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Abstract
In this paper, a proximal bundle method is proposed for a class of nonconvex nonsmooth
composite optimization problems. The composite problem considered here is the sum of
two functions: one is convex and the other is nonconvex. Local convexification strategy is
adopted for the nonconvex function and the corresponding convexification parameter varies
along iterations. Then the sum of the convex function and the extended function is dynam-
ically constructed to approximate the primal problem. To choose a suitable cutting plane
model for the approximation function, here we consider the sum of two cutting planes, which
are designed respectively for the convex function and the extended function. By choosing
appropriate descent condition, our method can keep track of the relationship between primal
problem and approximate models. Under mild conditions, the convergence is proved and the
accumulation point of iterations is a stationary point of the primal problem. Two polynomial
problems and twelve DC (difference of convex) problems are referred in numerical exper-
iments. The preliminary numerical results show that the proposed method is effective for
solving these testing problems.
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1 Introduction

In this article, we focus on a class of composite problem, which has the following form:

min
x∈RN

ψ(x) := f (x) + h(x), (1.1)

where f : RN → R is a convex function and h : RN → R is a nonconvex function. Note
that the functions f and h are all not necessarily differentiable. In fact, the problem (1.1) may
be seen in many practical applications: image reconstruction, engineering, finance, optimal
control and statistics.

Example 1 (Regularizedminimizationmapping)Many signal and image reconstruction prob-
lems minimize a function having the following form (0 < q ≤ 1):

1

2
‖Ax − b‖2 + τ‖x‖q ,

for x ∈ RN , b ∈ RM , A is a matrix with M × N dimensions, τ is a positive parameter and

‖x‖q = (
∑N

i=1 |xi |q)
1
q . The above function can be seen as the sum of a convex function and

a lower-c2 function.

Example 2 (Transformation of constraint problems) Consider the following constraint prob-
lem:

min f (x), s.t. ci (x) ≤ 0, i = 1, · · · ,m,

where f is finite convex and ci , i = 1, · · · ,m is nonconvex function. It is clear that the
above constraint problem can be converted into a problem which has only one constraint
c(x), where c(x) := max{ci (x), i = 1, · · · ,m}. By the definition of c(x), the function c is
not necessary convex and smooth. By the penalty strategy, the new generated problem can
be converted into the following unconstrained problem:

min
x∈RN

f (x) + λc+(x),

where c+(x) = max{c(x), 0} and λ ≥ 0. Setting h(x) = λc+(x), the above problem is in
the form of (1.1).

Example 3 (DC problem) Theminimization of difference of convex functions (DC) is defined
as

min
x∈RN

f1(x) − f2(x),

where f1, f2 are finite convex and all not necessarily differentiable. If we set h(x) = − f2(x),
then the above problem has the form of problem (1.1).

Many researchers [4–18] are devoted to developing the implementable algorithms for
solving the problems with the form of sum of two functions. These algorithms include
the well known operator splitting methods [5, 6, 13], alternating direction methods [7–10,
14, 15], primal-dual extragradient methods [11] and bundle methods [12, 24] and so on.
Concretely, the sum of two smooth and convex functions can be seen in [4, 15]; the sum
of a nonsmooth convex function and a smooth convex function can be found in [4, 15]; the
sum of two separable convex functions with diffrent variables can be seen in [12, 16, 17];
the sum of a nonsmooth convex function and a nonconvex smooth function can be found
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in [18]; the sum of two nonconvex functions can be seen in [8] and so on. By viewing
these papers, their central ideas are exploiting the separable structure of the primal objective
functions. As for nonconvex cases, the prox-regularity and prox-boundedness techniques are
considered as the essential theoretical basis to design practical implementable algorithms. In
this paper, we consider the convexification strategy and utilize the above theoretical basis to
design a class of implementable proximal bundle algorithms. Bundlemethods [12, 19, 22, 23]
are recognized as highly effective methods for solving nonsmooth optimization problems.
Proximal bundle method is one class of bundle methods, which has been successfully used
to solve unconstrained convex optimization problems with discontinuous first derivatives
[19–23]. In bundle methods, the nonnegative linearization error plays an important role in
ensuring the convergence of the algorithms. In convex cases, the linearization error is always
nonnegative. However, in nonconvex cases, the linearization error may be negative. In order
to circumvent this drawback, some methods [24–30] about refining the subgradient locality
measure are proposed. In this paper, we adopt the convexification technique for handling the
nonconvex function h to ensure the corresponding linearization error nonnegative.

Motivated by the redistributed strategy in [24] and the idea of building the cutting plane
models in [12], we propose a nonconvex proximal bundle method for solving the composite
problem (1.1) and this new method also works well for some DC problems. Although our
algorithm is similar to that in [12, 24], they are much different. In [24], the authors focused
on a single nonconvex function (lower-c2). The authors in [12] considered the sum of two
convex functions. In this article, we present a proximal bundle method for solving the primal
optimization problem (1.1). The advantages of the proposed method are as follows: (i) the
proximal parameter is dynamically divided into two parameters: one is used to convexificate
function h(x) to ensure its linearization errors nonnegative and the other is regarded as
the proximal parameter; (ii) The cutting planes for the convex function and convexification
function are designed respectively. Since the sum of maxima is bigger than the maximum
of the sum, then we sum up the two cutting models in order to obtain a better approximate
model for the modified optimization problem; (iii) The proposed method can keep track of
the relationship between the original problem (1.1) and the generated piecewise linear model.
This maintains a powerful connection between the model functions and the primal function.

The paper is organized as follows. In Sect. 2, we review some definitions in variational
analysis and some preliminaries in proximal bundle methods and give some notations. Sec-
tion3 introduces our proximal bundle method. In Sect. 4, the global convergence is analyzed
under some mild conditions. The numerical results about polynomial functions and some
DC problems are presented in Sect. 5. Some conclusions are given in Sect. 6.

2 Preliminaries

In this section, we firstly recall some concepts and results in variational analysis, which will
be used in our paper. Then the redistributed strategy is discussed. Meanwhile, some notations
for the bundles of functions f and h are considered.

2.1 Concepts and properties

Throughout the paper, we assume the functions f and h are all proper and regular (see [1,
Definition 7.25]). Notably, we make use of the limiting subdifferential for the nonconvex
function h, denoted by ∂h(x) in [1]. The limiting subdifferential of function h at point x̂ is
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defined by

∂h(x̂) := lim sup
x→x̂ h(x)→h(x̂)

{

v : lim inf
x→x̂ x �=x̂

h(x) − h(x̂) − 〈v, x − x̂〉
‖x − x̂‖ ≥ 0

}

.

For the convex function f , the common subdifferential in convex analysis is adopted, which
is defined as

∂ f (x̂) := {v | f (x) ≥ f (x̂) + 〈v, x − x̂〉},
for all x ∈ dom( f ). In convex optimization, ε−subdifferential is defined by

∂ε f (x) := {g ∈ RN : f (y) ≥ f (x) + 〈g, y − x〉 − ε}, (2.1)

where ε ≥ 0, x, y ∈ dom( f ). Specially, if ε = 0, by the above definition, we have ∂0 f (x) =
∂ f (x).

In this paper, we consider a class of special nonconvex functions, i.e., lower-c2 function
which is presented in the following definition.

Definition 2.1 [1] A function ψ : O → R, where O is an open subset of RN , is said to be
lower-c2 on O, if on some neighborhood V of each x̂ ∈ O, there is a representation:

ψ(x) = max
t∈T ψt (x),

in which the function ψt are of class C2 on V and the index set T is a compact space such
that ψt (x) and ∇xψt (x) depend continuously not just on x but on (t, x) ∈ T × V .

In the following, we state a theoremwhich presents amuch important property of lower-c2

functions which can also be found in [1, Theorem 10.33]. For completeness, we state it but
omit its proof.

Theorem 2.1 [1, Theorem 10.33] Any finite convex function is lower-c2. In fact, a function
F is lower-c2 on an open set O ∈ RN , if and only if, relative to some neighborhood of each
point ofO, there is an expression F(x) = G(x)−H(x), in which G is a finite convex function
and function H is C2; indeed, H can be taken to be a convex, quadratic function, even of
form ρ

2 ‖ · ‖2.
Another statement of Theorem2.1 is that the function F is lower-c2 on an open setO ∈ RN

if F is finite on O and for any x ∈ O, there exists a threshold ρ̄ ≥ 0 such that F + ρ
2 ‖ · ‖2

is convex on an open neighborhood O′
of x for all ρ ≥ ρ̄, where ‖ · ‖ stands for standard

Euclidean norm, unless specified otherwise. Specifically, if F is finite and convex, then F is
a lower-c2 function and the threshold ρ̄ ≡ 0. In this paper, it is reasonable to deal with the
primal problem (1.1) by adding quadric terms to convexificate function h.

2.2 Nonconvex setting and compression technique

In the convex case, at each iteration i , the classical bundle methods keep track of the bundle
of information in each iteration, which includes the past function values and subgradient
values. For example, for a convex function f , the bundle has the form of Bn

f = {(xi , fi =
f (xi ), gi = g(xi ) ∈ ∂ f (xi )), i ∈ In}, where In ⊆ {0, 1, · · · , n} is an index set. Along
iterations, a sequence of iterative points are generated. These iterative points are divided into
two types: one type improves the approximate models’ accuracy; the other type not only
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improves the models’ accuracy but also decreases significantly the objective function. The
corresponding iterations of the algorithmic scheme are respectively called null steps and
serious steps. Usually, the serious steps are referred to as proximal center or stability center
in the literature, which are denoted by x̂ k(n). When it is clear in the context, we drop the
explicit dependence of k on the current iteration index n to alleviate notation. It is obvious
that a cutting plane model is a lower approximate to the primal problem in convex cases
and f̃ (y) ≈ f (xi ) holds for any y sufficiently approximates to xi . In convex case, the
linearization error ekf ,i := f (x̂ k)− f (xi )−〈gif , x̂ k − xi 〉 is always nonnegative which plays
an important role to ensure the convergence of bundle algorithms. However, in nonconvex
cases, the linearization error may be negative and it becomes much difficult for the proof of
convergence and the algorithms for convex optimization can not be directly applied.

For the composite function (1.1), we consider a special nonconvex function h, lower-c2

function. It is clear that the linearization errors ekh,i may be negative. By Theorem 2.1, we
know that there exists a threshold ρ̄ such that the augmented function ϕn(·)

ϕn(x) := h(x) + ηn

2
‖x − x̂ k‖2, (2.2)

is convex in the setV whenever ηn ≥ ρ̄ holds. But the value ρ̄ is not known in prior, then if
ηn < ρ̄, the augmented functionϕn may not be a convex function in the setV. However by the
definition of the linearization error, we have that if we choose the convexification parameter
ηn suitably, the linearization error of the augmented function ϕn(·) may be nonnegative.
Concretely for any i ∈ In , the linearization errors for functions h and ϕn are as follows:

ekh,i = h(x̂ k) − h(xi ) − 〈gih, x̂ k − xi 〉, for gih ∈ ∂h(xi ).

and

ekϕ,i = ϕn(x̂
k) − ϕn(x

i ) − 〈giϕ, x̂ k − xi 〉, for giϕ ∈ ∂ϕn(x
i ).

By the definition of function ϕn , we have ϕn(x̂ k) = h(x̂ k). With the calculation of the
subdifferential and the relationship (2.2), we have

giϕ = gih + ηn(x
i − x̂ k).

and

ekϕ,i = h(x̂ k)−h(xi )− ηn

2
‖xi − x̂ k‖2 −〈gih +ηn(x

i − x̂ k), x̂ k − xi 〉 = ekh,i +
ηn

2
‖xi − x̂ k‖2.

(2.3)
Then by choosing suitable parameter ηn , we may make sure that the linearization errors of
function ϕn in index set In to be nonnegative. Next we give the rule for parameter ηn ,

ηn ≥ ηn := max

{

max

{

− 2ekh,i

‖xi − x̂ k‖2 ,

}

, 0

}

+γ with i ∈ In and ‖xi − x̂ k‖ �= 0, (2.4)

where γ is a positive constant. By the rule, we have that for all i ∈ In , ekϕ,i ≥ γ
2 ‖xi− x̂ k‖2 ≥ 0

holds. Similar rules for the parameter ηn can also be seen in [19, 24] and reference therein.
Note also that the parameter ηn may vary along iterations.

In the following, our attention will be paid to the approximation function φn(x) of ψ(x),
which is defined as follows:

φn(x) := f (x) + ϕn(x). (2.5)
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In fact, function φn can also be regarded as a local “convexification" of the problem (1.1).
For convex function f , its linearization error is defined by

ekf ,i = f (x̂ k) − f (xi ) − 〈gif , x̂ k − xi 〉 ≥ 0, for gif ∈ ∂ f (xi ), and ∀i ∈ In .

Note that since function f is finite convex, by (2.1), we have gif ∈ ∂ekf ,i
f (x̂ k). Meanwhile,

if ηn ≥ ρ̄, it also holds giϕ ∈ ∂ekϕ,i
ϕn(x̂ k).

Based on the linearization errors, the bundles of f and h can respectively be

Bn
f =

{(
ekf ,i ∈ R+, gif ∈ ∂ekf ,i

f (x̂ k)
)

, i ∈ In
}

, and
(
x̂ k, f (x̂ k), gkf ∈ ∂ f (x̂ k)

)
,

Bn
h =

{(
xi , hi = h(xi ), gih ∈ ∂h(xi ), ekh,i

)
, i ∈ In

}
.

Then the cutting planes for f and ϕn at the current serious step x̂ k are stated as follows:

f̃n(x) = max
i∈In

{
fi + 〈gif , x − xi 〉

}
= f (x̂ k) + max

i∈In

{
−ekf ,i + 〈gif , x − x̂ k〉

}
, (2.6a)

and

ϕ̃n(x) =max
i∈In

{
ϕn(x

i ) + 〈gih + ηn(x
i − x̂ k), x − xi 〉

}

=h(x̂ k) + max
i∈In

{
−

(
ekh,i + ηn

2
‖xi − x̂ k‖2

)
+ 〈gih + ηn(x

i − x̂ k), x − x̂ k〉
}

.

(2.6b)
To ensure the sequence of approximate points is well defined and the corresponding algorithm
is convergent, the approximate models must be carefully chosen. In this paper, we regard
f̃n(x) + ϕ̃n(x) as the cutting plane model for the approximate function φn . For simplify, we
note

φ̃n(x) := f̃n(x) + ϕ̃n(x). (2.6c)

Then the next point xn+1 may be solved by the following quadratic programming (QP)
subproblems:

xn+1 := arg min
x∈RN

{
φ̃n(x) + μn

2
‖x − x̂ k‖2

}
, (2.7)

where μn > 0 is called proximal parameter. By (2.6a) and (2.6b), we have that function φ̃n

is convex. Since μn > 0, it holds that xn+1 is the unique solution of subproblem (2.7) with
xn+1 = pμn φ̃n(x̂ k).

The following lemma shows the relationship between the new point xn+1 and the current
stability center x̂ k . Similar conclusion can also be found in [33, Lemma 10.6]. Let Sn = {z ∈
[0, 1]|In | : ∑i∈In z

i = 1} denote a unit simplex in R|In |.

Lemma 2.1 Let xn+1 be the unique solution to the subproblem (2.7) and the proximal param-
eter μn > 0. Then we have

xn+1 = x̂ k − 1

μn
Ĝk, (2.8)

where
Ĝk :=

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ, (2.9)
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and α1 = (α1
1, · · · , α

|In |
1 ) ∈ Sn, α2 = (α1

2, · · · , α
|In |
2 ) ∈ Sn is a solution to

min
α1, α2∈R|In |

+

⎧
⎪⎨

⎪⎩

1

2μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

+
∑

i∈In
αi
1e

i,k
f +

∑

i∈In
αi
2e

i,k
ϕ

⎫
⎪⎬

⎪⎭
. (2.10)

In addition, the following relations hold:

(i) Ĝk ∈ ∂
(
f̃n + ϕ̃n

)
(xn+1);

(ii) f (x̂ k) + h(x̂ k) − f̃n(xn+1) − ϕ̃n(xn+1) = μn‖xn+1 − x̂ k‖2 + εn+1, where εn+1 =∑
i∈In αi

1e
i,k
f + ∑

i∈In αi
2e

i,k
ϕ .

Proof Write the objective function of (2.7) as aQP subproblemwith two extra scalar variables
r1 and r2 as follows

⎧
⎪⎪⎨

⎪⎪⎩

min
(x, r1,r2)∈RN×R×R

r1 + r2 + μn
2 ‖x − x̂ k‖2

s. t. r1 ≥ f (x̂ k) − ei,kf + 〈gif , x − x̂ k〉, ∀i ∈ In,

r2 ≥ h(x̂ k) − ei,kϕ + 〈giϕ, x − x̂ k〉, ∀i ∈ In .

The corresponding Lagrange function is, for α1, α2 ∈ R|In |+ ,

L(x, r1, r2, α1, α2) =r1 + r2 + μn

2
‖x − x̂ k‖2

+
∑

i∈In
αi
1

(
f (x̂ k) − ei,kf + 〈gif , x − x̂ k〉 − r1

)

+
∑

i∈In
αi
2

(
h(x̂ k) − ei,kϕ + 〈giϕ, x − x̂ k〉 − r2

)

=
⎛

⎝1 −
∑

i∈In
αi
1

⎞

⎠ r1 +
⎛

⎝1 −
∑

i∈In
αi
2

⎞

⎠ r2

+ μn

2
‖x − x̂ k‖2 +

∑

i∈In
αi
1

(
f (x̂ k) − ei,kf + 〈gif , x − x̂ k〉

)

+
∑

i∈In
αi
2

(
h(x̂ k) − ei,kϕ + 〈giϕ, x − x̂ k〉

)
.

(2.11)

In view of strong convexity, (2.7) has the unique solution xn+1. Furthermore, the equivalent
problem (2.11) has affine constraints, and there exists optimal multiplier (α1, α2) associate
with xn+1. Since there is no duality gap, the optimal solution (xn+1, α1, α2) can also be
obtained either by solving the primal problem or solving its dual, i.e.,

(2.11) ≡ min
(x,r1,r2)

max
(α1,α2)

L(x, r1, r2, α1, α2) ≡ max
(α1,α2)

min
(x,r1,r2)

L(x, r1, r2, α1, α2).

All the problems above have the same finite optimal value. However, the dual problem
involves the unconstrainedminimization of the function L with respect to r1 and r2.When the
dual value is finite, the terms multiplying r1 and r2 in L have to vanish, i.e., α1 and α2 must
lie in the unit simplex Sn . As a result, (xn+1, α1, α2) solves the primal and dual problems

min
x∈RN

max
(α1,α2)∈R|In |

+ ×R|In |
+

L(x, α1, α2) ≡ max
(α1,α2)∈R|In |

+ ×R|In |
+

min
x∈RN

L(x, α1, α2).
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where

L(x, α1, α2) = f (x̂ k) + h(x̂ k) + μn

2
‖x − x̂ k‖2 +

∑

i∈In
αi
1

(
−ei,kf + 〈gif , x − x̂ k〉

)

+
∑

i∈In
αi
2

(
−ei,kϕ + 〈giϕ, x − x̂ k〉

)
.

Consider the last dual problem, for each (α1, α2) ∈ Sn × Sn fixed, defining x(α1, α2) =
argminx L(x, α1, α2), the optimality condition is 0 = ∇x L(x, α1, α2), i.e.,

0 = μn(x − x̂ k) +
∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ, (2.12)

then the relation (2.8) holds.
To prove (α1, α2) solves (2.10),we can multiply (2.12) by x − x̂ k and by 1

μn(∑
i∈In αi

1g
i
f + ∑

i∈In αi
2g

i
ϕ

)
respectively, then it holds

0 =μn

∥
∥
∥x − x̂ k

∥
∥
∥
2 +

∑

i∈In
αi
1〈gif , x − x̂ k〉 +

∑

i∈In
αi
2〈giϕ, x − x̂ k〉

=
∑

i∈In
αi
1〈gif , x − x̂ k〉 +

∑

i∈In
αi
2〈giϕ, x − x̂ k〉

+ 1

μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

,

which implies that

μn

∥
∥
∥x − x̂ k

∥
∥
∥
2 = 1

μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

,

and

L(x, α1, α2) = f (x̂ k) + h(x̂ k) − 1

2μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

−
∑

i∈In
αi
1e

i,k
f

−
∑

i∈In
αi
2e

i,k
ϕ .

Based on above discussions, (α1, α2) solves

max
(α1,α2)∈Sn×Sn

L(x, α1, α2) = f (x̂ k) + h(x̂ k)

− min
(α1,α2)∈Sn×Sn

⎧
⎪⎨

⎪⎩

1

2μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

+
∑

i∈In
αi
1e

i,k
f +

∑

i∈In
αi
2e

i,k
ϕ

⎫
⎪⎬

⎪⎭
,

(2.13)

so the relation (2.10) holds. The assertion (i) follows from the optimality condition of (2.7)
and (2.9). Next we show the assertion (ii). Since there is no duality gap, the primal optimal
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value in (2.7) is equal to the dual optimal value in (2.13), i.e.,

f̃n(x
n+1) + ϕ̃n(x

n+1) + μn

2
‖xn+1 − x̂ k‖2

= f (x̂ k) + h(x̂ k)

− 1

2μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

−
⎛

⎝
∑

i∈In
αi
1e

i,k
f +

∑

i∈In
αi
2e

i,k
ϕ

⎞

⎠ .

By (2.8), the above inequality can be rewritten as

f (x̂ k) + h(x̂ k) − f̃n(x
n+1) − ϕ̃n(x

n+1)

= μn

2
‖xn+1 − x̂ k‖2 + 1

2μn

∥
∥
∥
∥
∥
∥

∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2g

i
ϕ

∥
∥
∥
∥
∥
∥

2

+ εn+1

= 1

2μn

∥
∥
∥Ĝk

∥
∥
∥
2 + 1

2μn

∥
∥
∥Ĝk

∥
∥
∥
2 + εn+1

= 1

μn

∥
∥
∥Ĝk

∥
∥
∥
2 + εn+1 = μn‖xn+1 − x̂ k‖2 + εn+1,

where εn+1 = ∑
i∈In αi

1e
i,k
f + ∑

i∈In αi
2e

i,k
ϕ . This completes the proof. ��

By the convexity of f̃n and ϕ̃n and the calculus rule of subdifferentials in convex analysis,
it holds

∂( f̃n + ϕ̃n)(x
n+1) = ∂ f̃n(x

n+1) + ∂ϕ̃n(x
n+1).

As the iteration proceeds, the data in the bundle become too much, which will affect the
algorithm’s efficiency. For the sake of efficiency, the cardinality for In should not growbeyond
control as n increases. To overcome this shortcoming, the reformulated bundle opens theways
of mechanism. One is known as the bundle compression, which allows to keep bounded the
cardinality of In as n → ∞, without impairing the convergence of the method. Another
way is to keep only active data, and this technique is called bundle aggregate. The aggregate
information of the bundle includes as least as two: one is the aggregation information and
the other is the new generated information. In this paper, we use both techniques, and also
append the current serious step information to the bundle. In the following, we regard Jact1,n
and Jact2,n as the active index set, i.e.,

Jact1,n := {i ∈ In | αi
1 > 0}, α1 ∈ Sn satisfying (2.10).

and

Jact2,n := {i ∈ In | αi
2 > 0}, α2 ∈ Sn satisfying (2.10).

At the same time, we introduce the negative indices which can also be seen in [24, 32] for
the aggregate bundle, that is, In ⊆ {−n,−n + 1, · · · , 0, 1, · · · , n}. Meanwhile, we give the
following definitions

ekf ,−n =
∑

i∈In
αi
1e

k
f ,i ekϕ,−n =

∑

i∈In
αi
2e

k
ϕ,i =

∑

i∈In

(
ekh,i + ηn

2
‖xi − x̂ k‖2

)
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and

g−n
f =

∑

i∈In
αi
1g

i
f g−n

ϕ =
∑

i∈In
αi
2g

i
ϕ =

∑

i∈In
αi
2

(
gih + ηn(x

i − x̂ k)
)

.

Then, for the aggregative error εn+1, by the above definitions, we have

εn+1 =
∑

i∈In
αi
1e

k
f ,i +

∑

i∈In
αi
2e

k
ϕ,i = ekf ,−n + ekϕ,−n

=
∑

i∈Jact1,n

αi
1e

k
f ,i +

∑

i∈Jact2,n

αi
2

(
ekh,i + ηn

2
‖xi − x̂ k‖2

)
.

For the aggregate subgradient Ĝk , it holds

Ĝk =
∑

i∈In
αi
1g

i
f +

∑

i∈In
αi
2

(
gih + ηn(x

i − x̂ k)
)

= g−n
f + g−n

ϕ

=
∑

i∈Jact1,n

αi
1g

i
f +

∑

i∈Jact2,n

αi
2

(
gih + ηn(x

i − x̂ k)
)

.

Note that for all ι ∈ Jact1,n

⋂
Jact2,n and ι = −n, the following two equalities hold

f̃n(xn+1) = f (x̂k ) − ekf ,ι + 〈gι
f , x

n+1 − x̂k 〉, (2.14a)

ϕ̃n(xn+1) = ϕn(x̂k ) −
(
ekh,ι + ηn

2
‖x ι − x̂k‖2

)
+ 〈gι

h + ηn(x ι − x̂k ), xn+1 − x̂k 〉. (2.14b)

3 The proximal bundle algorithm

In this section, we will present our algorithm for the problem (1.1). Before that, we firstly
give some necessary notations for the algorithm. The predicted decrease at xn+1 for functions
f and ϕn are respectively defined by:

δ
f
n+1 := f (x̂ k) − f̃n(x

n+1),

and

δ
ϕ
n+1 := ϕn(x̂

k) + ηn

2
‖xn+1 − x̂ k‖2 − ϕ̃n(x

n+1) = h(x̂ k) + ηn

2
‖xn+1 − x̂ k‖2 − ϕ̃n(x

n+1).

By the convexity of function f , we have δ
f
n+1 ≥ 0. By (2.2), (2.6b) and the choice of the

parameter ηn , we have δ
ϕ
n+1 ≥ 0. For the approximate function φn , we definite its predict

decrease as follows
δn+1 := δ

f
n+1 + δ

ϕ
n+1. (3.1)

By the above discussions, it holds that δn+1 ≥ 0. In fact, according to Lemma 2.1 and (3.1),
if we set Rn = ηn + μn , then it holds that

δn+1 = μn‖xn+1 − x̂ k‖2 + ηn

2
‖xn+1 − x̂ k‖2 + εn+1 = Rn + μn

2
‖xn+1 − x̂ k‖2 + εn+1.

Now we present our proximal bundle algorithm for problem (1.1).

Algorithm 1 (Nonconvex Nonsmooth Proximal Bundle Method for a class of composite opti-
mization)
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Step 0 (Input and Initialization):
Select an initial starting point x0, an unacceptable increase parameter M0 > 0, an initial

parameter R0 > 0, a stopping tolerance T OLstop ≥ 0, a convexification grow parameter
�η > 1, a proximal grow parameter �μ > 1 and an Armijo-like parameter m ∈ (0, 1).
Set the initial iteration counter n = 0, the serious step counter k = k(n) = 0, the bundle
index set I0 = {0} and x̂0 = x0. Call the black box to compute f 0, g0f , h0, g0h and set

e0f ,0 = 0, e0h,0 = 0. Choose the starting parameter distribution (μ0, η0) = (R0, 0);
Step 1 (Model generation and QP subproblem):

Having the current proximal center x̂k , the current bundle Bn
f and Bn

h with index set In,

and the current proximal parameter distribution (μn, ηn) with ηn ≤ Rn. Compute f̃n(x)
from (2.6a) and ϕ̃n(x) from (2.6b). Solve (2.7) and (3.1) to get xn+1 and δn+1, respectively.
Meanwhile, we get the optimal simplicial multipliers (α1, α2) ∈ Sn × Sn for (2.8). We give
two choices for a new index set, which satisfies

Either Jactn ⊆ In+1 and {n + 1, ik} ⊆ In+1 Or {−n} ⊆ In+1 and {n + 1, ik} ⊆ In+1

where ik is the iterative index giving the current serious points, i.e., x̂ k = xik and Jactn :=
Jact1,n

⋃
Jact2,n . Then, go to Step 2;

Step 2 (Stopping criterion):
If δn+1 ≤ T OLstop, then stop. Otherwise, go to Step 3;

Step 3 (Serious step testing):
If the descent condition

ψ(xn+1) ≤ ψ(x̂ k) − mδn+1, (3.2)

holds, then declare a serious step, and set k(n+1) = k+1, ik+1 = n+1, and x̂k+1 = xn+1.
Update the bundles, go to Step 4; otherwise, declare a null step, and set k(n + 1) = k(n),
go to Step 4;
Step 4 (Update convexification parameterη):

Set
{

ηn+1 = ηn, i f ηn+1 ≤ ηn;
ηn+1 = �ηn+1 i f ηn+1 > ηn; (3.3)

where ηn+1 is computed by (2.4) with n replaced by n + 1;
Step 5 (Update model proximal parameter μ):

If the following testing condition

ψ(xn+1) > ψ(x̂ k) + M0,

holds, then the objective increase is unacceptable, restart the algorithm by setting:

η0 := ηn, μ0 := �μn, R0 := η0 + μ0, x0 := x̂ k, k(0) := 0, i0 := 0, I0 := {0}, n := 0,

then go to Step 1; otherwise, increase k by 1 in the case of the serious step. In all cases,
increase n by 1, and loop to Step 1. ��
Remark 3.1 Note that the updating strategies for serious steps andnull steps aremuchdifferent
in bundle methods. If a serious step occurs, the linearization errors and the stability center
are updated, that is, the new generated point is regarded as a new stability center and the
corresponding linearization errors update along the new center. If a null step happens, the
new generated information should be added into the bundle to improve approximate accuracy
and the linearization errors keep unchanged.
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When the descent condition (3.2) is satisfied, the new generated iterative point xn+1 is
regarded as a new serious point, i.e., x̂ k+1 = xn+1, the linearization errors for functions f ,
h and ϕn can be respectively updated as follows:

ek+1
f ,i = ekf ,i + f (x̂ k+1) − f (x̂ k) − 〈gif , x̂ k+1 − x̂ k〉, ∀ i ∈ In+1, (3.4a)

ek+1
h,i = ekh,i + h(x̂ k+1) − h(x̂ k) − 〈gih, x̂ k+1 − x̂ k〉, ∀ i ∈ In+1, (3.4b)

and
ek+1
ϕ,i = ek+1

h,i + ηn

2
‖xi − x̂ k+1‖2, ∀ i ∈ In+1. (3.4c)

In the following, we prove that the stopping test is reasonable and the algorithm is well
defined. Before that, we first present our assumption which is always used in bundle methods
and can also be seen in [11, 22, 24] and reference therein.

Assumption 3.1 The level set

T := {x ∈ RN : ψ(x) ≤ ψ(x̂0) + M0 }
is compact.

For ηn > 0, the augmented function h(x)+ ηn
2 ‖x − x̂ k‖2 is somehow “more convex” than

the function h(x). By Assumption 3.1 and Theorem 2.1, there exists a threshold ρ̄ such that
for any η ≥ ρ̄, it holds that

The function h(·) + η

2
‖ · −x̂ k‖2 is convex on T .

where x̂ k is current stability center. At this moment, for functions f and ϕn , the cutting
planes model functions satisfy f̃n(·) ≤ f (·) and ϕ̃n(·) ≤ ϕn(·), thus μn(x̂ k − xn+1) ∈
∂( f̃n + ϕ̃n)(xn+1) implies that for all x ∈ T , we have

φn(x) ≥ f̃n(x) + ϕ̃n(x) ≥ φn(x
n+1) + μn

〈
x̂ k − xn+1, x − xn+1

〉

− [
φn(x

n+1) − f̃n(x
n+1) − ϕ̃n(x

n+1)
]
,

where φn(x) is defined in (2.5). In particular, for x = pμnφn(x̂ k), we obtain

φn

(
pμnφn(x̂

k)
)

≥ f̃n
(
pμnφn(x̂

k)
)

+ ϕ̃n

(
pμnφn(x̂

k)
)

≥ φn(x
n+1) + μn

〈
x̂ k − xn+1, pμnφn(x̂

k) − xn+1
〉

− [
φn(x

n+1) − f̃n(x
n+1) − ϕ̃n(x

n+1)
]
.

Similarly, since pμnφn(x̂ k) is characterized byμn(x̂ k − pμnφn(x̂ k)) ∈ ∂φn(x̂ k), the associate
subgradient inequality becomes

φn(x
n+1) ≥ φn

(
pμnφn(x̂

k)
)

+ μn

〈
x̂ k − pμnφn(x̂

k), xn+1 − pμnφn(x̂
k)

〉
.

Combining above two inequalities and it yields that

φn(x
n+1) − f̃n(x

n+1) − ϕ̃n(x
n+1) ≥ μn‖xn+1 − pμnφn(x̂

k)‖2.
By the descent condition (3.2), we get that the stopping criterion in Algorithm 1 is reasonable.

In the following, we will show that the restart steps in Algorithm 1 is finite. Before that,
we should note that all lower-c2 functions are locally Lipschitz continuous (see [1, Theorem
10.31]), then f and h are all locally Lipschitz continuous. The compactness of T allows us
to find the Lipschitz constants for functions f and h, denoted by L f and Lh respectively.
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Lemma 3.1 Consider {xn} generated by Algorithm 1 and ik ∈ In, then there can be only
a finite number of restarts in Step 5 in Algorithm 1. Moreover, the sequence {μn} finally
becomes a constant sequence.

Proof Firstly, the new iterative point xn+1 is well defined by the convexity of φ̃n(·). As
functions f and h are Lipschitz continuous,ψ is also Lipschitz continuous inT and denoting
its Lipschitz constant is L := L f + Lh . By the Lipschitz continuity of ψ , there exists ε > 0
such that, for any x̃ ∈ {x : ψ(x) ≤ ψ(x̂0)}, the open set Bε (̃x) is contained in T . Note that

pμn ( f̃n + ϕ̃n)(x̂
k) = argmin

x

{
f̃n(x) + ϕ̃n(x) + μn‖x − x̂ k‖2/2

}

∈
{
x : f̃n(x) + ϕ̃n(x) + μn‖x − x̂ k‖2/2 ≤ f̃n(x̂

k) + ϕ̃n(x̂
k)

}

∈
{
x : f̃n(x̂

k) + ϕ̃n(x̂
k) + 〈gik , x − x̂ k〉

+μn‖x − x̂ k‖2/2 ≤ f̃n(x̂
k) + ϕ̃n(x̂

k)
}

∈
{
x : −‖gik‖ ‖x − x̂ k‖ + μn‖x − x̂ k‖2/2 ≤ 0

}

∈
{
x : ‖x − x̂ k‖ ≤ 2L/μn

}
.

where ik ∈ In , and gik ∈ ∂( f̃n + ϕ̃n)(x̂ k). It holds gik ∈ ∂φn(x̂ k) and ‖gik‖ ≤ L . In Step
5, μn increases when the restart steps happen, or keep unchanged when the restart steps do
not happen, eventually μn becomes large enough so that the relationship 2L/μn < ε holds.
Noting that ψ(x̂ k) ≤ ψ(x̂0) for any new generated point x̂ k in Algorithm 1 completes the
proof. ��

4 The convergence theory

In this section, we give the convergence of Algorithm 1. There are different techniques in
dealing with φ̃n(x). In [19], the authors use the bundle compression to handle the information
in bundles, but they don’t allow to erase the active bundle information. In [24], the authors
also utilize the bundle compression technique and they allow to erase active bundle elements
in order to use aggregate technique. In our algorithm, we use the latter technique.

Lemma 4.1 Consider the approximate model functions (2.6a) and (2.6b) and φ̃n(x). then we
have:

(i) Condition
φ̃n(x) is a convex function,

is always satisfied.
(ii) If for any index n, ηn ≥ η̄n with η̄n defined in (2.4), then

φ̃n(x̂
k) ≤ ψ(x̂ k),

(iii) If the condition ηn+1 = ηn ≥ ρ̄ holds, xn+1 is a null point and either Jactn ⊆ In+1 or
−n ∈ In+1, then

φ̃n+1(x) ≥ φ̃n(x
n+1) + μn〈x̂ k − xn+1, x − xn+1〉,

for all x ∈ RN , and if xn+1 is a null step, (4.1)
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(iv) If index n ∈ In, then for some gnf ∈ ∂ f (xn), gnh ∈ ∂h(xn) and all x ∈ RN , we have

φ̃n(x) ≥ ψ(xn) + ηn

2
‖xn − x̂ k‖2 + 〈gnf + gnh + ηn(x

n − x̂ k), x − x̂ k〉.

Proof (i) By (2.6a), (2.6b) and (2.6c), φ̃n(x) is defined as a sum of the point-wise maximum
of a finite collection of affine functions, therefore, φ̃n(x) is convex, and item (i) is always
satisfied.

(ii) By the definition of φ̃n(x), i.e., (2.6c), it holds that

φ̃n(x̂
k) = f̃n(x̂

k) + ϕ̃n(x̂
k) = f (x̂ k) + max

i∈In

{
−ekf ,i

}
+ h(x̂ k)

+max
i∈In

{
−

(
ekh,i + ηn

2
‖xi − x̂ k‖2

)}
.

By the convexity of f and the choice for the parameter ηn , it holds that for any i ∈ In

ekf ,i ≥ 0, and ekh,i + ηn

2
‖xi − x̂ k‖2 ≥ 0.

Combining the above two inequalities, we have

φ̃n(x̂
k) = f̃n(x̂

k) + ϕ̃n(x̂
k) ≤ f (x̂ k) + h(x̂ k) = ψ(x̂ k),

then (ii) holds.
(iii) Suppose that ηn+1 = ηn ≥ ρ̄ and xn+1 is a null step, then we have k(n+1) = k(n) =

k. By (2.6a), (2.6b), (2.6c) and ηn+1 = ηn , for all x ∈ RN and all l ∈ In+1, we have

φn+1(x) ≥ φ̃n+1(x) = f̃n+1(x) + ϕ̃n+1(x)
≥ f (x̂ k) − ekf ,l + 〈glf , x − x̂ k〉 + h(x̂ k) − ekh,l

− ηn
2 ‖xl − x̂ k‖2 + 〈glh + ηn(xl − x̂ k), x − x̂ k〉,

(4.2)

where the inequality holds by (2.6a), (2.6b) and ηn+1 = ηn . In particular, (4.2) also holds for
all l ∈ Jactn or l = −n in In+1 by the assumption. For such indices and ηn+1 = ηn , (2.14b)
and (2.14a) imply that

f (x̂ k) − ekf ,l = f̃n(x
n+1) − 〈glf , xn+1 − x̂ k〉,

and

ϕn(x̂
k) − ekf ,l − ηn

2
‖xl − x̂ k‖2 = ϕ̃n(x

n+1) − 〈glh + ηn(x
l − x̂ k), xn+1 − x̂ k〉.

With (4.2), for all l ∈ Jactn or l = −n, we have

φ̃n+1(x) ≥ f̃n(x
n+1) + ϕ̃n(x

n+1) − 〈glf + glh + ηn(x
l − x̂ k), x − xn+1〉

= φ̃n(x
n+1) − 〈glf + glh + ηn(x

l − x̂ k), x − xn+1〉.

For the case {−n} ∈ In+1, by Lemma 2.1, we have that item (iii) holds. Next, we show the
case of Jactn ⊆ In+1. Since QP subproblem (2.7) is strictly convex, then the solution xn+1 is
unique. Meanwhile, there exists optimal nonnegative multiplier (α1, α2) ∈ Sn × Sn and they
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satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi
1 > 0, for all i ∈ Jact1;n , αi

2 > 0,

for all i ∈ Jact2;n ,
∑

i∈Jact1;n

αi
1 = 1, and

∑

i∈Jact2;n

αi
2 = 1,

φ̃n(x
n+1) =

∑

i∈Jact1,n

αi

(
fi + 〈gif , xn+1 − xi 〉

)

+
∑

i∈Jact2,n

αi

[
h(xi ) + ηn

2
‖xi − x̂ k‖2 + 〈giϕ, xn+1 − xi 〉

]
,

Ĝk = μn(x̂
k − xn+1) =

∑

i∈Jact1,n

αi
1g

i
f

+
∑

i∈Jact2,n

αi
2g

i
ϕ ∈ ∂( f + ϕn)(x

n+1) = ∂ f (xn+1) + ∂ϕn(x
n+1).

It follows that

φ̃n(x
n+1) =

∑

i∈Jact1,n

αi
1 fi +

∑

i∈Jact2,n

αi
2

(
h(xi ) + ηn

2
‖xi − x̂ k‖2

)
+

〈
Ĝk, xn+1 − xi

〉
.

Note that for each x ∈ RN and i ∈ In+1, it holds that

f̃n+1(x) ≥ fi + 〈gif , x − xi 〉,
and

ϕ̃n+1(x) ≥ h(xi ) + ηn+1

2
‖xi − x̂ k‖2 + 〈gih + ηn+1(x

i − x̂ k), x − xi 〉.

As a result, writing the above inequalities for the convex sum of indices i ∈ Jact1;n , i ∈ Jact2;n
and using that ηn+1 = ηn , we have

φ̃n+1(x) =
∑

i∈Jact1;n

αi
1 f̃n+1(x) +

∑

i∈Jact2;n

αi
2ϕ̃n+1(x)

≥
∑

i∈Jact1,n

αi
1 fi +

∑

i∈Jact2,n

αi
2

(
h(xi ) + ηn

2
‖xi − x̂ k‖2

)

+
〈

∑

i∈Jact1;n

αi
1g

i
f +

∑

i∈Jact2;n

αi
2(g

i
h + ηn(x

i − x̂ k)), x − xi
〉

= φ̃n(x
n+1) + μn〈x̂ k − xn+1, x − xn+1〉.

Then by the definition of Jactn , we have that item (iii) holds for the case of Jactn ⊆ In+1.
By (2.6a), (2.6b), (2.6c) and setting i = n, it is straightforward to item (iv). ��

Lemma 4.2 Consider the approximate model functions (2.6c) and Algorithm 1. Then there
exists index ñ, such that for all n ≥ ñ, the parameters ηn, μn and Rn stabilize:

η̃ ≡ ηn, μ̃ ≡ μn, and R̃ ≡ Rn = η̃ + μ̃.
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Proof By Lemma 3.1, there is a finite restart steps in Algorithm 1. Once there are no more
restart steps, according Algorithm 1, μn will be kept unchanged. Then there exists an index
nμ and from the index nμ on, μn = μ̃ holds. In the algorithm, ηn is nondecreasing: either
ηn+1 = ηn or ηn+1 = �ηηn+1 where �η > 1 and ηn+1 > ηn . Suppose that {ηn} is not to
stabilize, then there must be an infinite subsequence of iterations at which ηn+1 is increased
at least in a factor of �η. But this leads to a contradiction. Since function h is lower-c2 in
the compact set T , there exists a threshold ρ̄ such that for any η ≥ ρ̄, the augment function
ϕn(·) = h(·)+ η

2‖ ·−x̂ k‖ is convex in the set T , then the approximate function φn(x) is also
convex in the set T . Since the sequence {ηn} is increased, then there exists an index nη such
that from that index on, ηn keeps unchanged,i.e, ηnη+ j ≡ ηnη for all j ≥ 0. Let η̃ be ηñ and
ñ = max{nμ, nη}, then the conclusion is followed. ��

By Lemma 4.1 and Lemma 4.2, we have that our approximate model (2.6c) is reasonable,
which satisfies the criteria in [19]. In addition, if η̃ ≥ ρ̄, the approximate model (2.6c) is a
lower approximation to function φn(x).

In order to verify the convergent properties, we set T OLstop = 0. Note that if Algorithm
1 stops at some index n, this means that δn+1 = 0, i.e.,

f (x̂ k) − f̃n(x
n+1) = 0, and h(x̂ k) + ηn

2
‖xn+1 − x̂ k‖2 − ϕ̃n(x

n+1) = 0. (4.3)

By the above equalities, we have

ψ(x̂ k) + ηn

2
‖xn+1 − x̂ k‖2 = φ̃n(x

n+1). (4.4)

Since xn+1 = pμn φ̃n(x̂ k), then it holds that

φ̃n(x
n+1) + μn

2
‖xn+1 − x̂ k‖2 ≤ φ̃n(x̂

k) + μn

2
‖x̂ k − x̂ k‖2 = φ̃n(x̂

k).

Based on (4.4) and the above inequality, we have

ψ(x̂ k) + ηn + μn

2
‖xn+1 − x̂ k‖2 ≤ φ̃n(x̂

k).

By Lemma 4.1, it holds φ̃n(x̂ k) ≤ ψ(x̂ k). By the above discussions, we have

ψ(x̂ k) + ηn + μn

2
‖xn+1 − x̂ k‖2 ≤ ψ(x̂ k),

then it holds that x̂ k = xn+1 = pμn φ̃n(x̂ k). However, suppose that ηn largely enough to
guarantee h(·) + ηn‖ · −x̂ k‖2/2 is convex in T . This implies that ψ(x̂ k) = φ̃n(x̂ k) =
f̃n(x̂ k) + ϕ̃n(x̂ k) holds. By x̂ k = xn+1 = pμn φ̃n(x̂ k) and (2.6c), it always holds that

ψ(x̂ k) = f̃n(x̂
k) + ϕ̃n(x̂

k) ≤ f̃n(x) + ϕ̃n(x) + μn

2
‖x − x̂ k‖2, with ∀x ∈ RN ,

≤ f (x) + h(x) + ηn

2
‖x − x̂ k‖2

+ μn

2
‖x − x̂ k‖2, with ∀x ∈ T ,

≤ ψ(x) + ηn + μn

2
‖x − x̂ k‖2, with ∀x ∈ RN .

(4.5)

Note that in the second inequality, we can also return to x ∈ RN by the definition of T , i.e.,
for any x /∈ T

ψ(x̂ k) ≤ ψ(x̂0) < ψ(x̂0) + M0 < ψ(x) < ψ(x) + ηn + μn

2
‖x − x̂ k‖2.
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Therefore, we have
x̂ k = pμn+ηnψ(x̂ k).

This means that if Algorithm 1 stops in finite iterations, the current stability center x̂ k is
a solution to the composite problem (1.1). In the following, we assume Algorithm 1 never
stops.

Lemma 4.3 Consider the sequence {xn} generated by Algorithm 1, then {φ̃n(xn+1) +
μn
2 ‖xn+1 − x̂ k‖2} is eventually strictly increasing and convergent.

Proof Taking index n large enough so that ηn and μn keep unchanged, i.e, η̃ = ηn and
μ̃ = μn . Consider the following function:

Ln(y) := φ̃n(x
n+1) + μ̃

2
‖xn+1 − x̂ k‖2 + μ̃

2
‖y − xn+1‖2, (4.6)

and set sn+1 := μ̃(x̂ k − xn+1). By the optimal condition of QP subproblem (2.7), it holds
that sn+1 ∈ ∂φ̃n(xn+1). Since xn+1 is the unique solution of QP problem (2.7), then we have

Ln(x
n+1) ≤ φ̃n(x̂

k) + μ̃

2
‖x̂ k − x̂ k‖2 = φ̃n(x̂

k).

By stem (ii) in Lemma 4.1 and the above inequality, it holds that

Ln(x
n+1) ≤ ψ(x̂ k), ∀ n = 0, 1, · · · . (4.7)

That means the function Ln is upper bounded. Considering (4.1) with x = xn+2, we have

φ̃n+1(x
n+2) ≥ φ̃n(x

n+1) + μ̃〈x̂ k − xn+1, xn+2 − xn+1〉.
By (4.6) with index n + 1 and taking y = xn+2, we have

Ln+1(x
n+2) = φ̃n+1(x

n+2) + μ̃

2
‖xn+2 − x̂ k‖2 + μ̃

2
‖xn+2 − xn+2‖2

= φ̃n+1(x
n+2) + μ̃

2
‖xn+2 − x̂ k‖2.

Hence, by the above discussions, it holds that

Ln+1(x
n+2) ≥ Ln(x

n+1) + 〈sn+1, xn+2 − xn+1〉 + μ̃

2
‖xn+2 − x̂ k‖2 − μ̃

2
‖xn+1 − x̂ k‖2.

Note that the two rightmost terms in the above inequality satisfy the following relationship:

μ̃

2
‖xn+2 − x̂ k‖2 − μ̃

2
‖xn+1 − x̂ k‖2

= μ̃〈x̂ k − xn+1, xn+1 − xn+2〉 + μ̃

2
‖xn+2 − xn+1‖2

= 〈−sn+1, xn+2 − xn+1〉 + μ̃

2
‖xn+2 − xn+1‖2.

Therefore, it holds that

Ln+1(x
n+2) ≥ Ln(x

n+1) + μ̃

2
‖xn+2 − xn+1‖2.

By the definition of Ln , it holds that

Ln+1(x
n+2) = φ̃n+1(x

n+1) + μ̃

2
‖xn+2 − x̂ k‖2, and
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Ln(x
n+1) = φ̃n(x

n+1) + μ̃

2
‖xn+1 − x̂ k‖2.

Hence, the sequence
{
φ̃n(x

n+1) + μn

2
‖xn+1 − x̂ k‖2

}
is strictly increasing for n large

enough. By (4.7), it is also bounded above, so it converges. ��
The convergent analysis in bundle methods is usually divided into two different cases

depending on whether a finite or an infinite number of serious steps is generated. Now we
give the convergent analyses of Algorithm 1.

Theorem 4.1 Consider Algorithm 1 with T OLstop = 0 and suppose there is no termination
and η̃ > ρ̄ holds, then the following conclusions hold:

(i) If only finite number of serious steps are generated in Algorithm 1 and the last serious
step is denoted by x̂, followed by an infinite sequence of null steps, then xn+1 → x̂ , as
n → +∞ and x̂ is a stationary point of the composite problem (1.1).

(ii) If there is an infinite number of serious steps generated by Algorithm 1, then any accu-
mulation point of the sequence {x̂ k} is a stationary point of the composite problem (1.1).

Proof (i) Consider the iterations n, which is generated after the last serious point x̂ . There
are only null steps. By Lemma 4.3, we have that, as n → ∞, the algorithm generates an
infinite sequence {xn} converging to p̄ := pη̃+μ̃ψ(x̂) with

lim
n→∞

(
φ̃n(x

n+1) + μn

2
‖xn+1 − x̂‖2

)
= ψ( p̄) + η̃ + μ̃

2
‖ p̄ − x̂‖2.

By the definition of the predict descent and (3.1), it is followed as

δn+1 = δ
f
n+1 + δ

ϕ
n+1 = f (x̂ k) − f̃n(x

n+1) + h(x̂)

+ηn

2
‖xn+1 − x̂‖2 − ϕ̃n(x

n+1)

→ f (x̂) + h(x̂) + η̃

2
‖ p̄ − x̂‖2 − f ( p̄) − h( p̄)

− η̃

2
‖ p̄ − x̂‖2, when In � n → ∞

= ψ(x̂) − ψ( p̄).

Since xn+1 is a null step, then the serious step test is not satisfied, i.e.

ψ(xn+1) > ψ(x̂) − mδn+1,

Taking n → ∞, it holds

ψ( p̄) ≥ ψ(x̂) − m lim
n→∞ δn+1 = ψ(x̂) − m(ψ(x̂) − ψ( p̄)).

By the above inequality and m ∈ (0, 1), we have

ψ( p̄) ≥ ψ(x̂).

Meanwhile, p̄ = pR̃ψ(x̂) means that

ψ( p̄) + η̃ + μ̃

2
‖ p̄ − x̂‖2 ≤ ψ(x̂) + η̃ + μ̃

2
‖x̂ − x̂‖2 = ψ(x̂).

So we have ψ( p̄) = ψ(x̂) and p̄ = x̂ . That is, x̂ := pη̃+μ̃ψ(x̂), so x̂ is a stationary point
of ψ(x).
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(ii) By Lemma 3.1, the sequence {xk} ∈ T , where T is compact, has an accumulation point,
that is, for some infinite set �, x̂ k → x̃ ∈ T as � � k → ∞. Since the iteration k + 1 is
a serious step, then we have x̂ k+1 = xik+1 . To simply the notation, we set jk = ik+1 − 1,
then x̂ k+1 = pμ̃ φ̃ jk (x̂

k). The telescopic sum of descent test for the subsequence of
serious steps implies that as k → ∞, either ψ(x̂ k) ↓ −∞ or δik+1 → 0. Since ψ is the
sum of two finite functions, then we have δik+1 → 0.
Consider k ∈ �, since ‖x̂ k+1 − x̂ k‖2 → 0, x̂ k+1 and x̂ k converge to x̃ as � � k → ∞,
then φ̃ jk (x̂

k+1) → ψ(̃x) holds. But the conditions x̂ k+1 = pμ̃ φ̃n x̂k) and η̃ > ρ̄ imply
that for all x ∈ L, we have

φ̃ jk (x̂
k+1) + μ̃

2
‖x̂ k+1 − x̂ k‖2 ≤ ψ(x) + η̃ + μ̃

2
‖x − x̂ k‖2.

Therefore, for k → +∞, we have

ψ(̃x) ≤ ψ(x) + η̃ + μ̃

2
‖x − x̃‖2, for all x ∈ T .

As x̃ ∈ T , and for any x /∈ T , it holds that

ψ(̃x) ≤ ψ(x̂0) + M0 ≤ ψ(x) ≤ ψ(x) + η̃ + μ̃

2
‖x − x̃‖2.

Hence, by the above discussions,we have

ψ(̃x) ≤ ψ(x) + η̃ + μ̃

2
‖x − x̃‖2, for all x ∈ RN .

In other words, that means x̃ = pη̃+μ̃ψ(x). Since η̃ > ρ̄, we have 0 ∈ ∂ψ(̃x). The
conclusion holds. ��

5 Numerical results

In this section, we focus on the numerical performance of Algorithm 1. The numerical
experiments will be divided into two parts. Two polynomial functions which be seen in [24,
34, 35] are provided in the first subsection. In the second subsection, we devote to deal
with some DC problems, which are taken from [36–38]. Meanwhile, we code Algorithm 1
in MATLAB R2016 and run it on a PC with 2.10 GHz CPU. The Quadratic programming
solver for Algorithm 1 is Quadprog.m, which is available in the Optimization Toolbox in
MATLAB.

5.1 Polynomial functions optimization

In this subsection, we firstly introduce two nonconvex polynomial problems developed in
[24, 34, 35]. Concretely, for each i = 1, · · · , N , let the function gi : RN → R be defined
by

gi (x) = (i x2i − 2xi − K ) +
N∑

j=1

x j , where x ∈ RN , and K is a constant.
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Fig. 1 The 3D image of h(x)

Fig. 2 The 3D image of ψ1(x)

The two polynomial functions have the following forms:

ψ1(x) :=
N∑

i=1

|gi (x)| + ‖x‖2
2

, and ψ2(x) :=
N∑

i=1

|gi (x)| + ‖x‖
2

.

The above two polynomial functions have some important properties (see in [24]): they are
nonconvex and nonsmooth; they are globally lower-c2, bounded below and level coercive;
If K = 0, they have the same optimal value 0 and the same global minimization solution
0. If we denote h(x) := ∑N

i=1 |gi (x)| and f (x) = 1
2‖x‖2 or f (x) = 1

2‖x‖, then the above
functions satisfy the conditions in the problem (1.1). Figures1, 2, 3 show that functions h,

ψ1 and ψ2 are nonconvex with K = 0 and N = 2.
In the following, we first check the numerical behaviour of Algorithm 1 for ψ1(x) by

comparing it with the the RedistProx method in [24]. Similar to that in [24], here we con-
sider the cases of K = 0 and N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The parameters referred in
Algorithm 1 are that

x0 = [1, 1, · · · , 1]T , m = 0.01, �η = 2, �μ = 2, M0 = 10,

R0 = 10 In = {0, 1, · · · , n}.
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Fig. 3 The 3D image of ψ2(x)

Table 1 The numerical results of Algorithm 1 and RedistProx algorithm for ψ1(x)

Dim Algorithm 1 RedistProx

Nu Ns Nf fk δk Nf fk δk

1 2 25 28 3.0702e−09 9.4028e−08 5 0.5000 1.0000e−4

2 30 46 77 9.2727e−09 7.4453e−07 10 3.6623e−4 8.0019e−4

3 5 12 18 5.1480e−08 5.3128e−07 12 5.2922e−4 2.52121e−1

4 7 11 19 7.0451e−06 4.1736e−07 18 2.5722e−2 1.23599e−1

5 2 15 18 5.4569e−2 8.9098e−07 26 5.1166e−2 3.04311e−1

6 – – – – – 60 0.000000 2.0000e−5

7 43 29 73 1.2567e−07 8.2491e−07 34 2.39281e−1 2.57493e−1

8 127 40 168 1.0969e−07 8.2662e−07 56 6.9823e−2 1.54684e−1

9 22 31 54 3.7028e−07 9.0585e−07 150 0.000000 1.4000e−5

10 28 41 70 1.4399e−07 5.934e−07 61 2.17352e−1 1.71962e−1

The parameters for the RedistProx method in [24] are as default. Meanwhile, we also stop the
method when the number of function evaluations is greater than 300, which can also be found
in [24]. To compare the numerical performance of Algorithm 1, we adopt the computational
results of the RedistProx algorithm in [24]. The numerical results are reported in Table 1 for
ψ1(x). The columns of Tables 1 and 2 have the following meanings:

Dim: the the tested problem dimension. Nu: the number of null steps.
Ns: the number of serious steps. Nf: the number of oracle function evaluations
used.
fk: the minimal function value found. δk : the value of δ at the final iteration.

From Table 1, we see that Algorithm 1 can not solve successfully ψ1(x) with N = 6.
However, it can be solved by selecting m = 0.05 with the results Nu = 202, Ns = 75,
N f = 278, f k = 1.69e − 07 and δk = 5.7577e − 07. Even under m = 0.1, the number
of iteration decreases: Nu = 77, Ns = 60, N f = 138, f k = 1.8373e − 07 and δk =
6.0042e − 07. This denotes there exists different parameter values for variable dimensions.
Although the number of iteration in Algorithm 1 is relatively a little bigger than that in the
RedistProx method, the minimal function values in Algorithm 1 are more precise than that
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Fig. 4 The values of ψ1(x) and its components with N = 1

Fig. 5 The values of components of proximal parameter in function ψ1(x) with N = 17 along Nf iterations

in RedistProx method. The more precise minimal function values indicate that our model
is more accurate. The descent condition (3.2) means the objective function values decrease
along all serious steps. In fact, it is a weaker condition than that of its components decreasing
along serious steps. Figure4 illustrates that the objective function value decreases along all
serious steps comparing one of its components increasing along some serious steps.

Next, we focus on the numerical performance ofψ2(x) and the results and the comparisons
can be found in Table 2. The parameters are the same as above except R0, here we select
R0 = 100. In Table 2, although function ψ2(x) with N = 1 does not be solved effectively
by Algorithm 1, Algorithm 1 obtains more precise minimal function values except the case
of N = 1, 2, 3. Hence, Algorithm 1 is more attractive.
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Table 2 The numerical results of Algorithm 1 and RedistProx algorithm for ψ2(x)

Dim Algorithm 1 RedistProx

Nu Ns Nf fk δk Nf fk δk

1 2 0 3 0.5000 2.8854e−09 13 0.0000 7.0000e−6

2 10 88 99 3.8463e−07 4.4659e−07 16 0.0000 0.0000

3 1 47 49 6.7233e−07 9.6252e−07 17 0.0000 2.0000e−6

4 6 38 45 5.4771e−07 7.5772e−07 23 1.9105e−2 1.28998e−1

5 7 38 46 1.4583e−07 9.266e−07 31 3.51332e−1 3.74674e−1

6 13 35 49 1.6685e−07 3.8116e−07 35 1.13835e−1 2.17732e−1

7 27 44 72 2.4414e−07 9.8858e−07 41 1.20009e−1 1.82087e−1

8 15 27 43 0.017576 7.6601e−07 41 1.084600 8.6662e−2

9 59 44 104 4.6022e−07 9.6337e−07 42 0.782526 0.238298

10 52 56 109 4.0989e−07 9.0711e−07 66 3.6327e−2 8.7404e−2

In the following, we consider higher dimension to Algorithm 1. The parameters for the
cases of N ∈ {11, 12, 13, 14, 15, 16, 17, 18, 19} are that: m = 0.01, �η = 2, �μ = 2,
M0 = 10 and R0 = 1000. For the stopping rules, T OLstop here is 10−5 and the maximal
function evaluations is 800. For N ∈ {20, 50, 80}, we take T OLstop = 10−4 and other
parameters keep unchanged. For the case of N = 100, we take T OLstop = 10−4 and
M0 = 100 and the other parameters keep unchanged. The corresponding results are reported
in Table 3. From Table 3, Algorithm 1may solve all the problems successfully which indicate
Algorithm 1 is effective. Figure5 shows that the convexification parameter η and proximal
parameter μ ultimately keep unchanged, which illustrates the conclusions of Lemma 3.1 and
Lemma 4.2.

5.2 The results for some DC problems

In this subsection, twelve nonsmooth DC problems are firstly tested for the effectiveness of
Algorithm 1. These functions can be expressed as ψ(x) = f (x) − g(x) where functions f
and g are convex. By taking h(x) = −g(x), it can be converted into the form of the objective
function in this paper. The testing problems are presented in Table 4 where Pr denotes the
index of problems and ψ∗ means the optimal value of the objective function.

The parameters in Algorithm 1 for the above DC problems are as follows: m = 0.1,
�η = 2, �μ = 2, M0 = 10 and R0 = 10. We also stop Algorithm 1 when the number
of function evaluations is bigger than 1000. For parameter T OLstop, we consider it for
different choices. For N ≤ 10, we take T OLstop = 10−5, otherwise, Meanwhile, we take
T OLstop = 10−4. Tables 5 and 6 show the numerical results of Algorithm 1 to these
problems. The columns Pr , N , δk and ψk denote the index of problems, the dimension of
variable x , the value of δn at the finial iteration and the minimum function value found,
respectively.

From Tables 5, 6, these problems can be successfully solved by Algorithm 1 that indicates
Algorithm 1 is effective and reliable. Meanwhile, Fig. 6 shows that parameters η and μ

ultimately keep unchanged, which also illustrates the conclusions of Lemma 3.1 and Lemma
4.2. Next, we compare the numerical results of Algorithm 1 with that of the PALNCO
method in [8] for Problems 1,2 and 9. he PALNCO method was designed by the authors
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Table 4 The testing problems

Pr Problem ψ∗ Pr Problem ψ∗ Pr Problem ψ∗

1 Problem 2 [36] 0 5 Problem 1 [36] 2 9 Problem 5 [36] 0

2 Problem 3 [36] 0 6 Problem 9 [36] 11/6 10 Problem 4 [37] 0

3 Problem 6 [36] −2.5 7 Problem 10 [36] −0.5 11 Problem 7 [37] 0

4 Problem 4 [38] 0 8 Problem 7 [36] 0.5 12 Problem 8 [37] 0

Table 5 The numerical results of Algorithm 1 for Problems 1-11

Pr N Nu Ns Nf δk ψk ψ∗

1 2 3 200 204 7.4516e−07 7.4219e−10 0.0000

2 4 7 18 26 2.5316e−08 6.0247e−13 0.0000

3 2 0 235 236 7.8417e−06 −2.4998e+00 −2.5000

4 2 0 5 6 3.8330e−11 2.0000e−11 0.0000

4 5 1 20 22 1.4221e−07 1.4221e−07 0.0000

4 10 2 46 49 6.6541e−07 5.0980e−08 0.0000

4 20 9 96 106 6.2524e−06 5.7540e−06 0.0000

4 50 25 246 272 7.6744e−06 1.2201e−06 0.0000

4 80 38 396 435 9.1123e−06 6.8365e−06 0.0000

4 100 53 496 550 8.3967e−05 4.8405e−05 0.0000

5 2 1 21 23 9.5406e−06 2.0000e+00 2.0000

6 4 0 15 16 8.5727e−06 1.8333e+00 11/6

7 2 0 24 25 3.9179e−06 −4.9999e−01 −0.5000

8 2 8 30 39 8.0415e−06 5.0000e−01 0.5000

9 2 1 2 4 2.0943e−07 1.1275e−12 0.0000

9 5 3 7 11 2.3907e−06 2.3262e−06 0.0000

9 10 9 5 15 4.8611e−06 3.8969e−06 0.0000

9 50 8 16 25 9.8931e−05 1.6987e−03 0.0000

9 100 10 10 21 6.6163e−05 1.4956e−04 0.0000

9 150 11 29 41 7.8237e−05 8.1479e−04 0.0000

9 200 9 19 29 7.4887e−05 6.4618e−04 0.0000

9 300 9 20 30 7.8354e−05 1.0954e−03 0.0000

for minimizing the sum of two nonsmooth functions and proximal alternating linearization
technique was referred. The parameters for Algorithm 1 keep unchanged except R0 = 20
and the parameters for the PALNCO method are as default. The results are reported in Table
7 which shows that our algorithm is comparable to the PALNCO method.

In the following, we compare the numerical performance of Algorithm 1 with the PBDC
method [36], the MPBNGC method [39], the nonsmooth DCA method [40, 41], the TCM
method [38], the NCVXmethod [30] and the penalty NCVXmethod [31] in small dimension
(N < 10). Herewe take the data in [36]. For the nonsmoothDCAmethod [40, 41], we take the
maximum number of the number of evaluation f and h as the number of function evaluation.
The numerical results are presented in Tables 8 and 9. Meanwhile, the column with ∗ denotes
that the obtained objective function value is not optimal. From Tables 8 and 9, It is clear
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Table 6 The numerical results of Algorithm 1 for Problem 2

Pr N Nu Ns Nf δk ψk ψ∗

9 400 11 8 20 5.2230e−05 7.3640e−05 0.0000

9 500 12 14 27 4.4978e−05 6.8267e−05 0.0000

9 1000 13 10 24 7.7988e−05 2.0104e−04 0.0000

9 1500 13 9 23 6.3465e−05 1.6718e−04 0.0000

9 2000 14 8 23 9.1341e−05 2.1689e−04 0.0000

9 3000 14 8 23 7.8129e−05 1.2992e−04 0.0000

10 2 48 140 189 9.6668e−06 6.3182e−05 0.0000

10 4 2 74 77 7.8904e−06 5.5639e−05 0.0000

10 5 120 118 239 9.5363e−06 4.6750e−05 0.0000

10 10 4 139 144 4.2608e−05 7.8598e−04 0.0000

10 20 10 107 118 5.0623e−05 4.2504e−03 0.0000

10 35 3 244 248 5.3753e−05 6.6062e−03 0.0000

10 50 21 423 445 9.8859e−05 1.0707e−02 0.0000

11 2 4 2 7 2.1964e−13 1.7957e−14 0.0000

11 5 7 9 17 4.9187e−06 3.3561e−06 0.0000

11 10 10 13 24 8.1033e−06 4.2077e−06 0.0000

11 50 43 35 79 6.0951e−05 4.5213e−04 0.0000

11 100 22 51 74 8.7378e−05 3.4136e−04 0.0000

11 500 19 61 81 8.6205e−05 3.2987e−03 0.0000

11 1000 20 41 62 8.9359e−05 1.4876e−03 0.0000

11 3000 20 19 40 9.9680e−05 4.4435e−04 0.0000

12 2 4 3 8 9.9660e−09 2.8599e−12 0.0000

12 5 9 7 17 9.8805e−07 7.6711e−07 0.0000

12 10 10 20 31 8.5379e−06 2.1073e−06 0.0000

12 50 13 8 22 6.7411e−05 7.4966e−05 0.0000

12 100 16 12 29 9.6775e−05 1.5114e−04 0.0000

12 500 16 78 95 9.8179e−05 3.4981e−04 0.0000

12 1000 17 50 68 9.9081e−05 2.3764e−03 0.0000

12 3000 19 26 46 9.5126e−05 1.5896e−03 0.0000

Table 7 The numerical results of Algorithm 1 and PALNCO method

Pr N Algorithm 1 PALNCO

Nu Ns Nf δk fk Nu Ns Nf fk

1 2 2 200 203 7.4516e−07 7.4318e−10 6 130 137 2.609026e−07

4 10 2 90 93 8.2443e−06 8.2329e−06 80 157 238 4.869462e−06

9 10 3 139 143 4.2608e−05 7.8598e−04 84 129 214 1.638234e−04
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Fig. 6 The values of η and μ along Nf for Problem 9 with N=50

that Algorithm 1 can successfully solve all the above DC problems. Although Algorithm 1
is comparable with the PBDC method and the MPBNGC method, it is competitive to the
nonsmooth DCA method, the NCVX method and the penalty NCVX method for the testing
DC problems.

Based on continuous approximations to the Demyanov-Rubinov quasidifferential, the
authors [37] proposed an effective method (called the DCQF method ) for the unconstrained
DC problems. In the following, we focus on the numerical performance of Algorithm 1 and
compare it with the DCQF method. Similar to that in [37], we take T OLstop = 10−4 and
keep other parameters unchanged. The numerical results can be found in Table 10. It is easy
to see that our algorithm is much effective for problems 9,11-12 even in a higher dimension
and the number of function values evaluated in our work is smaller that that in [37]. In order
to compare the number of iteration intuitively, we adopt the method in [42] and present the
performance profiles of iterations in Fig. 7 which indicates Algorithm 1 is more effective and
reliable.

6 Conclusions

In this paper, we focus on a class of composite problem which is the sum of a finite convex
function and a special nonconvex function. For the special nonconvex function (lower-c2), we
adopt the convexification technique. The corresponding parameter ηn is computed dynami-
cally along iterations. We utilize the sum of the convex function and the augment function
to approximate the primal problem. Meanwhile, the sum of the cutting plan models for the
convex function and the augment function is regarded as the cutting plan model for the
approximate function. A class of proximal bundle methods are designed. Under mild condi-
tions, the convergence is obtained and the accumulation point of iterative points is a stationary
point of primal problem. Two polynomial functions and twelve DC problems are referred in
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Table 10 The numerical results of Algorithm 1 and DCQF method

Pr N Algorithm 1 DCQF algorithm Pr N Algorithm 1 DCQF algorithm

Iter Nf Iter Nf Iter Nf Iter Nf

1 2 204 207 12 57 10 20 118 121 59 436

2 4 26 30 41 278 10 35 248 251 190 1667

4 5 22 23 26 128 10 50 445 449 236 2105

4 10 48 49 46 429 10 70 885 889 539 5799

4 20 106 107 141 1926 11 5 14 19 172 1381

4 35 189 190 293 5163 11 10 19 25 294 2495

4 50 272 273 434 7960 11 20 43 50 538 5312

5 2 18 20 11 82 11 35 37 44 843 8245

9 5 8 11 30 158 11 50 79 86 868 8414

9 10 14 18 44 305 11 70 68 76 1445 13, 117

9 20 32 37 41 399 12 5 16 23 36 180

9 35 19 25 28 263 12 10 26 34 62 399

9 50 25 32 36 350 12 20 29 38 76 602

9 70 24 31 49 805 12 35 60 70 131 618

10 5 96 98 21 122 12 50 22 32 109 667

10 10 144 147 20 123 12 70 58 69 76 402

Fig. 7 Performance profiles of Algorithm 1 and DCQF algorithm in iterations

the numerical experiment. The numerical results show that our algorithm is interesting and
attractive.

Data availability All data included in this study are available upon reasonable request.
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