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Abstract
We propose a class of infeasible proximal bundle methods for solving nonsmooth nonconvex
multi-objective optimization problems. The proposed algorithms have no requirements on
the feasibility of the initial points. In the algorithms, themulti-objective functions are handled
directly without any scalarization procedure. To speed up the convergence of the infeasible
algorithm, an acceleration technique, i.e., the penalty skill, is applied into the algorithm. The
strategies are introduced to adjust the proximal parameters and penalty parameters. Under
some wild assumptions, the sequence generated by infeasible proximal bundle methods con-
verges to the globally Pareto solution of multi-objective optimization problems. Numerical
results shows the good performance of the proposed algorithms.

Keywords Multi-objective optimization · Bundle method · Nonsmooth optimization
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1 Introduction

In this paper we seek to solve the nonsmooth nonconvex multi-objective optimization prob-
lem:

(MOP)
min F(x) := ( f1(x), . . . , f p(x))
s. t. c(x) ≤ 0,
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where the objective functions fi : Rn → R, i = 1, 2, . . . , p and the constraint function
c : Rn → R are locally Lipschitz continuous. Without loss of generality, we consider only
one constraint function in (MOP). When dealing with multiple inequality constraints, one
can utilize the maximum function to transform these finite constraints into one constraint.

The multi-objective optimization problem is to optimize several conflicting objectives
at the same time, which has arisen in many real-life applications of finance, engineering,
transportation, or mechanics, see [1, 4, 18, 21, 23] etc. Since these multiple objectives are
conflict, the optimal solution in single objective optimization problems is not suitable for
multi-objective optimization problems. The Pareto(efficient) solution ofmulti-objective opti-
mization problems is proposed. The Pareto solution means that there does not exist another
solution whose objective function value is the same or smaller than that of the Pareto solution,
and at least one objective function value is strictly smaller. There are many Pareto solutions
for multi-objective optimization problems. The set of all Pareto solutions is usually called the
Pareto set and its corresponding multi-objective function value is called the Pareto frontier.

The theoretical research on multi-objective programming has achieved abundant results
[24–26, 32], including various optimality conditions and stability results. The research on the
numerical algorithms of multi-objective programming is relatively little. There are two main
types of algorithms for solvingmulti-objective programming.One classical algorithm is based
on the scalarization strategy [2, 3],which is to transform themulti-objective programming into
its equivalent single-objective programming. This scalarization strategy has great influence
on the efficiency of the algorithm and the convergence of the algorithm depends on the
scalarization skill. The other kind of algorithms is to solve the multi-objective programming
directly,without any scalarizations, see [6, 14, 19, 29]. This kind ofmulti-objective algorithms
has its own special advantages and it can use all the information of the functions, which does
not depend on any scalarization technologies.

It is universally acknowledged that the bundle method is a highly reliable and effective
method for solving nonsmooth nonconvex optimization problems [7–10, 31]. In recent years,
bundle methods are applied into various types of optimization problems, such as infinite
programs [12, 27], control optimization problems [30], equilibrium problems [17, 22]. With
the development of multi-objective optimization, the bundle methods are applied into solving
nonsmooth multi-objective programs, refer to [13, 20]. However, the existing algorithms for
solving nonsmooth multiobjective programming still have some limitations. The proximal
bundlemethod proposed in [14] has the requirements on the feasibility of initial points, which
makes great impact on the convergence of the algorithm. Obtaining a feasible initial point
is very difficult because that finding a feasible initial point of multi-objective programming
is almost the same as that of solving the whole problem. The paper [29] used the cutting-
plane method to solve the multi-objective programming. The proposed auxiliary problem in
[29], which adds the multi-objective functions to the constraint. The increasing number of
constraints brings the result that the constraint qualification of the original problem may be
hardly to satisfy, and it increases the difficulty of solving the subproblem of the cutting-plane
model.

The aim of this paper is to utilize the proximal bundle method to seek Pareto solutions of
multiobjective optimization problems. The multiple objective functions are handled individ-
uallywithout any scalarization procedure. By virtue of improvement functions and the bundle
of information, we construct the subproblem of the multi-objective optimization problem.
What difference from other existed multi-objective algorithms is that, in this paper, the pro-
posed algorithm has no requirement on the feasibility of initial points, which means that the
starting point is arbitrary and it may be infeasible. To further increase the convergent speed of
the algorithm, an acceleration procedure is proposed, which is the penalty procedure. Some
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strategies are also put forward to adjust the penalty parameters. Under the wild assumptions,
the sequence generated by penalized infeasible proximal bundle methods globally converges
to the Pareto solution of multi-objective optimization problems.

The remainder of the paper is organized as follows. Section 2 gives some preliminaries
about nonsmooth optimization andmultiobjective optimization. Section 3 gives the infeasible
proximal bundle method and the penalized infeasible proximal bundle method, moreover,
the corresponding convergence results are provided. Section 4 is devoted to the numerical
experiments illustrating the efficiency of the methods. Section 5 is the conclusion.

2 Preliminaries

In this section we give some preliminaries from the convex analysis and multi-objective
optimization problems, which are needed in the following discussion.

Definition 2.1 [14] A function f : Rn → R is f ◦−pseudoconvex, if it is locally Lipschitz
continuous, and for all x, y ∈ Rn ,

f (y) < f (x) implies f ◦(x; y − x) < 0.

Definition 2.2 [14] For a locally Lipschitz continuous function f : Rn → R the Clarke
generalized directional derivative at x in the direction d ∈ Rn is defined by

f ◦(x; d) = lim sup
y→x
t↓0

f (y + td) − f (y)

t

and the Clarke subdifferential of f at x is

∂ f (x) = {ξ ∈ Rn | f ◦(x; d) ≥ ξ T d,∀d ∈ Rn}.
From the property of the Clarke subdifferential, it has f ◦(x; d) = max

g∈∂ f (x)
gT d .

Next we present two assumptions which are used in the later theorems.

Assumption 2.1 For the given sequence {xk} ∈ Rn, {yl} ∈ Rn , the constant M0 ≥ 0, the
level set satisfies

L0 = {x ∈ Rn | max{ fi (yl+1) − fi (x
k), c(yl+1) − c(xk) | i = 1, 2, . . . , p} < M0} ⊆ O,

where O is an open and bounded set.

Definition 2.3 [15] The functions f : Rn → R is said to be subdifferentially regular at
x ∈ Rn if it is locally Lipschitz continuous at x and for all d ∈ Rn the classical directional
derivative

f
′
(x; d) = lim

t↓0
f (x + td) − f (x)

t

exists and f
′
(x; d) = f ◦(x; d).

The following theorems give the important properties of f ◦-pseudoconvex function.

Theorem 2.1 [15] A f ◦-pseudoconvex function f (x) attains its global minimum at x∗, if and
only if 0 ∈ ∂ f (x∗).
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Theorem 2.2 [15] Let fi : Rn → R be f ◦−pseudoconvex for all i = 1, 2, . . . , p. Then the
function

f (x) = max{ fi (x) | i = 1, 2, . . . , p}
is also f ◦−pseudoconvex, and

∂ f (x) ⊆ conv{∂ fi (x) | fi (x) = f (x), i = 1, . . . , p}.
Furthermore, if fi satisfies Definition 2.3, then

∂ f (x) = conv{∂ fi (x) | fi (x) = f (x), i = 1, . . . , p}.
The ideal solution of (MOP) is:

x∗ ∈ C, fi (x
∗) ≤ fi (x),∀i = 1, 2, . . . , p,

where C is the feasible set of (MOP). The ideal solution is hard to obtain because that these
objectives are often balanced against each other. In the following we give the Pareto solution
of (MOP).

Definition 2.4 [14] A vector x∗ is said to be a global Pareto solution of (MOP), if there does
not exist x ∈ C such that

fi (x) ≤ fi (x
∗), for all i = 1, 2, . . . , p and f j (x) < f j (x

∗) for some j .

Vector x∗ is said to be a global weak Pareto solution of (MOP), if there does not exist x ∈ C
such that

fi (x) < fi (x
∗), for all i = 1, 2, . . . , p.

Definition 2.5 [14] A vector x∗ is called the local (weakly) Pareto solution of (MOP), if there
exists δ > 0 such that x∗ is the (weakly) Pareto solution on B(x∗, δ) ∩C . It can be seen that
the Pareto solution must be the weakly Pareto solution.

The tangent cone and polar cone of set K ⊆ Rn at x are defined as

TK (x) = {d ∈ Rn | there exist ti → 0 and di → d with x + ti di ∈ K },
K≤ = {d ∈ Rn | wT d ≤ 0,∀w ∈ K }.

The convex hull and closure hull of K are denoted by convK and clK . Denote

rayK = {λv | λ ≥ 0, v ∈ K } and coneK = ray convK .

Let C := {x ∈ Rn | c(x) ≤ 0}, K (x) := ∂c(x), and the constraint qualification

K≤(x) ⊆ TC (x) (2.1)

is posed to obtain optimality conditions.
The following theorem gives the optimality condition of (MOP).

Theorem 2.3 [15] x∗ is the local weakly Pareto solution of (MOP), and the constraint qual-
ification (2.1) is satisfied, then

0 ∈ conv ∪p
i=1 ∂ fi (x

∗) + cl cone ∂c(x∗). (2.2)

Moreover, if fi , i = 1, 2, . . . , p, c are f ◦−pseudoconvex, the condition (2.2) is the sufficient
condition of that x∗ is the global weakly Pareto solution.
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3 Infeasible multi-objective proximal bundle methods

In this section, firstly we give the infeasible multi-objective proximal bundle method(IMPB),
the proposed method has an advantage that it has no requirement on the feasibility of initial
points, which means that the algorithm can begin from any starting points.

To improve the speed of the IMPB method, we propose an acceleration procedure, which
is the penalty skill, and, the strategy to adjust the penalty parameters is also given.

For both two algorithms, under wild assumptions, the sequences generated by the algo-
rithms converge to the globally Pareto solutions of (MOP).

3.1 The infeasible multi-objective proximal bundle method

The IMPB method is the extension of proximal bundle methods into the multi-objective
case, which is usually used to handle the nonconvex constrained problems [6, 16]. The idea
of the IMPB method is to find the direction from any starting point, in which the values
of all objective functions improve simultaneously. For the IMPB method, it still needs the
scalarization to obtain the minimization function in the bundle. In this paper, we use the
improvement function H : Rn × Rn → R :

Hxk (y) = max{ fi (y) − fi (x
k), c(y) |i = 1, 2, . . . , p}. (3.1)

The following theoremgives the connection between the problem (MOP) and the improve-
ment function.

Theorem 3.1 [14] A necessary condition for x∗ ∈ Rn to be a global weak Pareto solution of
(MOP) is that

x∗ = arg min
y∈Rn

Hx∗(y). (3.2)

Moreover, if fi , i = 1, . . . , p, c are f ◦-pseudoconvex and the constraint qualification (2.1)
is valid, then the condition (3.2) is sufficient for x∗ to be a global weak Pareto solution of
(MOP).

Suppose that there are some reference points x j ∈ Rn from the past iterations and sub-
gradients g j

fi
∈ ∂ fi (x j ), j ∈ L fi

l , L fi
l ⊆ {1, 2, . . . , l} and g j

c ∈ ∂c(x j ), j ∈ Lc
l , L

c
l ⊆

{1, 2, . . . , l}. The bundle of information are given as follows:

B fi
k = {(x j , fi (x j ), g j

fi
) : j ∈ L fi

l }, L fi
l ⊆ {1, 2, . . . , l};

Bc
k = {(x j , c(y j ), g j

c ) : j ∈ Lc
l }, Lc

l ⊆ {1, 2, . . . , l}.
Let xk be the current approximation point of (MOP) at the iteration k. The linearization errors
of fi (x) and c(x) at y j are defined as

ekfi j = fi (xk) − fi (y j ) − 〈g j
fi
, xk − y j 〉, j ∈ L fi

l ,

ekc j = c(xk) − c(y j ) − 〈g j
c , xk − y j 〉, j ∈ Lc

l .
(3.3)

Because fi (x) and c(x) are nonsmooth nonconvex functions, the corresponding linearization
errors ekfi j and ekc j may be negative. In order to make the linearization errors nonnegative,

we consider the generalized linearization errors êkfi j = ekfi j + ηldkj , ê
k
c j + ηldkj , where d

k
j =
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1
2‖y j − xk‖2, ηl is the convexificaton parameter [5]. In this paper, the minimal value of
convexificaton parameter ηl is chosen as

ηmin
l = max

1≤i≤p

⎧
⎨

⎩
max

j∈L fi
l /{ jk }

−2ekfi j
‖y j − xk‖2 , max

j∈Lc
l /{ jk }

−2ekc j
‖y j − xk‖2 , 0

⎫
⎬

⎭
. (3.4)

When ηl ≥ ηmin
l , it has êkfi j ≥ 0, êkc j ≥ 0. For simplicity, denote �k

j = y j − xk, c+(xk) =
max{c(xk), 0}.

The piecewise approximation model of the objective function fi (x) at y j is

f̌il(y) = max
j∈L fi

l

{ fi (y j ) + ηldkj + ηl〈g j
fi

+ ηl�
k
j , y − y j 〉}

= fi (xk) + max
j∈L fi

l

{−êkfi j + 〈g j
fi

+ ηl�
k
j , y − xk〉}.

The piecewise approximation model of the constraint function c(x) at y j is

čl(y) = max
j∈Lc

l

{c(y j ) + ηldkj + ηl〈g j
c + ηl�

k
j , y − y j 〉}

= c(xk) + max
j∈Lc

l

{−êkc j + 〈g j
c + ηl�

k
j , y − xk〉}.

Then the approximation of the improvement function (3.1) is

Ȟl(y) = max{ f̌il(y) − fi (x
k), cl(y) |i = 1, 2, . . . , p}. (3.5)

Solve the following quadratic problem

yl+1 = arg min
y∈Rn

{Ȟl(y) + ul
2

‖y − xk‖2} (3.6)

to get the candidate point yl+1, where xk is called the proximal center and ul is the proximal
parameter.

The quadratic problem (3.6) is equivalent to the problem

min r + ul
2 ‖y − xk‖2

s. t. fi (xk) − êkfi j + 〈g j
fi

+ ηl�
k
j , y − xk〉 ≤ r , j ∈ L fi

l , i = 1, 2, . . . , p,

c(xk) − êkc j + 〈g j
c + ηl�

k
j , y − xk〉 ≤ r , j ∈ Lc

l .

(3.7)

The Lagrange function of (3.7) is

L(y, r , λ, u) = r + ul
2 ‖y − xk‖2 +

p∑

i=1

∑

j∈L fi
l

λi j [ fi (xk) − êkfi j + 〈g j
fi

+ ηl�
k
j , y − xk〉 − r ]

+ ∑

j∈Lc
l

u j [c(xk) − êkc j + 〈g j
c + ηl�

k
j , y − xk〉 − r ].
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The dual problem of (3.7) is

min
λ,u≥0

‖Gl‖2
2 −

p∑

i=1

∑

j∈L fi
l

λi j [ fi (xk) − êkfi j ] − ∑

j∈Lc
l

u j [c(xk) − êkc j ]

s. t.
p∑

i=1

∑

j∈L fi
l

λi j + ∑

j∈Lc
l

u j = 1, λi j ≥ 0, u j ≥ 0,

(3.8)

where Gl =
p∑

i=1

∑

j∈L fi
l

λi j (g
j
fi

+ ηl�
k
j ) + ∑

j∈Lc
l

u j (g
j
c + ηl�

k
j ).

Solve the dual problem (3.8) and obtain the solution yl+1, which is

yl+1 = xk − 1

ul
Gl . (3.9)

The aggregate linearization function at yl+1 is ψl(y) = Ȟl(yl+1) + 〈Gl , y − yl+1〉. The
function ψl(y) is affine and ψl(yl+1) = Ȟl(yl+1),Gl = ∇ψl(y), hence, we obtain ψl(y) ≤
Ȟl(y),∀y ∈ Rn . The aggregate linearization error at yl+1 is

εkl = Hk(x
k) − ψl(y

l+1) = c+(xk) − Ȟl(y
l+1) − ul‖yl+1 − xk‖2.

Furthermore, the predicted decrease is

δl = c+(xk) + ηl

2
‖yl+1 − xk‖2 − Ȟl(y

l+1) = εkl + Rl‖yl+1 − xk‖2, (3.10)

where Rl = ul + ηl
2 .

Now we propose the infeasible multi-objective proximal bundle method.

The IMPB method

Step 0 (Initialization) Choose a infeasible starting point x0 ∈ C , and select a unacceptable
functional increasing parameter M0, a convex parameter 
0, a proximal parame-
ter 
1, a stopping tolerance τstop . Set y00 = x0, compute g0fi ∈ ∂ fi (y0), i =
1, 2, . . . , p, g0c ∈ ∂c(y0). Initialize u1, η1, e0fi0 = e0c0 = d00 = �0

0 = 0.
Step 1 (Computing the candidat point) Solve the quadratic programming (3.6) and obtain

the solution yl+1. Compute the predicted decrease δl by (3.10).
Step 2 (Stopping test) If δl ≤ τstop , then stop.

Step 3 (Updating the bundle) Update the index set L fi
l+1 ⊇ {l + 1, ik}, Lc

l+1 ⊇ {l + 1, ik}.
Compute gl+1

fi
∈ ∂ fi (yl+1), i = 1, 2, . . . , p, gl+1

c ∈ ∂c(yl+1). Compute the bundle
of information:

ekfi,l+1
= fi (xk) − fi (yl+1) − 〈gl+1

fi
, xk − yl+1〉, j ∈ L fi

l ,

ekcl+1
= c(xk) − c(yl+1) − 〈gl+1

c , xk − yl+1〉, j ∈ Lc
l .

Step 4 (Testing the descent criterion) If the candidat point yl+1 is good enough, i.e.,
{

max
1≤i≤p

( fi (yl+1) − fi (xk)) ≤ −mδl and c(yl+1) ≤ 0, if c(xk) ≤ 0;
c(yl+1) ≤ c(xk) − mδl , if c(xk) > 0.

(3.11)

Update the stability center, and set xk+1 = yl+1; otherwise, set xk+1 = xk .
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Step 5 (Updating the convexification parameter) Compute ηmin
l+1 by (3.4), and set

{
ηl+1 = ηl , if ηmin

l+1 ≤ ηl;
ηl+1 = 
0η

min
l+1 , if ηmin

l+1 > ηl .
(3.12)

Step 6 (Updating the proximal parameter) If max{ fi (yl+1) − fi (xk), c(yl+1) − c(xk) | i =
1, 2, . . . , p} > M0, set ul+1 = 
1ul ; otherwise, set ul+1 = ul , and go to Step 1.

There are some explanations about the IMPB method.

(i) The descent criterion (3.11) has two distinct advantages: firstly, when the last stability
center is not feasible, the second formula of (3.11) is used to reduce the infeasibility;
secondly, when the last stability center is feasible, on the basis of maintaining the
feasibility of candidate points, the value of objective functions is reduced.

(ii) In Step 3, in order to find the new searching direction, it needs to reserve the infor-
mation of new iteration points into the bundle. The size of the bundle increases with
the number of iterations. When the number of iterations is large, due to the limited
computer memory space, it is necessary to compress the bundle, which is called the
aggregate technique. The readers can refer to [28] for more details about these aggre-
gate technique.

(iii) In Step 5, the updating manner of ηl will finally make ηl ≥ ηmin
l+1 , ê

k
fi j

≥ 0, êkc j ≥ 0

after many iterations. In Step 6, in order to obtain {yl} ⊆ L0, it needs to increase the
proximal parameter ul and adjust the piecewise approximation model, however, this
may lead the infinite loop between Step 1 and Step 6. The following lemma proves
that this loop will stop in finite steps.

Lemma 3.1 Suppose that the sequence of the candidate points generated by the IMPBmethod
is bounded, i.e., {yl} ⊆ L0. Then there exists the iteration index l

′
> 0 such that ul = ū, ηl =

η̄ for all l > l
′
.

Proof Because L0 ⊆ O , where O is an open bounded set, L0 is a closed bounded set.
The functions fi , i = 1, 2, . . . , p, c are Lipschitz continuous and there are Lipschizian
constants Lil , i = 1, 2, . . . , p, Lc. Take L f = max

1≤i≤p
{Lil}, L = max{L f , Lc}, r = M0

L , for

all x ∈ Br (xk), we have

‖ fi (x) − fi (xk)‖ ≤ L‖x − xk‖ ≤ M0,

‖c(x) − c(xk)‖ ≤ L‖x − xk‖ ≤ M0.

Due to g j
fi

∈ ∂ fi (y j ), g j
c ∈ ∂c(y j ), y j ∈ L0, it has ‖g j

fi
‖ ≤ L, ‖g j

c ‖ ≤ L . Take i = ik , then

gikhk ∈ ∂ Ȟl(xk), which is Ȟl(y) ≥ Ȟl(xk) + 〈gikhk , y − xk〉. Moreover, it holds that

argmin
y

{Ȟl(y) + ul
2 ‖y − xk‖2}

⊆ {y : Ȟl(xk) + 〈gikhk , y − xk〉 + ul
2 ‖y − xk‖2 ≤ Ȟl(xk)}

⊆ {y : −‖gikhk‖‖y − xk‖ + ul
2 ‖y − xk‖2 ≤ 0}

⊆ {y : ‖y − xk‖ ≤ 2‖gikhk ‖
ul

}
⊆ {y : ‖y − xk‖ ≤ 2T

ul
},where T = L f + Lc.

When l → ∞, ul becomes very large, then 2T
ul

becomes small. Moreover, the functions

fi , i = 1, 2, . . . , p, c are Lipschitz, then max
1≤i≤p

{ fi (yl+1) − fi (xk), c(yl+1) − c(xk)} > M0

does not hold, hence, there exists l
′
> 0, when l > l

′
, it has ul = ū.
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The convexification parameter ηl in Step 5 is nondecreasing during the iteration. In con-
trast, assume that ηl does not converge to a stable value. After the iteration l

′
, the generalized

linearization errors are nonnegative, i.e., êkfil ≥ 0, êkcl ≥ 0.When l > l
′
, it has that ηl > ηmin

k .
Hence, the parameter ηl no longer updates, and ηl = η̄. ��

Next we will give the convergence of the IMPB method. The set C is the feasible set of
(MOP),i.e., C = {x ∈ Rn | c(x) ≤ 0}. k is the index of serious steps, and Ls is the index set
of all serious steps.

l(k) is the index when the candidate point yl(k) becomes the stability center xk , i.e.,
xk = yl(k). When the number of iterations becomes very large, the convexification parameter
ηl and the proximal parameter ul will finally remain unchanged. Let the stopping parameter
τstop = 0 and the predicted decreasing δl > 0. Suppose that the algorithm generates two
kinds of infinite steps, which are: (1) there are infinite serious steps; (2) there are many finite
serious steps and then there are many infinite null steps. Before obtaining the convergence
of the algorithm, a lemma is given.

Lemma 3.2 For any decreasing index k0 > 0, the following conclusions are satisfied:

(i) xk ∈ {x ∈ Rn | c(x) ≤ c+(xk0)},∀k ≥ k0;
(ii) if there exists k1 satisfying xk1 ∈ C, then xk ∈ C,∀k ≥ k1.

Proof Fix the last decreasing index by k0, i.e., all the iterate steps are null steps after k0,
the conclusion (i) holds clearly. Assume that there are k0 + 1 serious steps, if xk0 /∈ C , by
(3.11), we have c(xk0+1) < c+(xk0) = c(xk0). Moreover, if xk /∈ C,∀k ≥ k0, repeating the
previous step, then {c(xk)} is nonincreasing, therefore, c(xk) < c+(xk0) = c(xk0), k ≥ k0.

Assume that it exists k1 satisfying xk1 ∈ C . If k1 is the last serious step, the conclusion (ii)
holds. Suppose that there are k1 + 1 serious steps, by (3.11), it has c(xk1+1) ≤ 0 = c+(xk1).
Repeating the previous step, we obtain c(xk) ≤ 0 = c+(xk1),∀k ≥ k1, whichmeans xk ∈ C .
The conclusion holds.

��
Lemma 3.2 shows that, no matter the initial point is feasible or infeasible, the proposed

algorithm can be applied into both two cases. Once the iteration point is feasible, the algo-
rithm becomes feasible and the speed of the algorithm is increased. It is of great practical
significance for applying the algorithm into more general multi-objective optimization fields.

Lemma 3.3 Suppose that the IMPB method generates a infinite sequence of serious steps,
and Ls is the index set of all serious steps, then we have

lim
k→∞ δk = 0, lim

k→∞ εkl = 0, lim
k→∞ ‖Gk‖ = 0, k ∈ Ls .

Proof We prove the conclusion from the following two cases. The first case is that the

serious step satisfying the first condition of (3.11), i.e., ∃k̂ s.t . c(xk̂) ≤ 0, c(xk+1) ≤
0,∀k ≥ k̂, k ∈ Ls , moreover, max

1≤i≤p
{ fi (xk+1) − f (xk)} ≤ −mδk . Then we obtain

fi (xk+1) − f (xk) ≤ −mδk,∀i = 1, 2, . . . , p, and { fi (xk)} is nonincreasing. Because
fi is bounded and f ◦−pseudoconvex, there exists the limit of the function. Denoting
{ fi (xk)} → f̂i , i = 1, 2, . . . , p, it has that

m
∑

k∈Ls

δk ≤
∑

k∈Ls

( f1(x
k) − f1(x

k+1)),∀k ≥ k̂,
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i.e.,
∑

k∈Ls

δk ≤ 1

m

∑

k∈Ls

( f1(x
k) − f1(x

k+1)), k ≥ k̂.

Similarly,

∑

k∈Ls

δk ≤ 1

m

∑

k∈Ls

( fi (x
k) − fi (x

k+1)), i = 1, 2, . . . , p.

After many infinite iterations, we obtain that

∑

k∈Ls

δk ≤ 1

m

∑

k∈Ls

( fi (x
k̂) − f̂i ), i = 1, 2, . . . , p.

Therefore,
∑

k∈Ls

δk ≤ 1

mp
( f1(x

k̂) − f̂1 + f2(x
k̂) − f̂2 + · · · + f p(x

k̂) − f̂ p),

hence, we have lim
k→∞ δk = 0.

The second case is that the serious step satisfying the second condition of (3.11), which
is c(xk) > 0. From the second formula of (3.11), it has c(xk+1) − c(xk) ≤ −mδk , which
means 0 < δk ≤ 1

m (c(xk) − c(xk+1)). Because c(x) is bounded and f ◦−pseudoconvex, the
limit of c(x) exists. Denoting {c(xk)} → ĉ, it holds that

∑

k∈Ls

δk ≤ 1

m

∑

k∈Ls

(c(xk) − c(xk+1)) = 1

m
(c(xk̂) − ĉ).

Therefore, we have lim
k→∞ δk = 0. It follows from (3.10) that 0 ≤ εkl ≤ δk and lim

k→∞ εkl = 0.

Due to yl+1 = xk − 1
ul
Gk, 1

uk
≥ 1

ū , it holds δk ≥ εkl + 1
uk

‖Gk‖2. Take the limit and we

obtain lim
k→∞ ‖Gk‖ = 0. ��

Now we present the convergence of the IMPB method.

Theorem 3.2 Suppose that the IMPB method generates a infinite sequence of serious steps,
then the accumulation point of {xk} is the weakly Pareto solution of (MOP).

Proof For every y ∈ Rn , it has Hxk (y) ≥ c+(xk)+〈Gk, y− xk〉−εkl , l = l(k) ∈ Ls . Due to
ul ≤ ū, by Lemma 3.2, it holds lim

k→∞ εkl = 0, lim
l→∞ ‖Gl‖ = 0. The sequence {xk} is bounded

and denote the subsequence by {xki }. When k → ∞, it has xki → x̄ . Moreover, there is
Hx̄ (y) ≥ c+(x̄) + 〈0, y − x̄〉 − 0 = c+(x̄) = Hx̄ (x̄). From the arbitrariness of y, it yields
that min{Hx̄ (y) | y ∈ Rn} = Hx̄ (x̄) = c+(x̄), i.e., x̄ = arg min

y∈Rn
Hx̄ (y). In what follows,

we prove that Hx̄ (x̄) = c+(x̄) = 0 by contradiction. Suppose that c+(x̄) > 0, by the local
Lipschitz continuity of c, it holds that c+(y) = c(y) > f (y) − f (x),∀y ∈ B(x̄). Because
x is the local optimality solution, it has c+(x̄) > 0, which contradicts with the solution
set being nonempty, hence, the relation Hx̄ (x̄) = c+(x̄) = 0, 0 ∈ ∂Hx̄ (x̄) is satisfied. By
Theorem 3.1, we obtain that x̄ is the weakly Pareto solution of (MOP). ��
Theorem 3.3 Suppose that the IMPB method generates an infinite sequence of null steps and
xklast is the last stability center, then xklast is the weakly Pareto solution of (MOP).
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Proof Fix H(·) = Hklast (·), by Lemmas 3.2 and 3.3, it holds that lim
l→∞ yl = ȳ and

lim
l→∞ Ȟl(yl+1) = H(ȳ) + η̄

2‖ȳ − xklast ‖2. Hence, the equality H(ȳ) + η̄
2‖ȳ − xklast ‖2 ≤

c(xklast ) = H(xklast ) is satisfied. Because that klast is the index of the last stability center,
when l > klast , the decreasing criterion (3.11) is not satisfied, the following relations are
satisfied.

(i) If c(xklast ) ≤ 0, it has max
1≤i≤p

( fi (yl+1) − fi (xklast )) > −mδl and c(yl+1) > 0. Hence,

H(yl+1) ≥ max
1≤i≤p

( fi (yl+1) − fi (xklast )) > −mδl = c+(xklast ) − mδl ;
H(yl+1) ≥ c(yl+1) > c+(xklast ) − mδl .

(ii) If c(xklast ) > 0, it has c(yl+1) > c(xklast ) − mδl , c+(xklast ) = c(xklast ), lim
l→∞ δl = 0.

Then H(yl+1) ≥ c(yl+1) > c+(xklast )−mδl holds. Passing the limit to the above inequality
and we get H(ȳ) ≥ c+(xklast ). Moreover, from H(ȳ) + η̄

2‖ȳ − xklast ‖2 ≤ c+(xklast ), we
obtain that ȳ = xklast , i.e., 0 ∈ ∂H(xklast ). According to Theorem 3.1, xklast is the weakly
Pareto solution of (MOP). The proof of the theorem is finished. ��

3.2 The penalized infeasible multi-objective proximal bundle method

In the improvement function of the IMPB algorithm, we use the functional value of testing
points to approximate the optimal value of the objective function. This approach of the
approximation is slow. The reason is that, the feasibility of the testing point in current iteration
is not considered, and the number of iterations of the algorithm is increased.On the other hand,
this approximation may make the algorithm fall into the infeasible local optimum, hence,
the feasible optimality solution of the problem is hardly reached and the algorithm is invalid.
For the above reasons, we make an improvement of the IMPB method. In the new algorithm,
a penalty item is added into the improvement function, which considers the feasibility of
testing points. The new algorithm is called the penalized infeasible multi-objective proximal
bundle (PIMPB) method. In PIMPB algorithm, the feasibility of the current iteration point
is considered, which not only reduces the risk of iteration points falling into the infeasible
local optimal point, but also speeds up the process of approximating the optimal value of
objective functions.

The new improvement function is H : Rn × Rn → R,

Hxk (y) = max{ fi (y) − θi1, c(y) − θ2 | i = 1, 2, . . . , p}, (3.13)

where θi1 = fi (xk) + sk max{0, c(xk)}, θ2 = tk max{0, c(xk)}. The PIMPB algorithm is
divided into two phases. The first phase is the infeasible iteration, in this phase, the iteration
point is infeasible. The second phase is the feasible iteration, in this phase, the iteration point
is feasible. Under this feasibility, the function value is decreased until the stopping criterion
is satisfied.

Compared with the improvement function in the IMPB algorithm, the improvement func-
tion in the PIMPB algorithm is to subtract two penalty terms from the former. The penalty
term only works in the first phase. In this phase, when the infeasibility of the constraint
function is reduced, the objective function is allowed to have a slight increment, which can
make the iteration point avoid becoming the infeasible local optimality solution. When the
algorithm enters the second phase, the penalty term is zero, and the improvement function
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is the same as that in the IMPB algorithm. In addition, in numerical experiments, it is found
that adding a penalty term can speed up the convergence of the algorithm.

In the following, we present the model of the PIMPB algorithm. The piecewise approx-
imation models of objective functions and constraint function are the same as that in the
IMPB algorithm. The new improvement function is

Ȟl(y) = max{ f̌il(y) − θil , čl(y) − θ2 | i = 1, 2, . . . , p}
= max{ f̌il(y) − fi (xk) − skc+(xk), čl(y) − tkc+(xk) | i = 1, 2, . . . , p}. (3.14)

Solve the following quadric programming problem

min
y∈Rn

Ȟl(y) + ul
2

‖y − xk‖2 (3.15)

to obtain the candidate point yl+1. The equivalent problem of (3.15) is

min r + ul
2 ‖y − xk‖2

s. t. −skc+(xk) − ê f ki j
+ 〈g j

fi
+ ηl�

k
j , y − xk〉} ≤ r , j ∈ L fi

l , i = 1, 2, . . . , p,

−tkc+(xk) − êkc j + 〈g j
c + ηl�

k
j , y − xk〉 ≤ r , j ∈ Lc

l .

(3.16)

The following theorem gives the formula of the candidate point.

Theorem 3.4 Suppose that yl+1 is the solution of (3.16), then

yl+1 = xk − 1

ul
Gl , (3.17)

where Gl = ∑p
i=1

∑

j∈L fi
l

λi j (g
j
fi
+ηl�

k
j )+

∑
j∈Lc

l
u j (g

j
c +ηl�

k
j ). Moreover, the following

conclusions hold.

(i) Gl ∈ ∂ Ȟl(yl+1);
(ii) εkl = ∑p

i=1

∑

j∈L fi
l

λi j êkfi j + ∑
j∈Lc

l
u j êkc j , and εkl ≥ 0.

Proof First we prove that (3.17) holds. The Lagrange function of (3.16) is

L(y, r , λ, u) = r + ul
2 ‖y − xk‖2 +

p∑

i=1

∑

j∈L fi
l

λi j [−skc+(xk) − ê f ki j
+ 〈g j

fi
+ ηl�

k
j , y − xk〉} − r ]

+ ∑

j∈Lc
l

u j [c(xk) − tkc+(xk) − êkc j + 〈g j
c + ηl�

k
j , y − xk〉 − r ].

Since the problem (3.16) is strongly convex, the optimal solution is unique and the dual gap
is zero, then

min
y,r

max
λ,u

L(y, r , λ, u) = min
λ,u

max
y,r

L(y, r , λ, u).

From ∂L
∂r = 0, it has

p∑

i=1

∑

j∈L fi
l

λi j + ∑

j∈Lc
l

u j = 1. Solve the following problem

min
y

r + ul
2 ‖y − xk‖2 +

p∑

i=1

∑

j∈L fi
l

λi j [−skc+(xk) − ê f ki j
+ 〈g j

fi
+ ηl�

k
j , y − xk〉}]

+ ∑

j∈Lc
l

u j [c(xk) − tkc+(xk) − êkc j + 〈g j
c + ηl�

k
j , y − xk〉]
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to obtain yl+1, taking the gradient on y, we obtain that 0 = ul(yl+1 − xk) + Gl , which is
yl+1 = xk − 1

ul
Gl .

Next we prove the assertions (i) and (ii).

(i) Since yl+1 is the optimal solution of (3.15), it has 0 ∈ ∂ Ȟl(yl+1) + ul(yl+1 − xk),
which is Gl ∈ ∂ Ȟl(yl+1), and the first assertion holds.

(ii) Bring yl+1 in the Lagrange function L(y, r , λ, u) and obtain

L(yl+1, r , λ, u) = ul
2

‖yl+1 − xk‖2 +
p∑

i=1

∑

j∈L fi
l

λi j [−skc
+(xk) − ê f ki j

]

+
∑

j∈Lc
l

u j [c(xk) − tkc
+(xk) − êkc j ] − 1

ul
‖Gl‖2.

On the other hand, L(yl+1, λ, u) = Ȟl(yl+1)+ ul
2 ‖yl+1 − xk‖2, from the definition of (3.4),

we have
p∑

i=1

∑

j∈L fi
l

λi j ê f ki j
+

∑

j∈Lc
l

u j ê
k
c j = Hxk (x

k) − Ȟl(y
l+1) − ul‖yl+1 − xk‖2.

Due to the aggregate linearization errors and ê f ki j
≥ 0, êkc j ≥ 0 , it holds that εkl =

p∑

i=1

∑

j∈L fi
l

λi j êkfi j + ∑

j∈Lc
l

u j êkc j ≥ 0. The second assertion is proven. ��

The aggregate linearization function is ψl(y) = Ȟl(yl+1) + 〈Gl , y − yl+1〉. The func-
tion ψl(y) is affine and ψl(yl+1) = Ȟl(yl+1),Gl = ∇ψl(y), hence, we obtain ψl(y) ≤
Ȟl(y),∀y ∈ Rn . The aggregate linearization error is

εkl = Hl(x
k) − ψl(y

l+1) = Hk(x
k) − Ȟl(y

l+1) − ul‖yl+1 − xk‖2.
By the definition of subdifferentials, (3.17) and ψl(y) ≤ Ȟl(y), we have

Hxk (x
k) − εkl ≤ Ȟl(y) + 〈Gk, xk − y〉. (3.18)

The predicted decrease is

δl = Hxk (x
k) − Ȟl(y

l+1) = εkl + ul‖yl+1 − xk‖2. (3.19)

Now we propose the PIMPB method.
The PIMPB method

Step 0 (Initialization) Choose a infeasible starting point x0 ∈ C and a stopping tolerance
τstop . Select a convex parameter 
0, a proximal parameter 
1, a penalty parameter

2 and an improvement parameter m. Set y00 = x0 and compute g0fi ∈ ∂ fi (y0), i =
1, 2, . . . , p, g0c ∈ ∂c(y0). Initialize u1, η1, e0fi0 = e0c0 = d00 = �0

0 = 0.
Step 1 (Computing candidate points) Establish the piecewise linearization approximation

model (3.15), and solve its dual problem (3.16) to obtain the dual parameters λ, u.
Compute yl+1 by (3.17) and δl by (3.19).

Step 2 (Stopping test) If δl ≤ τstop , then stop; otherwise, go to the next step.
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Step 3 (Updating the bundle) Update the index set L fi
l+1 ⊇ {l + 1, ik}, Lc

l+1 ⊇ {l + 1, ik}.
Compute gl+1

fi
∈ ∂ fi (yl+1), i = 1, 2, . . . , p, gl+1

c ∈ ∂c(yl+1). Compute the bundle
of information:

ekfi,l+1
= fi (xk) − fi (yl+1) − 〈gl+1

fi
, xk − yl+1〉, j ∈ L fi

l ,

ekcl+1
= c(xk) − c(yl+1) − 〈gl+1

c , xk − yl+1〉, j ∈ Lc
l .

Step 4 (Testing the descent criterion) If the candidate point yik is good enough, i.e.,
⎧
⎨

⎩

max
1≤i≤p

( fi (yl+1) − fi (xk)) ≤ −mδl and c(yl+1) ≤ 0, if c(xk) ≤ 0;
c(yl+1) ≤ c(xk) − mδl , if c(xk) > 0.

(3.20)

then update the stability center, and set xk+1 = yl+1; otherwise, set xk+1 = xk .
Step 5 (Updating the convexification parameter) Compute ηmin

l+1 by (3.11), and set
{

ηl+1 = ηl , if ηmin
l+1 ≤ ηl;

ηl+1 = 
0η
min
l+1 , ηmin

l+1 > ηl .
(3.21)

Step 6 (Updating the proximal parameter) If yl+1 is the descent point, then set uk+1 ≤
umax < +∞; otherwise, set ul+1 ∈ [ul , umax ].

Step 7 (Updating the penalty parameter) Choose the penalty parameter 
2 satisfying

0 ≤ tk ≤ 1, sk ≥ 0, sk − tk ≥ 
2 > 0, (3.22)

and set k = k + 1, and go to Step 1.

Now we make the comparison between IMPB, PIMPB algorithms and other algorithms
given in [14] and [19]. The main differences among them are as follows:

(i) The first difference is the choice of the initial solution. The initial point of [14] and [19]
is feasible. The initial point of this paper is arbitrary and it can be infeasible.

(ii) The second difference is the descent criterion. Since the initial point of the algorithm is
arbitrary, it needs to consider the feasibility of the testing points in the descent criterion.
In the descent criterion, when the current stability center is feasible, the decrease of
objective functions and the feasibility of the candidate point are considered. When
the current stability center is infeasible, it needs to have a sufficient decrease for the
constraint function.

(iii) The third difference is the improvement function. To further guarantee the feasibility
of the testing points, the penalty procedure is added to the improvement function. It not
only reduces the risk of iteration points falling into the infeasible local optimum, but
also speeds up the process of approximating the optimal value of objective functions.

Next we present several lemmas before giving the convergence of the PIMPB algorithm.

Lemma 3.4 The penalty parameter is updated according to (3.22), and the following con-
clusions hold.

(i) If c(xk) ≤ 0, it has Hxk (x
k) = 0. If c(xk) > 0, it has Hxk (x

k) = c(xk)(1 − tk).
(ii) When k is the index of null steps, it holds Hxk (y

l+1) > Hxk (x
k) − mδk .

Proof (i) If c(xk) ≤ 0, it has Hxk (x
k) = 0. If c(xk) > 0, it follows from (3.22) that

Hxk (x
k) = c(xk)(1 − tk) ≥ 0 and (i) is proved.
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(ii) When k is the index of null steps, the descent criterion (3.19) doesn’t hold. We prove the
conclusion from the following two cases. The first case is c(xk) > 0, and it has

Hxk (y
k+1) = max{ fi (yk+1) − fi (xk) − skc(xk), c(yk+1) − tkc(xk)}

≥ c(yk+1) − tkc(xk)
≥ c(xk) − mδk − tkc(xk)
= (1 − tk)c(xk) − mδk
= Hxk (x

k) − mδk .

The second case is c(xk) ≤ 0, then max
1≤i≤p

{ fi (yk+1) − fi (xk)} ≥ −mδk and c(yk+1) > 0,

hence,

Hxk (y
k+1) = max

1≤i≤p
{ fi (yk+1) − fi (xk), c(yk+1)}

≥ max
1≤i≤p

{ fi (yk+1) − fi (xk)}
≥ −mδk
= Hxk (x

k) − mδk .

So we obtain Hxk (y
k+1) ≥ c(yk+1) > 0 ≥ Hxk (x

k) − mδk , and (ii) is proved. ��
Lemma 3.5 Suppose that the PIMPB algorithm generates an infinite sequence of serious
steps, and Ls is the index set of serious steps, then

(i) lim
k→∞ δk = 0, lim

k→∞ εkl = 0, lim
k→∞ ‖Gk‖ = 0, k ∈ Ls.

(ii) Hxk (x
k) ≤ Ȟk(y) + o(1/k), k ∈ Ls when k is large enough.

Proof (i) The proof is similar with Lemma 3.3 and we omit the proof.
(ii) Since lim

k→∞ εkl = 0, from (3.18), we obtain that Hxk (x
k) ≤ Ȟk(y) + o(1/k), k ∈ Ls ,

when k is large enough. ��
Lemma 3.6 Suppose that the PIMPB algorithm generates an infinite sequence of null steps,

and L
′
s is the index set of null steps. x̂ = xk̂ is the last serious step, and there are all null

steps after k̂ steps. Then

(i) lim
k→∞ δk = 0, lim

k→∞ εkl = 0, lim
k→∞ ‖Gk‖ = 0, k ∈ L

′
s ;

(ii) when k ∈ L
′
s is large enough, it has y

k → x̂ ;
(iii) Hxk (x

k) ≤ Ȟk(y) + o(1/k), k ∈ L
′
s and k is large enough.

Proof (i) From (3.17), it has yk+1 = x̂ − 1
uk
Gk,Gk = uk(x̂ − yk+1), then

2〈Gk, y − yk+1〉 = 2uk〈x̂ − yk+1, y − yk+1〉
= uk〈x̂ − yk+1, x̂ − yk+1 + y − x̂〉 + uk〈y − yk+1 + x̂ − y, y − yk+1〉
= uk‖yk+1 − x̂‖2 + uk‖y − yk+1‖2 − uk‖y − x̂‖2.

By the aggregate linearization function, it yields

ψk(y) = Ȟk(yk+1) + 〈Gk, y − yk+1〉
= Ȟk(yk+1) + uk

2 ‖yk+1 − x̂‖2 + uk
2 ‖y − yk+1‖2 − uk

2 ‖y − x̂‖2.
Denote Vk = Ȟk(yk+1) + uk

2 ‖yk+1 − x̂‖2, where Vk is the optimal value of (3.15), then

ψk(y) + uk
2

‖y − x̂‖2 = Vk + uk
2

‖y − yk+1‖2.
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When y = x̂ , there exists M̂ > 0 satisfying Vk + uk
2 ‖x̂ − yk+1‖2 = ψk(x̂) ≤ Ȟk(x̂) ≤ M̂ ,

then Vk has the upper bound. Due to Ȟk+1(y) ≥ ψk(y), for ∀y ∈ Rn , it holds Ȟk+1(y) +
uk
2 ‖y − x̂‖2 ≥ Vk + uk

2 ‖y − yk+1‖2. In a null step, from Step 6 of the PIMPB algorithm,
it has uk+1 ≥ uk . Taking y = yk+2, it holds Vk+1 ≥ Vk − uk

2 ‖yk+2 − yk+1‖2, and {Vk}
is nondecreasing, then {Vk} is convergent and Vk+1 − Vk − uk

2 ‖yk+2 − yk+1‖2 → 0. From
Lemma 3.4, it has Hxk (y

k+1) > Hxk (x
k) − mδk . Adding δk to the above inequality, we

obtain

0 ≤ (1 − m)δk < δk + Hxk (y
k+1) − Hxk (x

k)

= Hxk (y
k+1) − Ĥk(yk+1)

= Hxk (y
k+1) − Ĥk(yk+2) + Ĥk(yk+2) − Ĥk(yk+1).

Furthermore,

f̌i,k+1(yk+2) ≥ fi (x̂) − êk+1
fi,k+1

+ 〈g fi,k+1 + ηk+1(yk+1 − x̂), yk+2 − x̂〉
= fi (xk+1) + 〈g fi,k+1 , x̂ − yk+1〉 − ηk+1

2 ‖x̂ − yk+1‖2
+〈g fi,k+1 + ηk+1(yk+1 − x̂), yk+2 − x̂〉

≥ fi (xk+1) + 〈g fi,k+1 , y
k+2 − yk+1〉 + ηk+1〈yk+1 − x̂, yk+2 − yk+1〉

= fi (xk+1) + 〈g fi,k+1 + ηk+1�
k
k+1, y

k+2 − yk+1〉.
Similarly, we have čk+1(yk+2) ≥ c(xk+1) + 〈gc,k+1 + ηk+1�

k
k+1, y

k+2 − yk+1〉. Hence, it
holds that

Ȟk+1(yk+2) = max{ f̌i,k+1(yk+2) − θi1, čk+1(yk+2) − θ2}
≥ max{ fi (xk+1) + 〈g fi,k+1 + ηk+1�

k
k+1, y

k+2 − yk+1〉 − θi1, c(xk+1)

+〈gc,k+1 + ηk+1�
k
k+1, y

k+2 − yk+1〉 − θ2}.
Because {yk} is bounded, there exists N > 0, ∀k, ‖�k

k+1‖ ≤ N . fi , i = 1, 2, . . . , p, c are
Lipschitz functions, then it exists L > 0 satisfying ‖g fi,k+1‖ ≤ L, ‖gc,k+1‖ ≤ L . According
to the Cauchy–Schwarz inequality, it has

Ȟk+1(y
k+2) ≥ Hk(y

k+1) − (L + ηk+1N )‖yk+2 − yk+1‖,
then

0 ≤ (1 − m)δk < Ȟk+1(yk+2) − Hk(yk+1) + (L + ηk+1N )‖yk+2 − yk+1‖
= Vk+1 − Vk − uk

2 ‖yk+2 − x̂‖2 + uk
2 ‖yk+1 − x̂‖2

+ (L + ηk+1N )‖yk+2 − yk+1‖
= 〈yk+2 − yk+1,Gk〉 + (L + ηk+1N )‖yk+2 − yk+1‖

+ Vk+1 − Vk − uk
2 ‖yk+2 − yk+1‖2

≤ (L + ηk+1N + ‖Gk‖)‖yk+2 − yk+1‖ + Vk+1 − Vk − uk
2 ‖yk+2 − yk+1‖2

≤ (2L + ηk+1N )‖yk+2 − yk+1‖ + Vk+1 − Vk − uk
2 ‖yk+2 − yk+1‖2.

Due to Vk+1 − Vk − uk
2 ‖yk+2 − yk+1‖2 → 0, ‖yk+2 − yk+1‖ → 0, it has lim

k→∞ δk = 0.

Because 0 ≤ εkl ≤ δk , it has that lim
k→∞ εkl = 0.

Furthermore, δk ≥ εkl + 1
umax

‖Gk‖2 ≥ 0, it holds that lim
k→∞ ‖Gk‖ = 0, from (3.18), we

obtain Hxk (x
k) ≤ Ȟk(y) + o(1/k), k ∈ L

′
s when k is large enough. ��

Now we give the convergence result of the PIMPB algorithm.
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Theorem 3.5 Let fi , i = 1, 2 · · · , p and g be f ◦-pseudoconvex and the constraint qualifi-
cation (2.1) be valid.

The penalty parameter of thePIMPBalgorithm is updated according to (3.22). ThePIMPB
algorithm generates the sequence {xk}, denoting {xk} → x̄, {sk} → s̄, {tk} → t̄ , then the
following conclusions hold.

(i) ∀y ∈ Rn, it hasmax{c̄, 0}(1− t̄) ≤ max
1≤i≤p

{ fi (y)− f̄i − s̄max{c̄, 0}, c(y)− t̄ max{c̄, 0}}.
(ii) If c̄ > 0, it exists the constant R0 satisfying x̄ = arg min

y∈Rn
c(y) when s̄ ≥ R0.

(iii) If c̄ ≤ 0, x̄ is the weakly Pareto solution of (MOP).

Proof Suppose that the PIMPB algorithm generates the infinite loops, denoting by Ls, L
′
s

the infinite serious steps and null steps, from Lemmas 3.4–3.6, there exists the subsequence
K satisfying {xk}k∈K → x̄ . When K ⊆ L

′
s , it has {yk} → x̄ , and the stability point xk = x̄

is unchanged. Moreover, it holds that

∀y ∈ Rn, k ∈ K , Hxk (x
k) = max{c(xk), 0}(1 − tk) ≤ Ȟk(y) + o(1/k).

Because Ȟk(y) ≤ Hk(y), we have

max{c(xk), 0}(1 − tk) ≤ max
1≤i≤p

{ fi (y) − θi1, c(y) − θ2} + o(1/k), (3.23)

where θi1 = fi (xk) + sk max{c(xk), 0}, θ2 = tk max{c(xk), 0}. When {xk}k∈K → x̄ , denot-
ing f̄i = lim

k∈K fi (xk), c̄ = lim
k∈K c(xk), s̄ = lim

k∈K sk, t̄ = lim
k∈K tk , pass the limit to (3.23) and

obtain

∀y ∈ Rn,max{c̄, 0}(1 − t̄) ≤ max
1≤i≤p

{ fi (y) − f̄i − s̄max{c̄, 0}, c(y) − t̄ max{c̄, 0}}.

The proof of (i) is finished.
(ii) When c̄ > 0, take R0 = 1

c̄ { max
1≤i≤p

{ fi (y) − f̄i } − c(y)} + t̄ . If s̄ ≥ R0, it has

(s̄ − t̄)c̄ > max
1≤i≤p

{ fi (y) − f̄i } − c(y) ⇔ fi (y) − f̄i − s̄max{c̄, 0} < c(y) − t̄ max{c̄, 0}.

From (i), it holds c̄ ≤ c(y),∀y ∈ Rn , which is x̄ = arg min
y∈Rn

c(y), and (ii) holds. (iii) When

c̄ ≤ 0, we have Hx̄ (x̄) = 0 ≤ max
1≤i≤p

{ fi (y) − f̄i , c(y)},∀y ∈ Rn , so it has 0 ∈ ∂Hx̄ (x̄), by

Lemma 3.4, we know that x̄ is the weakly Pareto solution of (MOP). ��

4 Numerical Results

In this section we give some numerical experiments to test the IMPB algorithm and the
PIMPB algorithm for (MOP). The algorithms are completed in MATLAB 9.2. The subprob-
lem is solved by quadratic-programming QuadProg.m which is available in the MATLAB
optimization toolbox.

Example 1 The multiobjective optimization problem is defined by

min f1(x) = √‖x‖ + 2
f2(x) = max{−x1 − x2,−x1 − x2 + x21 + x22 − 1}

s.t . g(x) = max{x21 + x22 − 10, 3x1 + x2 + 1.5} ≤ 0,
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Fig. 1 The mulobjective function

where x = (x1, x2)T ∈ Rn . The function f1 is f ◦−pseudoconvex, f2 is convex and the
constraint function g is also convex.

Figure 1 gives the images of objectives functions f1 and f2.
Since the IMPB algorithm has no requirement on the feasibility of the starting point, we

choose the infeasible starting point x0 = (1, 1)T .
The parameters of the algorithmare given as follows: the increasing parameterM0 = 8, the

convex parameter 
0 = 1.009, the proximal parameter 
1 = 1.005, the stopping tolerance
τstop = 10−4, the improvement parameter m = 0.1, the convex parameter η1 = 1, the
proximal parameter u1 = 1, and the constraint tolerance is 10−3.

Figure 2 presents the variation of the constrained function during the iteration of the
algorithm. From Fig. 2, it can be seen that the initial point is infeasible, and it leads to some
initial iteration being infeasible.

When the iteration points are infeasible, the amplitude of the value of the constraint
function is relatively large.

After nine iterations, the algorithm achieves the feasible point and executes the feasible
solution mode.

The amplitude of the constraint function value is relatively small, and the Pareto optimal
solution is found on the basis of keeping the feasibility.

Figure 3 describes the changes of two objective functions during the iteration of the
algorithm.

From Fig. 3, it can be seen that the two objective functions are non-monotonic. It is
reasonable because the initial point is not feasible, and later some initial iteration are also
not feasible. At this time, the values of functions are not necessarily reduced. The IMPB
algorithm pays more attention to increasing the functional value to reduce the infeasibility,
once the feasible point is reached, the values of two objective functions are reduced while
the feasibility is maintained.

Table 1 shows that, at the same stopping criterion, after six iterations, the multi-
objective proximal bundle(MPB) method provided by Karmitsa [14] reaches the Pareto
optimal solution x∗ = (−0.4620,−0.1138)T , and the corresponding optimal value is
f ∗ = (1.5735, 0.5759)T . The IMPB algorithm reaches the Pareto optimal solution x∗ =
(−0.4486,−0.1544)T , the optimal value f ∗ = (−0.4486,−0.1544)T and the constraint
function g∗ = −3.4931 × 10−4 after 33 iterations.

The IMPB algorithm is an infeasible algorithm and the initial point can be not feasible.
Karmitsa’s MPB algorithm is a feasible algorithm, and it requires the feasibility of initial
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Fig. 2 The constraint function

Fig. 3 The variation of the objective function

points and all the iterations need to be feasible. From this aspect, the number of iterations of
the IMPB algorithm is more than that of Karmitsa’s MPB algorithm.

To increase the speed of the IMPB algorithm, an acceleration procedure, i.e., the penalty
procedure is added to the IMPB algorithm, which is called the PIMPB algorithm. In the
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Table 1 The comparison of MPB
and IMPB

Iterations Optimal solution Optimal value

MPB 6 (− 0.4620, − 0.1138) (1.5735, 0.5759)

IMPB 33 (− 0.4486, − 0.1544) (1.5730, 0.6031)

Table 2 The comparison of
IMPB and PIMPB for Example 1

Iterations Optimal solution Optimal value

IMPB 33 (− 0.4486, − 0.1544) (1.5730, 0.6031)

PIMPB 20 (− 0.4508, − 0.1482) (1.5731, 0.5990)

Fig. 4 The variation of the objective function

PIMPB algorithm, set the penalty parameter s0 = 1, the increasing penalty parameter 
2 =
1.8, and the other parameters are set the same with that in the IMPB algorithm.

Figures 4 and 5 describe the changes of the values of objective functions and the constraint
function by using the PIMPB algorithm. Because that the penalty term of constraint function
is added to the improvement function, the convergent speed of the PIMPB algorithm is
obviously faster than that of the IMPB algorithm. It is follows from Table 2 that the IMPB
algorithm performs 33 steps to achieve the stopping accuracy, while the PIMPB algorithm
only needs 20 steps to achieve the same precision.

Example 2 In this example we consider the Pentagon optimization problem [11]. There are
three objective functions of 6-dimensions with 15 constraint functions in this nonsmooth
nonconvex problem, which is

123



Journal of Global Optimization (2023) 85:891–915 911

Fig. 5 The variation of the constraint function

min f1(x) = −√
(x1 − x3)2 + (x2 − x4)2

f2(x) = −√
(x1 − x3)2 + (x4 − x6)2

f3(x) = −√
(x1 − x5)2 + (x2 − x6)2

s.t . gi j (x) = xi cos(
2π j
5 ) + xi+1 sin(

2π j
5 ) − 1 ≤ 0,

where x = (x1, x2, . . . , x6)T , i = 1, 2, 3; j = 0, 1, . . . , 4. Figure 6 gives the image of the
objective function f1.

We use the PIMPB method to solve this example and change the setting of parameters as
follows: the proximal parameter 
1 = 1.2, the increasing penalty parameter 
2 = 1.8, the
improvement parameterm = 0.08, the stopping criterion τstop = 10−3. Because the PIMPB
method has no feasibility requirement on the starting point, we set the infeasible starting
point x0 = (−1, 0.5, 0.6,−1, 0.9, 1.8)T . At this starting point, the two constraint functions
g12(x0) = 0.1029, g34(x0) = 0.1365 are infeasible, and the other 13 constraint functions
are feasible .

Figure 7 shows the change of the maximum constraint function during iterations. From
Fig. 7, it can be seen that the initial implementation of the PIMPB algorithm is infeasible.
When the iteration point is infeasible, the value of the constraint function is larger. Fifteen
times later, the feasible point is reached, and then the feasible solution mode is executed. At
this time, the amplitude of the constraint function value is relatively small, and the Pareto
optimal solution is found on the basis of keeping the feasibility. Figure 8 describes the changes
of three objective functions during iterations.

Table 3 provides the comparison results of IMPBandPIMPB for this problem. The number
of iterations by the PIMPB method is 55, about almost half of the IMPB method with 98
iterations. The CPU time of the PIMPB method is much less than that of the IMPB method.

To conclude, since the IMPB and PIMPB methods are infeasible algorithms, they are
performed well for these two examples. The proposed algorithms reduces the requirements
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Fig. 6 The objective function of f1

Fig. 7 The maximum constraint function

on the initial points of the problems, which decreases the computation of the algorithms. The
overall behavior of the PIMPB algorithm is better than the IMPBmethod due to its distinctive
penalty procedure, which is of great efficiency to solve constrained optimization problems.
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Fig. 8 The three objective functions

Table 3 The comparison of IMPB and PIMPB for Example 2

Iterations Optimal value CPU time

IMPB 98 (− 2.2998, − 1.8858, − 1.7402) 157.87

PIMPB 55 (− 2.3138, − 1.5799, − 1.9387) 16.83

5 Conclusion

We have presented two infeasible proximal bundle methods for nonsmooth nonconvexmulti-
objective optimization problems. In the algorithms, the multiobjective functions are handled
individually without employing any scalarization. The proposed algorithm has no require-
ment on the feasibility of initial points. The penalty procedure is given to increase the speed of
the convergence of the infeasible algorithm. Under some generalized convexity assumptions,
we prove that the algorithm finds the global weakly Pareto optimal solutions of the problem.

Acknowledgements The authors thank two anonymous referees for a number of valuable and helpful sug-
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