam(Ti ) ≤ q̄T diam(T ) for all i = 1, . . . , 2n . In subsequent iterations
the affine transformations applied to the simplices of the initial subdivision can be reused for
the respective children. The number of affine transformations and reference shapes is finite.
Thus, the procedure introduces at most k = 2n |T1| pairings of shapes and corresponding
transformations,with their own scaling factorsqk ∈ (0, 1).We can setq = maxk(qk) ∈ (0, 1)
and the described refinement strategy complies with step (S3) of Algorithm 1. ��
Remark 3.4 The refinement technique of Lemma 3.3 always generates hanging nodes. The
presentedmethod is consistent with splitting a triangle into 4 similar parts using themidpoints
of the edges. As a side effect the method from Lemma 3.3 also provides a lower bound on
the aspect ratio and maintains some shape regularity of the initial subdivision. In higher
dimensions there might exist more advanced methods of refinement.

After we have proven the convergence of Algorithm 1, we want to get an estimate on the
convergence speed. We establish a preliminary result on the error in the upper-level objective
induced by the approximation ξT of ϕ.
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Lemma 3.5 Let T be a subdivision of Q. For T ∈ T and any feasible point (β, y, u) of
(OVR(ξ, T )) we have

|F(β, y, u) − F(β, yβ, uβ)| ≤ LM (1 + ‖S‖)
√
Cϕ

μ
diam(T ), (14)

where (yβ, uβ) is the solution of the lower-level problem associated with the parameter β,
see Definition 2.3, and Cϕ is the Lipschitz constant of ϕ′, see Corollary 2.7. Moreover, the
constant M > 0 (defined in the proof) is large enough, such that the norms of β, y, u, yβ
and uβ are bounded by M.

Proof We use the quadratic growth condition from Lemma 2.2 to obtain

ξT (β) ≥ f (β, y, u) ≥ f (β, yβ, uβ) + μ

2
‖u − uβ‖2U = ϕ(β) + μ

2
‖u − uβ‖2U .

Next, we apply the interpolation estimate Lemma 3.1 to get

‖u − uβ‖2U ≤ Cϕ diam(T )2

μ
. (15)

In order to apply the Lipschitz assumption from Assumption 2.1, we define M := M� +
max{1, ‖S‖}√Cϕ/μ diam(Q)where M� is given in Corollary 2.5. Due to (15), all quantities
are bounded by M . Thus,

|F(β, y, u) − F(β, yβ, uβ)| ≤ LM (‖Su − Suβ‖Y + ‖u − uβ‖U )

≤ LM (1 + ‖S‖)‖u − uβ‖U

≤ LM (1 + ‖S‖)
√
Cϕ

μ
diam(T ).

��
Theorem 3.6 Let T be a subdivision of Q and suppose that the upper-level objective func-
tional satisfies a quadratic growth condition for a solution (β̄, ȳ, ū) of (OVR) in the sense
that

F(β, yβ, uβ) ≥ F(β̄, ȳ, ū) + G‖β − β̄‖2
Rn ∀β ∈ Q (16)

holds for some constant G > 0. Let T ∈ T be an element satisfying the condition

diam(T ) <
G

LM (1 + ‖S‖)
√

Cϕ

μ

dist(T , β̄)2. (17)

Then, for any feasible point (β, y, u) of the relaxed problem (OVR(ξ, T )) we have

F(β, y, u) > F(β̄, ȳ, ū).

The constants appearing in (17) have the same meaning as in Lemma 3.5.

Proof Let T ∈ T satisfy (17) and let (β, y, u) be feasible to (OVR(ξ, T )). By using the
quadratic growth condition (16) and Lemma 3.5 we obtain

F(β, y, u) − F(β̄, ȳ, ū) = F(β, yβ, uβ) − F(β̄, ȳ, ū) + F(β, y, u) − F(β, yβ, uβ)

≥ G‖β − β̄‖2
Rn − LM (1 + ‖S‖)

√
Cϕ

μ
diam(T )

> G‖β − β̄‖2
Rn − G dist(T , β̄)2 ≥ 0.

(18)

This shows the claim. ��
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Remark 3.7 Wegive some interpretation of Theorem 3.6. Let (β̄, ȳ, ū) be a solution to (OVR)
satisfying the growth condition (16). Let T ∈ T satisfy (17) and let (β, y, u) be a feasible
point of (OVR(ξ, T )). Further, let T̄ ∈ T be a simplex with β̄ ∈ T̄ . Then, a solution
(βT̄ , yT̄ , uT̄ ) of (OVR(ξ, T )) satisfies

F(β, y, u) > F(β̄, ȳ, ū) ≥ F(βT̄ , yT̄ , uT̄ ).

Hence, Algorithm 1 will never refine the simplex T and, consequently, this simplex will be
ignored in the subsequent iterations of the algorithm.

Theorem 3.6 also has a quantitative implication. We consider a subdivision of Q into
simplices of diameter h. According to (17), the minimizer β̄ cannot occur in simplices T
with h > C dist(T , β̄)2, with some constant C > 0. That is, we only have to consider
simplices with dist(T , β̄) ≤ √

h/C . The number of simplices satisfying this condition is
roughly of the order hn/2−n = h−n/2.

If we are able to improve (17) to diam(T ) < C dist(T , β̄)α for some α ∈ [1, 2), see the
discussion below, this number of simplices improves to h−n(1−1/α). In particular, in the case
α = 1, we expect a constant number of simplices.

Remark 3.8 There are two possibilities to improve condition (17). First, if one has a stronger
growth condition for the upper-level objective functional, i.e.,

F(β, yβ, uβ) ≥ F(β̄, ȳ, ū) + G‖β − β̄‖α
Rn ∀β ∈ Q (19)

for some α ∈ [1, 2), then we can use dist(T , β̄)α instead of dist(T , β̄)2 in (17), cf. (18). In
particular, α = 1 might be possible if β̄ is located on the boundary of Q or if the reduced
objective is non-smooth at β̄.

Second, we can improve Theorem 3.6 if F ′(β̄, ȳ, ū) = 0. For simplicity, we discuss the
case that F is quadratic, i.e.,

F(β, y, u) = F(β, yβ, uβ) + F ′(β, yβ, uβ)((β, y, u) − (β, yβ, uβ))

+ 1

2
F ′′(β, yβ, uβ)[(β, y, u) − (β, yβ, uβ)]2. (20)

In particular, the second derivative is constant. Together with the Lipschitz continuity of F ′
and � (see Corollary 2.5), we readily obtain

‖F ′(β, yβ, uβ)‖Rn×Y �×U � = ‖F ′(β, yβ, uβ) − F ′(β̄, ȳ, ū)‖Rn×Y �×U � ≤ C‖β − β̄‖Rn .

Using this estimate and (15) in (20), we find

|F(β, y, u) − F(β, yβ, uβ)| ≤ C‖β − β̄‖Rn diam(T ) + C diam(T )2

≤ C dist(T , β̄) diam(T ) + C diam(T )2.

By using this estimate in (18), we see that (17) can be replaced by diam(T ) < c dist(T , β̄) for
some c > 0. Note that F ′(β̄, ȳ, ū) = 0 is highly restrictive. However, the positive influence
on the convergence speed can already be expected if the first derivative of F is close to
zero in the solution. The approach can be applied to non-quadratic objective functionals F
by replacing (20) by a Taylor expansion and requiring that ‖F ′′‖ is bounded on bounded
subsets.
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Algorithm 1 can still be sped up substantially without additional restrictions. In (S3), we
have to evaluate ϕ(βk), and for this purpose we calculate the lower-level solutions (yβk , uβk ).
Therefore (βk, yβk , uβk ) is a feasible point of (OVR) and, thus, F(βk, yβk , uβk ) is an upper
bound for the minimal objective value of (OVR). On the other hand, the computed values
F(βT , yT , uT ) for T ∈ T are lower bounds for the possible objective value of (OVR)
restricted to T . Hence, all elements T ∈ T with F(βT , yT , uT ) > F(βk, yβk , uβk ) cannot
contain a solution of (OVR) and can be ignored in later iterations. Furthermore, the simplices
can be sorted by F(βT , yT , uT ) and multiple simplices may be refined in each iteration.
This results in a larger number of auxiliary problems which have to be solved in the next
iteration (recall that (OVR(ξ)) has to be solved on refined elements only). These problems
are independent of each other and can be solved in parallel.

Finally, we demonstrate that in most cases, the value-function constraint in (OVR(ξ)) will
be satisfied with equality. To study the issue we introduce the problem

min
β,y,u

F(β, y, u)

s.t. Ay − Bu = 0,

β ∈ Q, u ∈ Uad.

(21)

This problem is a relaxation of (OVR), since we neglected the optimality of (y, u) for the
lower level. We expect that this problem has a smaller optimal value than (OVR).

Lemma 3.9 Suppose that the infimal value of (21) is smaller than the infimal value of (OVR).
Let (βk, yk, uk) be defined as in Algorithm 1(S2). Then, the constraint f (βk, yk, uk) ≤
ξT̄k (βk) is satisfied with equality whenever k is sufficiently large and ξTk is continuous at βk .

Proof Let (β̃, ỹ, ũ) be a global solution for (21). Note that global solutions (β̄, ȳ, ū) to (OVR)
are not globally optimal for (21). The construction of the sequence (βk, yk, uk) according to
Algorithm 1 yields a monotonically increasing sequence F(βk, yk, uk). By Theorem 3.2 one
gets F(βk, yk, uk) → F(β̂, ŷ, û) = F(β̄, ȳ, ū). Due to F(β̃, ỹ, ũ) < F(β̄, ȳ, ū), we have
F(β̃, ỹ, ũ) < F(βk, yk, uk) for sufficiently large k.

We argue by contradiction and assume that f (βk, yk, uk) < ξT̄k (βk) for some large k
for which ξTk is continuous at βk . We consider a convex combination (1 − s)(βk, yk, uk) +
s(β̃, ỹ, ũ), s ∈ (0, 1), and check that it is a feasible point of (OVR(ξTk )) for s small enough.
The constraint Ay = Bu is linear and the admissible sets Q and Uad are convex. Moreover,
since f is continuous (see Assumption 2.1) and since ξTk is continuous by assumption, we
have

f ((1 − s)(βk, yk, uk) + s(β̃, ỹ, ũ)) < ξTk ((1 − s)βk + sβ̃) ∀s ∈ (0, ε]
for some ε > 0. Now the convexity of the upper-level objective functional F (see Assump-
tion 2.1(e)) implies

F((1 − s)(βk, yk, uk) + s(β̃, ỹ, ũ)) ≤ (1 − s)F(βk, yk, uk) + sF(β̃, ỹ, ũ) < F(βk, yk, uk)

for all s ∈ (0, ε]. This contradicts the optimality of (βk, yk, uk) from Algorithm 1 (S2). ��

Note that the piecewise linear function ξTk is continuous if the triangulation Tk does not
possess hanging nodes. Otherwise, it might be discontinuous at all facets containing hanging
nodes.
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Algorithm 2 Computation of global solutions to (UL) with penalty approach
(S1) LetT1 be a subdivision of Q and select a parameterq ∈ (0, 1) and a non-decreasing function P : R → R

with P(0) = 0. Further, set k := 1.
(S2) For every simplex T ∈ Tk , choose γk,T > 0 and compute a global solution (βk,T , yk,T , uk,T ) of the

optimization problem

min
β,y,u

F(β, y, u) + γk,T P( f (β, y, u) − ξT (β))

s.t. β ∈ T ,

0 = Ay − Bu,

u ∈ Uad.

(OVRP(T , γk,T ))

Select

T̄k ∈ argminT∈Tk
{
F(βk,T , yk,T , uk,T ) + γk,T P

(
f (βk,T , yk,T , uk,T ) − ξT (βk,T )

)}

and set (βk , yk , uk ) = (βk,T̄k
, yk,T̄k

, uk,T̄k
).

(S3) Compute ϕ(βk ). If f (βk , yk , uk ) = ϕ(βk ), then (βk , yk , uk ) is a global solution of (OVR) (and, thus,
of (UL)) and the algorithm terminates. Otherwise, we construct Tk+1 from Tk by a refinement of T̄k
such that diam(T ) ≤ q · diam(T̄k ) for all T ∈ Tk+1 \ Tk . Set k := k + 1 and go to (S2).

4 Penalty approach

The subproblems (OVR(ξ, T )) presented in Algorithm 1 are already subject to convex con-
straints, however, the nonlinear inequality constraint f (β, y, u) ≤ ξ(β) still may introduce
difficulties when implementing the solution algorithm. In particular, this constraint is of a
rather unusual form in an optimal control context, see Sect. 5. Using a penalty method for
this complicated constraint the treatment of the subproblems (OVR(ξ, T )) can be simplified
since this inequality constraint is incorporated into the objective functional. Any additional
error that is introduced by the penalty approach has to be compared to the error induced by
the relaxation of the problem with the affine interpolation of the optimal-value function.

By replacing the subproblems in Algorithm 1 with a penalty approach, we arrive at Algo-
rithm 2 for which we now provide some further comments. In a classical penalty method
the penalty parameter depends only on the iteration counter k. In Algorithm 2, we allow an
additional dependence on the simplex T . Indeed, if γk,T is independent of k, it is sufficient
to solve the auxiliary problems (OVRP(T , γk,T )) only on the new cells T ∈ Tk+1\Tk . Oth-
erwise, we would need to solve these problems on all cells in each iteration. The stopping
criterion in (S3) is justified in the first part of the proof of the upcoming Theorem 4.2.

Lemma 4.1 Let the penalty function P : R → R be non-constant, non-decreasing and con-
vex. Then, for every simplex T ⊂ Q and γk,T > 0, the problem (OVRP(T , γk,T )) possesses
a solution.

Proof From the monotonicity and convexity of P , we get P(s) → ∞ for s → ∞.
For a minimizing sequence (βk, yk, uk), the boundedness of βk follows from βk ∈ T .
Since F is bounded from below by Assumption 2.1(e) and since γk,T > 0, the expres-
sion P( f (βk, yk, uk) − ξT (βk)) is bounded from above. Due to the properties of P , the
sequence f (βk, yk, uk) is bounded from above. Thus, the boundedness of (yk, uk) follows
from Assumption 2.1(g). Now, the remaining part of the proof is clear since the objective is
continuous and convex, hence, weakly sequentially lower semicontinuous. ��
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4.1 Standard penalization

We first prove the convergence of Algorithm 2 for a typical penalty function P .

Theorem 4.2 Let the penalty function P : R → R bemonotone and convex, such that P(s) =
0 for all s ≤ 0 and P(s) > 0 for all s > 0. If γk,T̄k → ∞, Algorithm 2 either stops at a global
optimal solution of (OVR) or the computed sequence (βk, yk, uk) is bounded and contains
a weakly convergent subsequence in R

n × Y × U to a global optimal solution of (OVR).
Every weakly convergent subsequence of (βk, yk, uk) converges strongly. If (OVR) has a
unique global solution (β̄, ȳ, ū), then the entire sequence (βk, yk, uk) converges strongly to
(β̄, ȳ, ū).

Proof A global solution (β̄, ȳ, ū) to (OVR) is feasible for (OVRP(T , γk,T )) if β̄ ∈ T . By
definition of (βk, yk, uk) and the assumed properties for the penalty function P one obtains
the estimate

F(βk, yk, uk) ≤ F(βk, yk, uk) + γk,T̄k P
(
f (βk, yk, uk) − ξT̄k (βk)

)

≤ F(βk,T , yk,T , uk,T ) + γk,T P
(
f (βk,T , yk,T , uk,T ) − ξT (βk,T )

)

≤ F(β̄, ȳ, ū).

(22)

IfAlgorithm2 terminates in (S3), then the condition f (βk, yk, uk) = ϕ(βk) implies feasibility
of (βk, yk, uk) for (OVR) while (22) ensures global optimality.

It remains to check the case that Algorithm 2 does not terminate. From (22) and Assump-
tion 2.1(e) we get a constant C ≥ 0 such that

P
(
f (βk, yk, uk) − ξT̄k (βk)

) ≤ F(β̄, ȳ, ū) − F(βk, yk, uk)

γk,T̄k

≤ C

γk,T̄k

→ 0. (23)

Using that P is non-decreasing and that ξT̄k (βk) is bounded from below (since ϕ is bounded
from below on Q), we get that f (βk, yk, uk) is bounded from above. From Lemma 2.2 we
get

f (βk, yk, uk) ≥ f (βk, yβk , uβk ) + μ

2
‖uk − uβk‖2U .

Since f is bounded from below and since uβk is bounded by Corollary 2.5, we obtain the
boundedness of uk in U . The boundedness of the solution operator S then implies bound-
edness of the state yk = Suk in Y . Thus, the sequence (βk, yk, uk) is bounded and contains
a weakly convergent subsequence (without relabeling), (βk, yk, uk)⇀(β̂, ŷ, û). The param-
eter βk converges strongly because β ∈ Q ⊂ R

n is finite dimensional. It remains to check
optimality of the weak limit (β̂, ŷ, û) and the strong convergence.

From (23) we obtain lim supk→∞ f (βk, yk, uk) − ξT̄k (βk) ≤ 0.

Arguing as in Theorem 3.2, we have diam(T̄k) → 0 and together with the interpolation
error estimate Lemma 3.1 we get

0 ≤ lim inf
k→∞

(
f (βk, yk, uk) − ϕ(βk)

) ≤ lim sup
k→∞

(
f (βk, yk, uk) − ϕ(βk)

)

≤ lim sup
k→∞

(
f (βk, yk, uk) − ξT̄k (βk) + Cϕ

2
diam(T̄k)

2) = 0.

In particular, we have f (βk, yk, uk) − ϕ(βk) → 0. This implies

0 ≤ f (β̂, ŷ, û) − ϕ(β̂) ≤ lim
k→∞

(
f (βk, yk, uk) − ϕ(βk)

) = 0.
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Therefore, (β̂, ŷ, û) is feasible for (OVR) and f (βk, yk, uk) → f (β̂, ŷ, û) holds. Then
we can argue as in (12) and obtain strong convergence for the control u. Since the solu-
tion operator S is continuous, this proves the strong convergence of the subsequence
(βk, yk, uk) → (β̂, ŷ, û). Finally, due to

F(β̂, ŷ, û) = lim
k→∞ F(βk, yk, uk) ≤ F(β̄, ȳ, ū)

we know that (β̂, ŷ, û) is a global minimizer of (OVR).
Analogous to Theorem 3.2, the usual subsequence-subsequence argument can be used to

obtain strong convergence of the entire sequence if the solution to (OVR) is unique. ��
Remark 4.3 We observe from Theorem 4.2 that it is sufficient to have the penalty parameter
γk,T being solely dependent on the simplex T . A possibility is the choice γk,T = υ(diam(T ))

with a function υ satisfying υ(t) → ∞ for t → 0. A direct benefit is that the solution of
the subproblem on a fixed simplex is now independent of the iteration and only needs to be
carried out once, as in Algorithm 1. In analogy to Algorithm 1 a refinement strategy that
ensures the validity of step (S3) in Algorithm 2 is given in Lemma 3.3.

4.2 Direct penalization

The problem (OVRP(T , γk,T )) can be simplified by introducing a direct penalization P = Id.
For a general optimization problem this could lead to the objective being unbounded from
below. Our constraint f (β, y, u)−ξT (β) cannot be arbitrarily negative, as we already have a
lower bound for f (β, y, u) byAssumption 2.1(e) and an upper bound for ξT (β) by the largest
value of ϕ(β) on the bounded set Q. However, using a direct penalization has implications
on the choice of the penalty parameter. The difference between the lower-level objective
functional and the interpolation of the optimal-value function f (β, y, u) − ξT (β) can be
negative. Thus, arbitrarily increasing the penalty parameter does not work. If the choice of
penalty parameter is too large it simply encourages choosing a point, where the approximation
quality of ξT is close to worst. The penalty parameter γ needs to be set specifically for each
simplex.

Corollary 4.4 We consider Algorithm 2 with P = Id and we assume that the penalty param-
eters satisfy

γT̄k → ∞, γT̄k diam(T̄k)
2 → 0

as k → ∞. Then, (βk, yk, uk) contains a strongly convergent subsequence and all accumu-
lation points are globally optimal for (OVR). If (OVR) admits a unique global minimizer
(β̄, ȳ, ū) then the entire sequence (βk, yk, uk) converges strongly towards this minimizer.

Proof The argumentation follows the lines of the proof of Theorem 4.2. Therefore, we just
comment on the differences. The interpolation error estimate Lemma 3.1 allows for a lower
bound for the violation of the constraint, i.e.

f (βk, yk, uk) − ξT̄k (βk) ≥ ϕ(βk) − ξT̄k (βk) ≥ −Cϕ

2
diam(T̄k)

2. (24)

When using P = Id, an upper bound follows as in (23) and we have

f (βk, yk, uk) − ξT̄k (βk) ≤ F(β̄, ȳ, ū) − F(βk, yk, uk)

γT̄k

≤ CF

γT̄k

. (25)
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We can now argue as in Theorem 4.2 and obtain (βk, yk, uk) → (β̂, ŷ, û) along a sub-
sequence, where (β̂, ŷ, û) is a feasible point of (OVR). In order to achieve optimality of
(β̂, ŷ, û), we combine (24) and (25) and obtain

F(βk, yk, uk) ≤ F(β̄, ȳ, ū) + Cϕ

2
γT̄k diam(T̄k)

2 → F(β̄, ȳ, ū) + 0,

which implies F(β̂, ŷ, û) = limk→∞ F(βk, yk, uk) ≤ F(β̄, ȳ, ū). The remaining part of the
proof follows the proof of Theorem 4.2. ��

The next lemma addresses the continuous dependence of the solution on the penalty
parameter.

Lemma 4.5 We suppose that F(·, S(u), u) is strongly convex (w.r.t. β) with constant μβ >

0, independent of the control u. Then, (OVRP(T , γ )) with P = Id has a unique solution
(βγ , yγ , uγ ) for all γ > 0. Further, let 0 < γa ≤ γT < ∞ and γa ≤ γ̂ . Then,

‖βγT − βγ̂ ‖Rn + ‖uγT − uγ̂ ‖U ≤ Cμβ,γa ,γT |γT − γ̂ |.
Proof The existence of a solution to (OVRP(T , γ )) follows from Lemma 4.1. For γa ≤ γ ,
the strong convexity of f implies that the reduced objective of (OVRP(T , γ )) is strongly
convex w.r.t. u with constant γaμ on the feasible set. This gives uniqueness of the state
yγ = S(uγ ) andof the controluγ .With the additional assumption on F , we get the uniqueness
of βγ .

Next, we want to apply Lemma 2.4 to the state reduced variant of (OVRP(T , γ )), i.e., we
apply the setting

x = (β, u), C = T ×Uad, p = γ, Q̂ = [γa,∞),

J (x, p) = J ((β, u), γ ) := F(β, S(u), u) + γ ( f (β, S(u), u) − ξT (β)).

Assumption 2.1 ensures that the assumptions of Lemma 2.4 are satisfied. Thus, Lemma 2.4
implies

‖βγ̂ − βγT ‖Rn + ‖uγ̂ − uγT ‖U ≤ Cμβ,γa‖J ′
x ((βγT , uγT ), γ̂ ) − J ′

x ((βγT , uγT ), γT )‖Rn×U � .

Now, the derivative J ′
x ((β, u), γ ) contains the two components

F ′
β(β, S(u), u) + γ ( f ′

β(β, S(u), u) − ξ ′
T (β)),

F ′
u(β, S(u), u) + S�F ′

y(β, S(u), u) + γ ( f ′
u(β, S(u), u) + S� f ′

y(β, S(u), u)).

Thus, the above estimate implies

‖βγ̂ − βγT ‖Rn + ‖uγ̂ − uγT ‖U ≤ Cμβ,γa |γ̂ − γT | (C1,γT + C2,γT

)
,

with

C1,γT = ‖ f ′
β(βγT , S(uγT ), uγT ) − ξ ′

T (βγT )‖Rn ,

C2,γT = ‖ f ′
u(βγT , S(uγT ), uγT ) + S� f ′

y(βγT , S(uγT ), uγT )‖U � .

This shows the claim. ��
The problem (OVRP(T , γT )) is a relaxation of (OVR(ξ, T )) and consequently the objec-

tive functional attains a smaller minimal value and represents a lower bound to the minimal
objective value of (OVR(ξ, T )). Since this lower bound depends on the chosen penalty param-
eter γT , we try to adjust this parameter to obtain the largest possible lower bound.Wewill now
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show that it is reasonable to aim for a choice of the penalty parameter such that the equality
f (βγT , yγT , uγT ) = ξ(βγT ) holds for the solution (βγT , yγT , uγT ) of (OVRP(T , γT )). In the
expected case where no solution to (21) is feasible for (OVR), this specific penalty parameter
results in the largest possible minimal objective value for (OVRP(T , γT )).

Lemma 4.6 Let the state reduced functional F be strongly convex with respect to β with
constant μβ independent of the control u. Let a simplex T be given and, again, P = Id.
Further, we assume the existence of β ∈ T with ϕ(β) < ξT (β). For γ ≥ 0, we denote a
solution to (OVRP(T , γ )) by (βγ , yγ , uγ ).

(a) If f (β̃, ỹ, ũ) ≤ ξT (β̃) for one global solution (β̃, ỹ, ũ) to (OVRP(T , 0)) then the choice
γT = 0 yields the largest minimal objective value for (OVRP(T , γT )).

(b) If f (β̃, ỹ, ũ) > ξT (β̃) for all global solutions (β̃, ỹ, ũ) to (OVRP(T , 0)) then there exists
γT > 0 such that f (βγT , yγT , uγT ) = ξT (βγT ) and this choice of γT results in the largest
minimal objective value for (OVRP(T , γT )).

The existence of β ∈ T with ϕ(β) < ξT (β) is equivalent to ϕ being not affine on T . Thus,
this assumption is not very restrictive.

Proof

(a) For any γ ≥ 0 we have

F(βγ , yγ , uγ ) + γ ( f (βγ , yγ , uγ ) − ξT (βγ )) ≤ F(β̃, ỹ, ũ) + γ ( f (β̃, ỹ, ũ) − ξT (β̃))

≤ F(β̃, ỹ, ũ).

Hence, the infimal value of (OVRP(T , γT )) is maximized for γT = 0.
(b) We prove the existence of γT > 0 with f (βγT , yγT , uγT ) − ξT (βγT ) = 0 by the interme-

diate value theorem. Therefore, we have to provide penalty parameters γ
¯
T , γ̄T > 0 with

f (βγ
¯
T , yγ

¯
T , uγ

¯
T ) − ξT (βγ

¯
T ) ≥ 0 and f (βγ̄T , yγ̄T , uγ̄T ) − ξT (βγ̄T ) ≤ 0. The required

continuous dependence w.r.t. γ > 0 follows from Lemma 4.5.
We first construct γ̄T . By assumption F is bounded from below by a constant C ∈ R

and there exists a β ∈ T , such that ϕ(β) = f (β, yβ, uβ) < ξT (β). Thus, we can choose
γ̄T > 0 such that

F(β, yβ, uβ) + γ̄T ( f (β, yβ, uβ) − ξT (β)) ≤ C . (26)

It follows that f (βγ̄T , yγ̄T , uγ̄T ) − ξT (βγ̄T ) ≤ 0.
The existence of γ

¯
T is proven by contradiction. Assume that there is no γ > 0 with

f (βγ , yγ , uγ ) − ξT (βγ ) ≥ 0. For γ ↘ 0, the bound f (βγ , yγ , uγ ) < ξT (βγ ) and
the quadratic growth condition from Lemma 2.2 imply boundedness of the control uγ

whereas the continuity of the solution operator yields boundedness of the state yγ =
Suγ . The parameter βγ ∈ T is bounded as well. Thus, one obtains the existence of
a weak accumulation point (β̄, ȳ, ū) for γ ↘ 0. It is clear that (β̄, ȳ, ū) is feasible for
(OVRP(T , 0)) and we show that it is even a solution. By optimality, we get the inequality

F(βγ , yγ , uγ ) + γ ( f (βγ , yγ , uγ ) − ξT (βγ )) ≤ F(β̃, ỹ, ũ) + γ ( f (β̃, ỹ, ũ) − ξT (β̃))

and

lim
γ↘0

γ ( f (βγ , yγ , uγ ) − ξT (βγ )) = lim
γ↘0

γ ( f (β̃, ỹ, ũ) − ξT (β̃)) = 0
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follows by boundedness of f (βγ , yγ , uγ ). Thus,

F(β̄, ȳ, ū) ≤ lim inf
γ↘0

F(βγ , yγ , uγ ) ≤ F(β̃, ỹ, ũ),

where we take the limes inferior along the weakly convergent subsequence. Thus,
(β̄, ȳ, ū) is a solution to (OVRP(T , 0)). Similarly, passing to the limit inferior in
f (βγ , yγ , uγ ) − ξT (βγ ) < 0 yields f (β̄, ȳ, ū) − ξT (β̄) ≤ 0. This contradicts the
assumption and yields the existence of γ

¯
T .

By the intermediate value theorem, we conclude the existence of γT > 0 with
f (βγT , yγT , uγT ) − ξT (βγT ) = 0.
It remains to prove that this choice of γT results in the largest infimal objective value for
(OVRP(T , γT )). It is clear that f (βγ , yγ , uγ )− ξT (βγ ) is non-increasing w.r.t. γ . Thus,
it follows with Lemma 4.5 that

{
γT ∈ [0,∞)

∣∣ f (βγT , yγT , uγT ) − ξT (βγT ) = 0
} = [γa, γb] ⊂ R+.

For γb < γ1 < γ2, we have f (βγ1 , yγ1 , uγ1) − ξT (βγ1) < 0 and, thus, the optimality of
(βγ2 , yγ2 , uγ2) for (OVRP(T , γ2)) implies

F(βγ1 , yγ1 , uγ1) + γ1( f (βγ1 , yγ1 , uγ1) − ξT (βγ1))

> F(βγ1 , yγ1 , uγ1) + γ2( f (βγ1 , yγ1 , uγ1) − ξT (βγ1))

≥ F(βγ2 , yγ2 , uγ2) + γ2( f (βγ2 , yγ2 , uγ2) − ξT (βγ2)).

It follows that the objective value of (OVRP(T , γ )) is monotonically decreasing for
γ > γb and, similarly, one can show that it is monotonically increasing for γ < γa and
constant on [γa, γb]. Thus, all γT ∈ [γa, γb] maximize the minimal objective value of
(OVRP(T , γT )). ��
In general it is not possible to check which case of Lemma 4.6 applies. However, the

proof suggests that after solving (OVRP(T , γ )) the value f (βγ , yγ , uγ ) − ξT (βγ ) can be
checked to infer whether the choice of the penalty parameter γ was adequate, too small or too
large. Furthermore, when splitting the simplices in Algorithm 2, the approximation ξT of the
optimal-value function ϕ cannot increase in any point β ∈ Q. Together with the feasibility
of the solution to the refined problems for the problem on the original simplex T , this yields
that the minimal objective value may only remain constant or increase if the same penalty
parameter γT is used for a subproblem. We therefore suggest starting with γ = 0 and then
using a heuristic to find a γT . The refined problems can inherit the parameter γT as a starting
point instead of zero. This approach covers both cases of Lemma 4.6 without the need to
calculate all solutions of (21). Once a γT is found such that f (βγ , yγ , uγ ) − ξT (βγT ) > 0
one can be sure that all subproblems are of case Lemma 4.6(b), because ξ is decreasing with
further refinement of the simplices.

Lemma 4.7 Let the state reduced functional F be strongly convex with respect to β with
constant μβ independent of the control u. Let a simplex T be given and, again, P = Id.
Further, we assume the existence of β ∈ T with ϕ(β) < ξT (β). For γ ≥ 0, we denote
a solution of (OVRP(T , γ )) by (βγ , yγ , uγ ). Let the penalty parameter γT be chosen as
described in Lemma 4.6, i.e., we have one of the following cases:

(a) γT = 0 and f (β̃, ỹ, ũ) ≤ ξT (β̃) for one global solution (β̃, ỹ, ũ) of (OVRP(T , 0)),
(b) γT > 0 and f (βγT , yγT , uγT ) = ξT (βγT ).
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Then, the point (β̃, ỹ, ũ) or (βγT , yγT , uγT ), respectively, is a solution of (OVR(ξ, T )) and γT
is a multiplier corresponding to the constraint f (β, y, u) ≤ ξT (β) in the optimality system
for (OVR(ξ, T )).

Proof First, we consider the case γT > 0. Note that (βγT , yγT , uγT ) is feasible for
(OVR(ξ, T )). We denote by (βT , yT , uT ) a solution of (OVR(ξ, T )). Then, the optimal-
ity of both points, f (βT , yT , uT ) ≤ ξ(βT ) and f (βγT , yγT , uγT ) = ξ(βγT ) yield

F(βγT , yγT , uγT ) ≥ F(βT , yT , uT ) ≥ F(βT , yT , uT ) + γT ( f (βT , yT , uT ) − ξ(βT ))

≥ F(βγT , yγT , uγT ) + γT ( f (βγT , yγT , uγT ) − ξ(βγT ))

= F(βγT , yγT , uγT ).

This shows f (βT , yT , uT ) = ξ(βT ) and F(βγT , yγT , uγT ) = F(βT , yT , uT ). Hence, the
triple (βT , yT , uT ) solves (OVRP(T , γT )) and, by the uniqueness of the solution, the solution
is (βT , yT , uT ) = (βγT , yγT , uγT ).

Thus, (βγT , yγT , uγT ) is globally optimal for (OVR(ξ, T )). The optimality system of
(OVRP(T , γT )) can be interpreted as the KKT system of (OVR(ξ, T )) and the parameter γT
in (OVRP(T , γT )) becomes a Lagrange multiplier in the KKT system of (OVR(ξ, T )). Note
that Lagrange multipliers for (OVRP(T , γT )) exist since the CQ by [27, 30] is satisfied.

Finally, we consider the case γT = 0. Due to f (β̃, ỹ, ũ) < ξT (β̃), the point (β̃, ỹ, ũ) is
feasible for (OVR(ξ, T )). Since (OVRP(T , 0)) is a relaxation of (OVR(ξ, T )), this shows that
(β̃, ỹ, ũ) is a solution of (OVR(ξ, T )). The interpretation of γT as a multiplier is analogous
to the case γT > 0. ��

This lemma shows that the problem (OVR(ξ, T )) is equivalent (in some sense) to
(OVRP(T , γT )) for the “optimal” value of γT , cf. Lemma 4.6. In the application we have
in mind, the structure of (OVRP(T , γT )) is much nicer, since the “complicated” function f
appears in the objective and not in the constraints.

5 Parameter identification in an optimal control problem

In the previous section we discussed how a global optimal solution for (OVR) can be found
using Algorithm 2. However, so far we did not introduce a solution scheme for the sub-
problems (OVRP(T , γk,T )). In this section we will show that for a special problem class the
advantage of the direct penalization (see Sect. 4.2) is that the semismooth Newton method
can be used to solve the subproblems.

5.1 Problem formulation and properties

We consider the bilevel optimization problem with the lower-level problem

min
y∈H1

0 (
), u∈L2(
)

f̂ (α, y, u):=
n∑

i=1

αi

2
‖Ci y − yd,i‖2L2(
)

+ σl

2
‖u‖2L2(
)

s.t. Ay − Bu = 0,

u ∈ Uad,

(LL(α))

and upper-level problem
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min
α∈Rn , y∈H1

0 (
), u∈L2(
)

F̂(α, y, u):=1

2
‖y − ym‖2L2(
)

+ σu

2
‖u − um‖2L2(
)

+ σα

2
‖α‖2

Rn

s.t. α ∈ Qα,

(y, u) solves (LL(α)).

(UL)
As an underlying assumption let σu, σl , σα > 0, ym, yd,i , um,∈ L2(
), where 
 ⊂ R

l is an
open and bounded set. Moreover, let Qα := [a1, b1] × · · · × [an, bn] constitute a box con-
straint on α, where ai , bi ∈ R satisfies 0 < ai < bi for all i ∈ {1, . . . , n}. We also require that
the admissible set Uad has the structure Uad = {v ∈ L2(
) | ua ≤ v ≤ ub a.e. in 
}, where
ua, ub ∈ L2(
) are functions such thatUad is nonempty. Further, let A : H1

0 (
) → H−1(
),
B : L2(
) → H−1(
), Ci : H1

0 (
) → L2(
) be bounded linear operators such that A is
bijective.

We also assume that B can be extended to an operator B ∈ L[Lq(
), H−1(
)] for
some q ∈ (1, 2). Additionally, we require um, ua, ub ∈ Lq ′

(
), where q ′ > 2 satisfies
1/q + 1/q ′ = 1.

We observe that the lower-level objective functional f̂ is not convex with respect to all
variables. In particular, Assumption 2.1(e) is not satisfied. Additionally, the corresponding
optimal-value function is usually not convex either. As Algorithm 1 depends on convexity of
the optimal-value function one has to first transform the problem in such a way that the new
lower-level objective functional is convex. For this purpose, we consider the simple substi-
tution βi = 1/αi . We also define σβ := σα . For the upper-level objective this substitution
results in

F(β, y, u):=1

2
‖y − ym‖2L2(
)

+ σu

2
‖u − um‖2L2(
)

+ σβ

2

n∑

i=1

(
1

βi

)2

.

The constraint α ∈ Qα has to be transformed to β ∈ Q := [b−1
1 , a−1

1 ] × · · · × [b−1
n , a−1

n ].
Observe that Q is a compact subset of (0,∞)n because Qα is a compact subset of (0,∞)n .

One can check that F is convex on Q × H1
0 (
) × L2(
) due to β > 0 for β ∈ Q. The

transformed lower-level objective is

f (β, y, u):=
n∑

i=1

1

2βi
‖Ci y − yd,i‖2L2(
)

+ σl

2
‖u‖2L2(
)

. (27)

We check that this f is indeed convex on Q × H1
0 (
) × L2(
). Here we use that for a

Banach space Y , the function g : Y → R, y �→ 1
2‖y‖2Y is convex and for λ > 0 the so-called

perspective of g is given by

Y × (0,∞) � (y, λ) �→ λg(y/λ) = 1

2λ
‖y‖2Y . (28)

It is known that the perspective of a convex function is convex (e.g. one can simply generalize
the proof of [31, Lemma 2] to Banach spaces). Now convexity is preserved under composition
with an affine function y �→ Cy − yd . Thus, the function (βi , y) �→ 1

2βi
‖Ci y − yd,i‖2L2(
)

is convex. The convexity of f follows.
With the above setting and observations, one can show that the transformed problem

satisfies Assumption 2.1.
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5.2 Stationarity system for the direct penalization

Classic choices of the penalty function for (OVRP(T , γk,T )), e.g., P = max(0, ·)2, will
result in subproblems that are difficult to handle. In particular, the optimality system cannot
be reformulated as a simple projection formula. We will see that the direct penalization
P = Id results in an easy to implement solution algorithm for (OVRP(T , γk,T )). Computing
the solution of (OVRP(T , γk,T )) requires the construction of ξ and thereby the evaluation of
ϕ(β) at certain points. This equates to solving single-level optimal control problems.

In order to state the stationarity conditions, we first reformulate the condition β ∈ T .
Recall that T is a (non-degenerate) simplex. Thus, T can be written as the intersection of
n + 1 half-spaces, T = {β ∈ R

n
∣∣KTβ ≤ bT }, where KT ∈ R

(n+1)×n is a suitable matrix.
Clearly, at most n of these constraints may simultaneously hold with equality and all those
constraints that are satisfied with equality are linearly independent. Thus, (OVRP(T , γk,T ))
with P = Id takes the form

min
β,y,u

F(β, y, u) + γk,T
(
f (β, y, u) − ξT (β)

)

s.t. KTβ − bT ≤ 0,

Ay − Bu = 0,

u ∈ Uad.

The KKT system for (OVRP(T , γk,T )) with direct penalization (P = Id) is given by

0 = F ′
β(β, y, u) + γk,T ( f ′

β(β, y, u) − aTβ) + K�
T z, (29a)

0 = F ′
y(β, y, u) + γk,T f ′

y(β, y, u) + A� p, (29b)

0 = F ′
u(β, y, u) + γk,T f ′

u(β, y, u) − B� p + ν, (29c)

0 = Ay − Bu, (29d)

z ≥ 0 ∧ KTβ − bT ≤ 0 ∧ z�(KTβ − bT ) = 0, (29e)

ν ∈ NUad (u), u ∈ Uad, (29f)

where p ∈ H1
0 (
), z ∈ R

n+1, and ν ∈ L2(
) are the Lagrange multipliers. The vector aT
refers to the derivative of the affine function ξT on the simplex T .

Lemma 5.1 The feasible point (β, y, u) is a local/global solution to (OVRP(T , γk,T )) if and
only if there exist multipliers p ∈ H1

0 (
), z ∈ R
n+1, and ν ∈ L2(
) such that (29) holds.

The solution and the corresponding multipliers are unique.

Proof “⇒”: We check that the Robinson regularity condition for the reformulated problem
is satisfied. This condition reads

[
A −B 0
0 0 KT

]⎛

⎝
H1
0 (
)

RUad (u)

R
n

⎞

⎠−
( {0}
cone(Rn+1− − (KTβ − bT ))

)
=
(
H−1(
)

R
n+1

)
.

The two lines of the equation are independent of each other. By assumption, A is bijec-
tive, i.e., A(H1

0 (
)) = H−1(
). For the second line we recall that the Robinson regularity
condition is equivalent to the Mangasarian–Fromovitz condition for standard nonlinear opti-
mization problems, see [28, p. 71]. Thus, the second line is satisfied since we have assumed
that the simplex T is non-degenerate, i.e., we even have the linear-independence constraint
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qualification for the system KTβ ≤ bT . This shows the existence of multipliers, see [28,
Theorem 3.9].

“⇐”: This is clear since (OVRP(T , γk,T )) is a convex problem.
It remains to address the uniqueness. The uniqueness of the solution follows from the

strict convexity of the objective. The second line of the KKT system gives uniqueness of
the adjoint p, since A is an isomorphism. Similarly one gets uniqueness of ν from the third
line. Regarding uniqueness of z we observe that the matrix KT describing a non-degenerate
simplex has rank n, even after removing an arbitrary line. Additionally, there exists at least
one inactive constraint, such that z is equal zero in this component. After removing the
corresponding component from z and the respective column from K�

T in the first line of (29),
z is obtained by inverting a square matrix of full rank. Thus, z is unique. ��

We introduce two auxiliary functions h, ĥ : (0,∞)n × H1
0 (
) → R via

ĥ(β, y):=1

2
‖y − ym‖2L2(
)

+ γk,T

(
n∑

i=1

1

2βi
‖Ci y − yd,i‖2L2(
)

− ξT (β)

)

,

h(β, y):=ĥ(β, y) + σβ

2

n∑

i=1

(
1

βi

)2

.

(30)

Note that h represents the part of the objective function of (OVRP(T , γk,T )) that does not
depend on u.

Recall that KT ∈ R
(n+1)×n , A : H1

0 (
) → H−1(
), B : L2(
) → H−1(
) are bounded
linear operators and that A is invertible. We define the function
W : (0,∞)n×H1

0 (
)×L2(
)×R
n+1×H1

0 (
) → R
n×H−1(
)×L2(
)×R

n+1×H−1(
)

via

W (β, y, u, z, p):=

⎛

⎜⎜⎜⎜
⎝

h′
β(β, y) + K�

T z
h′
y(β, y) + A� p

u − min
(
max((B� p + σuum)/σ̂ , ua), ub

)

max(KTβ − bT ,−z)
Ay − Bu

⎞

⎟⎟⎟⎟
⎠

(31)

with σ̂ :=σu +γk,T σl . Nowwe discuss the relation between the roots ofW and the optimality
system.

Lemma 5.2 Let β ∈ T , y ∈ H1
0 (
), u ∈ L2(
) be given. Then (β, y, u) is the solution of

(OVRP(T , γk,T )) if and only if there exist z ∈ R
n+1, p ∈ H1

0 (
) such thatW (β, y, u, z, p) =
0 with h as defined in (30).

Proof In view of Lemma 5.1, we have to check that (29) is equivalent toW (β, y, u, z, p) = 0.
It is clear that (29a), (29b) and (29d) are equivalent to lines 1, 2 and 5 in (31). The

complementarity conditions (29e) on z and bT − KTβ can be reformulated via

z ≥ 0, bT − KTβ ≥ 0, z�(bT − KTβ) = 0

⇐⇒ 0 = min(z, bT − KTβ) ⇐⇒ 0 = max(−z, KTβ − bT ).

A similar reformulation is standard for treating the gradient equation (29c) in combination
with the inclusion (29f), see [7, Theorem 2.28]. These two equations are equivalent to the
projection formula

u = ProjUad

(
(B� p + σuum)/σ̂

) = min
(
max((B� p + σuum)/σ̂ , ua), ub

)
,

123



1050 Journal of Global Optimization (2023) 86:1025–1061

i.e., line 3 in (31). Note that ν does not appear in (31), but it is uniquely determined by (29c).
This shows that the KKT system is equivalent to W (β, y, u, z, p) = 0. This finishes the
proof. ��

5.3 Semismooth Newtonmethod for the subproblems

We have shown in Lemma 5.2 that we can characterize the solution of the subproblem
(OVRP(T , γk,T )) with the nonlinear operatorW . An established way to solve problems with
this structure is the semismooth Newton method, cf. [32]. To this end, we verify the Newton
differentiability ofW and the invertibility of the Newton matrix. In order to state the Newton
derivative of W , we need to define some index sets and corresponding operators. We define

A1(β, z) := {i ∈ {1, . . . , n + 1}∣∣(KTβ − bT )i ≥ −zi },
A2(β, z) := {i ∈ {1, . . . , n + 1}∣∣(KTβ − bT )i < −zi },
A3(p) := {ua ≤ (B� p + σuum)/σ̂ ≤ ub} ⊂ 


and for i ∈ {1, 2} we write χAi (β,z) ∈ R
(n+1)×(n+1) for the diagonal matrix where the k-th

diagonal entry is 1 if k ∈ Ai (β, z) and 0 otherwise. Similarly, we write χA3(p) : L2(
) →
L2(
) for the multiplication operator corresponding to the characteristic function of A3(p)
on the space L2(
).

Lemma 5.3 The mapping W is Newton differentiable and a Newton derivative of W at a
point (β, y, u, z, p) is given by the block operator

W ′(β, y, u, z, p) =

⎡

⎢⎢⎢⎢
⎣

h′′
ββ(β, y) h′′

β y(β, y) 0 K�
T 0

h′′
yβ(β, y) h′′

yy(β, y) 0 0 A�

0 0 Id 0 −σ̂−1χA3(p)B
�

χA1(β,z)KT 0 0 −χA2(β,z) 0
0 A −B 0 0

⎤

⎥⎥⎥⎥
⎦

.

Proof To show Newton differentiability of W , one has to pay attention only to the third and
fourth line as the others are Fréchet differentiable. For the fourth line one can use that in finite
dimensions the composition of Newton differentiable functions is Newton differentiable cf.
[33, Proposition 2.9] and combine this with the fact that max(·, ·) is Newton differentiable
(see [33, Proposition 2.26]). Furthermore, [33, Theorem 3.49] can be used to show the
Newton differentiability of the third line: If we use m = 3, ψ(s) = min(max(s1, s2), s3),
r = ri = 2, G(p) = ((B� p + σuum)/σ̂ , ua, ub) in the setting of [33, Section 3.3], then
the required [33, Assumption 3.32] is satisfied with qi = q ′ > 2, by the higher regularity
B� ∈ L[H1

0 (
), Lq ′
(
)].

Consequently, the function H1
0 (
) � p �→ min(max((B� p+σuum)/σ̂ , ua), ub) is New-

ton differentiable.
Now a Newton derivative can be obtained using direct calculations and utilizing the index

sets that are introduced above. ��
The proof required a norm gap, which was ensured by the higher regularity B� ∈

L[H1
0 (
), Lq ′

(
)] with q ′ > 2, which is intrinsic to our problem setting. This allowed
us to prove the Newton differentiability of W in the spaces where W is defined. In particular
when adapting the Algorithm from [33, Algorithm 3.10], see Algorithm 3, this allows for the
smoothing step to be skipped. This smoothing step is designed to treat the more general case
whenNewton differentiability can only be shown by artificially introducing a norm gapwhile
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the boundedness of the inverse of the derivative can only be shown in the original setting (cf.
[33, Introduction to section 3]). Note that (S3) is well defined as long as βi is positive, since
the function W is only defined for positive β. This, however, does not influence the local
convergence of Algorithm 3.

Algorithm 3 Semismooth Newton method for (OVRP(T , γk,T ))

(S1) Choose an initial point (β0, y0, u0, z0, p0) ∈ (0, ∞)n × H1
0 (
) × L2(
) × R

n+1 × H1
0 (
) and set

i = 0
(S2) If W (βi , yi , ui , zi , pi ) = 0, then STOP
(S3) Compute si from

W ′(βi , yi , ui , zi , pi )si = −W (βi , yi , ui , zi , pi )

(S4) Set (βi+1, yi+1, ui+1, zi+1, pi+1) = (βi , yi , ui , zi , pi ) + si , increment i by one, and go to step (S2)

To prove fast convergence of the semismooth Newton method, the uniform invertibility of
the Newton derivative W ′(β, y, u, z, p) is needed. For this purpose, we convert the Newton
derivative W ′(β, y, u, z, p) into a self-adjoint operator, since the latter type of operator is
easier to handle. For that purpose we fix a point (β, y, u, z, p). We use the notation I1 ∈
R

(n+1)×l1 , I2 ∈ R
(n+1)×(n+1−l1), I3 : L2(A3(p)) → L2(
), I4 : L2(
\A3(p)) → L2(
),

to refer to the canonical embedding operators that correspond to the index sets A1(β, z),
A2(β, z), A3(p), 
 \ A3(p). Here l1 denotes the cardinality of A1(β, z). We mention that
I�
1 , I�

2 , I �
3 , I �

4 are the corresponding restriction operators and, consequently,

χA1(β,z) = I1 I
�
1 , χA2(β,z) = I2 I

�
2 , χA3(p) = I3 I

�
3 ,

IdRn+1 = I1 I
�
1 + I2 I

�
2 , IdL2(
) = I3 I

�
3 + I4 I

�
4 .

We define the linear operator Ŵ ′ from R
n × H1

0 (
) × L2(A3(p)) × R
l1 × H1

0 (
) to R
n ×

H−1(
) × L2(A3(p)) × R
l1 × H−1(
) via

Ŵ ′ :=

⎡

⎢⎢⎢⎢
⎣

h′′
ββ(β, y) h′′

β y(β, y) 0 K�
T I1 0

h′′
yβ(β, y) h′′

yy(β, y) 0 0 A�

0 0 σ̂ Id 0 −(BI3)�

I�
1 KT 0 0 0 0
0 A −BI3 0 0

⎤

⎥⎥⎥⎥
⎦

.

It can be seen that Ŵ ′ is self-adjoint. Note that the spaces on which Ŵ ′ operates depend on
β, z, p. The next lemma gives us a relation between Ŵ ′ and W ′(β, y, u, z, p).

Lemma 5.4 Let (β, y, u, z, p) ∈ (0,∞)n × H1
0 (
) × L2(
) × R

n+1 × H1
0 (
) be fixed.

Furthermore, let two points (β1, y1, u1, z1, p1) ∈ R
n × H1

0 (
) × L2(
) × R
n+1 × H1

0 (
)

and (β2, y2, u2, z2, p2) ∈ R
n × H−1(
) × L2(
) × R

n+1 × H−1(
) be given. Then

W ′(β, y, u, z, p)

⎛

⎜⎜⎜⎜
⎝

β1

y1
u1
z1
p1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

β2

y2
u2
z2
p2

⎞

⎟⎟⎟⎟
⎠

(32)
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holds if and only if

Ŵ ′

⎛

⎜⎜⎜⎜
⎝

β1

y1
I �
3 u1
I�
1 z1
p1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

β2 − K�
T I2 I�

2 z2
y2

σ̂ I �
3 u2

I�
1 z2

p2 + BI4 I �
4 u2

⎞

⎟⎟⎟⎟
⎠

,
I �
4 u1 = I �

4 u2,

−I�
2 z1 = I�

2 z2
(33)

hold.

Proof The proof can be carried out by direct calculation. We first assume (32) to be valid.
Computing the application of Ŵ ′ yields

Ŵ ′

⎛

⎜⎜⎜⎜
⎝

β1

y1
I �
3 u1
I�
1 z1
p1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

h′′
ββ(β, y)β1 + h′′

β y(β, y)y1 + K�
T I1 I�

1 z1
h′′
yβ(β, y)β1 + h′′

yy(β, y)y1 + A� p1
I �
3 (σ̂u1 − B� p1)

I�
1 KTβ1

Ay1 − BI3 I �
3 u1

⎞

⎟⎟⎟⎟
⎠

.

We use the definition of the index sets and receive the equivalent expression

Ŵ ′

⎛

⎜⎜⎜⎜
⎝

β1

y1
I �
3 u1
I�
1 z1
p1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

h′′
ββ(β, y)β1 + h′′

β y(β, y)y1 + K�
T z1 − K�

T I2 I�
2 z1

y2
σ̂ I �

3 (u1 − σ̂−1χA3(p)B
� p1)

I�
1 (χA1(β,z)KTβ1 − χA2(β,z)z1)

Ay1 − Bu1 + BI4 I �
4 u1

⎞

⎟⎟⎟⎟
⎠

, (34)

where we used I1 I�
1 = IdRn+1 −I2 I�

2 , I �
3 = I �

3χA3(p), I
�
1 = I �

1χA1(β,z), I�
1 χA2(β,z) = 0,

and I3 I�
3 = IdL2(
) −I4 I �

4 . Using the description of W ′(β, y, u, z, p) yields

Ŵ ′

⎛

⎜⎜⎜⎜
⎝

β1

y1
I �
3 u1
I�
1 z1
p1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

β2 − K�
T I2 I�

2 z1
y2

σ̂ I �
3 u2

I�
1 z2

p2 + BI4 I �
4 u1

⎞

⎟⎟⎟⎟
⎠

. (35)

Note that the claimed relations I �
4 u1 = I �

4 u2 and −I�
2 z1 = I�

2 z2 follow from the equations
Id u1 + σ̂−1χA3(p)BG

� p1 = u2 and χA1(β,z)KTβ1 − χA2 z1 = z2 (which are part of (32)).
With these relations, we directly get (33) from (35).

For the other direction, we first get (35) directly from (33). Then, a comparison
with (34) yields the equations for β2, y2, p2, and I �

3 u1 + σ̂−1χA3(p)BG
� p1 = I �

3 u2,
I�
1 (χA1(β,z)KTβ1 − χA2 z1) = I�

1 z2. The final expression (32) follows by utilizing
I �
4 u1 = I �

4 u2 and −I�
2 z1 = I�

2 z2 again. ��

In order to ensure the uniform invertibility of the operators Ŵ ′, we state an auxiliary
lemma.

Lemma 5.5 Let X , Y be Hilbert spaces and Â : X → X�, B̂ : X → Y � be bounded linear
operators. Let the bounded linear operator D̂ : X × Y → X� × Y � be defined via

D̂ =
[
Â B̂�

B̂ 0

]
.
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Suppose that B̂ is surjective and that Â is coercive on ker B̂, i.e. there exists a constant γ̂ > 0
such that 〈 Âx, x〉 ≥ γ̂ ‖x‖2X for all x ∈ ker B̂.

Then D̂ is continuously invertible. Moreover, the estimate

‖D̂−1‖ ≤ 4c5

holds, where c := max(1, γ̂ −1, α, ‖ Â‖), α > 0 is a constant such that B1
Y � (0) ⊂ B̂(Bα

X (0)),
and γ̂ > 0 is the coercivity constant from above.

Proof This result follows from [34, Proposition II.1.3]. Note that we have B̂(X) = Y � and
ker B̂� = {0}. ��
Lemma 5.6 Let (β, y, u, z, p) ∈ (0,∞)n × H1

0 (
) × L2(
) × R
n+1 × H1

0 (
) be fixed.
Suppose that I�

1 KT ∈ R
l1×n is surjective, i.e. that the rows of KT which correspond to the

index setA1(β, z) are linearly independent. Then, the operator W ′(β, y, u, z, p) is continu-
ously invertible. Moreover, we have ‖W ′(β, y, u, z, p)−1‖ ≤ C for a constant C > 0, which
does not depend on β, y, u, z, p but can depend on an upper bound of ‖y‖, on the upper and
lower bounds of β, and on KT , A, B, h, σ̂ , σr .

Proof We start with showing that Ŵ ′ is continuously invertible, which we will do using
Lemma 5.5. We notice that the operator Ŵ ′ has the required block structure if we set

Â :=
⎡

⎣
h′′

ββ(β, y) h′′
β y(β, y) 0

h′′
yβ(β, y) h′′

yy(β, y) 0
0 0 σ̂ I

⎤

⎦ ,

Â : R
n × H1

0 (
) × L2(A3(p)) → R
n × H−1(
) × L2(A3(p)),

B̂ :=
[
I�
1 KT 0 0
0 A −BI3

]
,

B̂ : R
n × H1

0 (
) × L2(A3(p)) → R
l1 × H−1(
).

Since A is invertible and I�
1 KT is surjective by assumption, it follows that B̂ is surjective.

In order to show that Ŵ ′ is continuously invertible, it remains to show that Â is coercive on
ker B̂.

Let (β̂, ŷ, û) ∈ ker B̂ be given. Then

‖(ŷ, û)‖H1
0 (
)×L2(A3(p))

= ‖(A−1BI3û, û)‖H1
0 (
)×L2(A3(p))

≤ (1 + ‖A−1B‖)‖û‖L2(A3(p))

holds. Recall from (30) that h(β, y) = ĥ(β, y) + σβ

2

∑n
i=1

(
1
βi

)2
and that ĥ is convex, and

that for σβ

2

∑n
i=1

(
1
βi

)2
we can directly calculate the second derivative, which is a diagonal

matrix with strictly positive entries, if βi > 0. Therefore, there exists a constant σr > 0 for
which

(
h′′(β, y)(β̂, ŷ)

)
(β̂, ŷ) ≥ σr β̂

�β̂ (36)

holds, where σr depends on the upper bound of βi . This implies

〈 Â(β̂, ŷ, û), (β̂, ŷ, û)〉 ≥ σr‖β̂‖2
Rn + σ̂‖û‖2L2(A3(p))

≥ σr‖β̂‖2
Rn + σ̂ (1 + ‖A−1B‖)−2‖(ŷ, û)‖2

H1
0 (
)×L2(A3(p))

≥ γ̂ ‖(β̂, ŷ, û)‖2
Rn×H1

0 (
)×L2(A3(p))
,
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where γ̂ > 0 is a suitable constant. Thus Â is coercive on ker B̂. It follows from Lemma 5.5
that Ŵ ′ is continuously invertible. Because B̂ is surjective, there exists a constant α > 0 such
that B1(0) ⊂ B̂(Bα(0)). Since there are only finitely many possibilities for I1 and I3 is not
needed for surjectivity, the constant α can be chosen such that it is independent of I1 and I3.
For ‖ Â‖ we note that it can be bounded by a constant which can depend on an upper bound
on ‖y‖H1

0 (
) and a lower bound on βi .

It follows from Lemma 5.5 that the estimate ‖Ŵ ′−1‖ ≤ 4c5 holds for a suitable constant
c > 0 which does not depend on β, y, u, z, p but can depend on an upper bound of ‖y‖H1

0 (
),

the lower bound of βi and on KT , A, B, h, σ̂ , σr .
Next, we combine this result with Lemma 5.4 to show the invertibility ofW ′(β, y, u, z, p).

Let (β2, y2, u2, z2, p2) be a right-hand side as in (32). Since Ŵ ′ is invertible, by Lemma 5.4
there exists a unique solution (β1, y1, u1, z1, p1) of (32). Using the estimate ‖Ŵ ′−1‖ ≤ 4c5

and (33), one gets an estimate of the form ‖(β1, y1, u1, z1, p1)‖ ≤ C‖(β2, y2, u2, z2, p2)‖,
where C > 0 is a suitable constant that can depend on c, σ̂ , KT , B, the upper bound of
‖y‖H1

0 (
) and the bounds of β. The constant C however, does not depend on (β, y, u, z, p)
or any of the embedding operators I1, I2, I3, I4. Since we can estimate the norm of the
unique solution in (32) by the norm of the right-hand side, the claimed invertibility and
estimate ‖W ′(β, y, u, z, p)−1‖ ≤ C follow. ��
Lemma 5.7 Let (β, y, u, z, p) ∈ Q×H1

0 (
)× L2(
)×R
n+1×H1

0 (
) be a point such that
W (β, y, u, z, p) = 0. Then the Newton derivative W ′ is uniformly continuously invertible in
a neighborhood of (β, y, u, z, p).

Proof We want to apply Lemma 5.6. We need to verify that I�
1 KT (which can depend on β

and z) is surjective in a neighborhood.
From the definition of W , we get z ≥ 0, KTβ − bT ≤ 0 and z�(KTβ − bT ) = 0. In

particular, β ∈ T . Recall that T is a non-degenerate simplex. Thus, at most n constraints
in the system KTβ ≤ bT are active, and these active constraints are linearly independent.
Furthermore, if i ∈ {1, . . . , n+1} is an index of an inactive constraint, we have zi = 0 due to
the complementarity condition, and therefore i ∈ A2(β, z) and i /∈ A1(β, z). Thus,A1(β, z)
contains at most n elements. Therefore, the rows of KT which correspond to the index set
A1(β, z) are linearly independent, which yields that I�

1 KT is surjective for this particular β,
z.

If i ∈ A2(β, z), then i ∈ A2(β̂, ẑ) holds also for (β̂, ẑ) that are sufficiently close to (β, z).
Thus, A1(β, z) cannot get larger in a neighborhood of (β, z). Hence, the rows of KT that
correspond to A1(β, z) stay linearly independent in a neighborhood, i.e. I�

1 KT is surjective
in a neighborhood of (β, z).

Now to apply Lemma 5.6 we restrict the neighborhood such that βi > 1
2ai

if necessary.

This guarantees the lower bound βi > 1
2ai

. The upper bound of ‖y‖H1
0 (
) is obtained from the

coercivity of f with constant γk,Tμ (cf. Assumption 2.1(g)). Hence, with Lemma 5.6 there
exists a constantC > 0, such that ‖W ′(β, y, u, z, p)−1‖ ≤ C in the considered neighborhood
of (β, y, u, z, p). ��

Now we are ready to give our final theorem, which states that Algorithm 3 converges
superlinearly.

Theorem 5.8 Let the function W be given as in (31). Further, we denote by (βk,T , yk,T , uk,T )

the unique global solution of (OVRP(T , γk,T )) and by zk,T , pk,T the correspondingmultipli-
ers that satisfy (29). Then there exists a neighborhoodof the point (βk,T , yk,T , uk,T , zk,T , pk,T )
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such that for all initial values (β0, y0, u0, p0, z0) from this neighborhood, the semismooth
Newton method from Algorithm 3 either terminates in the i-th step with (βi , yi , ui , zi , pi ) =
(βk,T , yk,T , uk,T , zk,T , pk,T ) or generates a sequence that converges q-superlinearly to
(βk,T , yk,T , uk,T , zk,T , pk,T ) in R

n × H1
0 (
) × L2(
) × R

n+1 × H1
0 (
).

Proof We already established that the function W is semismooth in the solution to
(OVRP(T , γk,T )) (see Lemma 5.3). We have proven in Lemma 5.7 that the derivative from
Lemma 5.3 is invertible and the norm of the inverse is bounded on a neighborhood of a
solution. The result is now a direct application of [33, Theorem 3.13]. In particular, we do
not need a smoothing step, since the spaces in which W is Newton differentiable coincide
with the spaces in which the Newton derivative is uniformly invertible, see Lemmas 5.3 and
5.6. ��

6 Numerical experiments

In this section we present an example for Algorithm 2 to illustrate the convergence behavior
towards a global minimizer. To this end, we consider the parameter identification problem

min
β,y,u

1

2
‖y − ym‖2L2(
)

+ σu

2
‖u − um‖2L2(
)

+ σβ

2
‖β − βm‖2

Rn=:F1(β, y, u)

s.t. β ∈ Q,

(y, u) ∈ �(β),

(37)

where � : R
2 → H1

0 (
) × L2(
) denotes the solution mapping of the parameter β to the
unique solution of the lower-level problem

min
y,u

1

2β1
‖y − yd,1‖2L2(
)

+ 1

2β2
‖y − yd,2‖2L2(
)

+ σl

2
‖u‖2L2(
)

=: f (β, y, u)

s.t. 0 = −�y − u in 
,

0 = y on ∂
,

u ∈ Uad.

(38)

Let us define the data present in this bilevel optimization problem. We use the sets
Q:=[0.1, 1]2 and 
 = (−1, 1)2 (discretized with a meshsize of 0.2). and the two possi-
ble desired states

yd,1 : 
 → R, yd,1(x) = sin(πx1) sin(πx2),

yd,2 : 
 → R, yd,2(x) = (x1 + 1)(x1 − 1)(x2 + 1)(x2 − 1).

The regularization parameter for the lower level is σl = 0.03. Additionally, we introduce
box constraints for the control via

u ∈ Uad:={u ∈ L2(
) | ua ≤ u ≤ ub a.e. on 
},
ua(x):=0, ub(x):=3.

It turns out that these constraints are active on parts of the domain for the choice of the
parameter β = (0.6, 0.3)�. For the upper level we fix the parameters σu = 0.05 and σβ =
10−5. We also choose βm :=(0.6, 0.3)� and (ym, um):=�((0.6, 0.3)�), i.e. the objective
value of F1 is zero for the solution to the lower-level problem with β = βm . We call this
setting “fully reachable target state”. We mention that when this setting is implemented, the
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functions ym , um are not the analytical solutions, but are calculated directly using the finite
element solutions for the lower level.

For the setting of this section, Assumption 2.1 is valid. Additionally, for the chosen
functionals and parameters we can apply the semismooth Newton method from Sect. 5.3 to
solve the subproblems (OVRP(T , γk,T )). In order to illustrate some fundamental properties
of the proposed solution algorithm, we consider two additional problems that only differ in
the choice of the objective functional, i.e. the functions

F2(β, y, u):=1

2
‖y − ym‖2L2(
)

+ σu

2
‖u − um‖2L2(
)

+ σβ

2
‖β‖2

Rn ,

F3(β, y, u):=1

2
‖y − ŷm‖2L2(
)

+ σu

2
‖u − ûm‖2L2(
)

+ σβ

2

2∑

i=1

1

β2
i

are used instead of F1. In the second objective functional F2, the β term is only introduced
as a regularization. This will be called “reachable target state”. The functional F3 is set up
with desired states ŷm and ûm that are given by

ŷm : 
 → R, ŷm(x) = (x1 − 1)(x1 + 1) sin(πx2),

ûm : 
 → R, ûm(x) = 0.

This state and control have the property that they do not arise as a solution of the lower-level
problem. This setting is named “unreachable target state”. We expect a noticeable difference
in the convergence speed for the introduced settings, see Remark 3.8.

The refinement of the subdivision will be implemented by splitting the triangles at the
midpoint of the edges. This refinement procedure is the application of Lemma 3.3 to the
two-dimensional case. However, in this special case we can even guarantee that the diameter
of the simplices is halved in each refinement. We initialize Algorithm 2 with the domain Q
split into two triangles.

We use an implementation with the suggested improvements mentioned at the end of
Sect. 3. In each iterationwe get a lower bound on the optimal objective value from the element
with the lowest objective value for the solution to (OVRP(T , γk,T )).Weobtain anupper bound
from the vertex with the lowest objective value. Hence every element whose relaxed optimal
objective value is above the upper bound can be dismissed, since the relaxed optimal objective
value is smaller than or equal to the objective value of the original subproblem. Further, in
each iteration we refine the best 15% of the active triangles with respect to the objective
value for the solution to (OVRP(T , γk,T )), but at most 200. This is done to effectively utilize
parallelization. Additionally, we refine elements that are a certain amount of generations
behind to achieve a “clean up of old triangles”. Otherwise, for some triangles that are quite
far from the actual solution but for which (by chance) the objective value comes really close,
the algorithm might take a long time to refine this element. This only has a noticable impact
if we are in a case where the amount of active elements steadily increases, i.e. the case of F3
and was not used for the other cases. Lastly, the algorithm runs until a set amount of elements
(4 ·105) is reached or the difference between lower and upper bound is sufficiently small. We
chose a target bound difference of 10−10. For the case of F3 the element limit was reached.

We now visualize the convergence of Algorithm 2 in Figs. 1, 2, 3 and 4. These graphics
indicate the convergence βk → β̄ as predicted in Theorem 4.2, see in particular Fig. 2. In
Fig. 1 we show the difference of lower and upper bound compared for all mentioned settings.

We have a stark difference of convergence speed for the different settings introduced in
this section. Additionally there is a noticeable difference between looking at the vertex that
provides the upper bound and the furthest active vertex. Note that only for the latter the
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Fig. 1 Upper bound (blue) and lower bound (red) for the setting of F1, F2 and F3 w.r.t. the number of solved
subproblems. (Color figure online)

Fig. 2 Distance between the calculated solution β̄ and the best known vertex (blue) and the furthest active
vertex (red) respectively for each iteration. (Color figure online)

Fig. 3 Difference of upper and lower bound for the settings of F1, F2 and F3 w.r.t. the number of solved
subproblems. For the setting of F3 the results for two different regularization terms are displayed

distance to β̄ is guaranteed to be nonincreasing, while the vertex providing the upper bound
might be more interesting from a heuristic point of view if one considers a depth-search. The
splitting of the domain can be seen in Fig. 4. For the purpose of better visualization in the
setting of F1 and F2, the algorithm was continued for Fig. 4 until every element either had
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Fig. 4 From left to right: Progression of the splitting of the domain Q for (OVRP(ξT )) for the settings of F1,
F2 and F3. Simplices are differentiate by the color of their outline: Dismissed (blue), relevant (red), split in
the last iteration (yellow), difference of lower and upper bound for the element is within 10−9 (green). The
element with the current best objective value is marked with a pink dot. (Color figure online)

a vertex for which the corresponding upper level objective was close (10−10) to the upper
bound or was dismissed. We show the difference of lower and upper bound for all the cases
discussed in Fig. 3.

Wewant to comment on the relation between the number of subproblems and the difference
of upper and lower bound. As discussed in Remark 3.7, a growth condition for the upper-level
objective functional for a solution w.r.t. β has positive effects and we can expect at least an
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Table 1 Computational times for the evaluation of the value function and the solution of the relaxed penalty
problems to reach a difference of upper and lower bound of at most 10−10 or exceed 4 ·105 total subproblems
in the next iteration

ul. objective #ϕ(β) Time ϕ(β) #OVRP Time OVRP (p) Time OVRP (s)

F1; ‖β − βm‖2
Rm 580 7.58 · 100 s 4292 2.18 · 101 s 1.24 · 102 s

F2; ‖β‖2
Rm 3103 4.00 · 101 s 12,183 7.38 · 101 s 3.95 · 102 s

F3; ‖β‖2
Rm 25,498 3.33 · 102 s 74,328 6.72 · 102 s 5.92 · 103 s

F3;
∑

i 1/β
2
i 25,585 3.34 · 102 s 75,001 7.06 · 102 s 6.04 · 103 s

The Problems (OVRP(T , γk,T )) were distributed to 10 workers. Their individual times were added to get the
“serial” time. Over 99% of the total time was used on solving (OVRP(T , γk,T )) and ϕ(β)

inverse proportional relation. This is exactly the setting of F1. For F2 we have the second
case from Remark 3.8, where the derivative of F2 is close to zero in the solution. This is
because the term ‖β‖2

Rn only comes up as a regularization with a small parameter for the
upper-level objective functional. The solution of the parameter estimation problem is still
close to (ym, um). In Fig. 3 the cases for F1 and F2 show a behaviour that is a little bit better
then the prediction.

For F3, we no longer have a setting where the number of subproblems, which is required to
reach a certain accuracy, follows a nice relation. Especially, the number of active subproblems
might heavily increase during the runtime of Algorithm 2. This can be seen well in Fig. 4.
Finally Fig. 3 indicates, that the important property in the setting of F3 is that the solution is
no longer close to (ŷm, ûm), i.e. that the target state is “unreachable” and that the choice of
regularization term σβ

2 ‖β‖2
Rn or

σβ

2

∑2
i=1

1
β2
i
is of minor importance regarding convergence

speed for this case. As a final comment we emphasize, that if Remark 3.7 or Remark 3.8
apply, both are indicative regarding the general behaviour of the algorithm. These remarks
allow for a prediction of the relation between the number of subproblems and the difference
of the bounds that is at least inversely proportional. Ultimately Remarks 3.7 and 3.8 give
some information about the speed of the algorithm.

Observe that a significant amount of solved subproblems has to be solved. Hence, the
computational times needed to evaluate the value function ϕ(β) (which amounts to the
solution of (LL(β))) and to solve the subproblem (OVRP(T , γk,T )) are critical. Thus, we
report on the computational times of the used algorithm1 in Table 1.
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the corresponding author on reasonable request.
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
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1 Implemented in MATLAB/R2021a on Ubuntu with Intel(R) Core(TM) i9-10900 CPU, 2.80GHz and 32GB
RAM. Subproblems solved in parallel with 10 cores.
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