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Abstract
We consider strongly convex distributed consensus optimization over connected networks.
EFIX, the proposed method, is derived using quadratic penalty approach. In more detail,
we use the standard reformulation—transforming the original problem into a constrained
problem in a higher dimensional space—to define a sequence of suitable quadratic penalty
subproblems with increasing penalty parameters. For quadratic objectives, the corresponding
sequence consists of quadratic penalty subproblems. For generic strongly convex case, the
objective function is approximated with a quadratic model and hence the sequence of the
resulting penalty subproblems is again quadratic. EFIX is then derived by solving each of the
quadratic penalty subproblemsvia afixedpoint (R)-linear solver, e.g., JacobiOver-Relaxation
method. The exact convergence is proved as well as the worst case complexity of order
O(ε−1) for the quadratic case. In the case of strongly convex generic functions, the standard
result for penalty methods is obtained. Numerical results indicate that the method is highly
competitive with state-of-the-art exact first order methods, requires smaller computational
and communication effort, and is robust to the choice of algorithm parameters.

Keywords Fixed point methods · Quadratic penalty method · Distributed optimization ·
Strongly convex problems

1 Introduction

We consider problems of the form

min
y∈Rn

f (y) =
N∑

i=1

fi (y), (1)

where fi : Rn → R are strongly convex local cost functions. A decentralized optimization
framework is considered, more precisely, we assume decentralized but connected network
of N nodes.

Distributed consensus optimization over networks has become a mainstream research
topic, e.g., [2–4, 6, 9, 11], motivated by numerous applications in signal processing [13],
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control [16], Big Data analytics [23], social networks [1], etc. Various methods have been
proposed in the literature, e.g., [22, 24, 28–31, 33–35, 37].

While early distributed (sub)gradient methods exhibit several useful features, e.g., [18],
they also have the drawback that they do not converge to the exact problem solution when
appliedwith a constant step-size; that is, for exact convergence, they need to utilize a diminish-
ing step-size [39]. To address this issue, several different mechanisms have been proposed.
Namely, in [25] two different weight-averaging matrices at two consecutive iterations are
used. A gradient-tracking technique where the local updates are modified so that they track
the network-wide average gradient of the nodes’ local cost functions is proposed and ana-
lyzed in [12, 21]. The authors of [2] incorporate multiple consensus steps per each gradient
update to obtain the convergence to the exact solution.

In this paper we investigate a different strategy to develop a novel class of exact distributed
methods by employing quadratic penalty approach. The method is defined by the standard
reformulation of distributed problem (1) into constrained problem in R

nN with constraints
that penalize the differences in local approximations of the solution. The reformulated con-
strained problem is then solved by a quadratic penalty method. Given that the sequence of
penalty subproblems is quadratic, we employ a fixed point linear solver to find zeroes of the
corresponding gradients. Thus, we abbreviated the method as EFIX – Exact Fixed Point.

The proposed approach is as follows. The constrained distributed problem in R
nN is

reformulated by adding a quadratic penalty term that penalizes the differences of solution
estimates at neighbouring nodes across the network. Then the sequence of penalty problems
are solved inexactly, wherein the corresponding penalty parameters increase over time to
make the algorithm exact. The algorithm parameters, the penalty parameter sequence and
the levels of inexactness of the (inner) penalty problems, are designed such that the overall
algorithm exhibits efficient behaviour. We consider two types of strongly convex objective
functions - quadratic and generic strongly convex function. For quadratic objective func-
tion the subproblems are quadratic, while in the generic case we approximate the objective
function at the current iteration with a quadratic model. Solving these problems boils down
to finding zeroes of the gradients, i.e. to solving systems of linear equations and one can
employ any distributed linear solver like fixed point iterative methods. The proposed frame-
work is general and we exemplify it by employing the Jacobi Over-Relaxation (JOR) method
for solving the penalty subproblems. Numerical tests on both simulated and real data sets
demonstrate that the resulting algorithms are (at least) comparable with existing alternatives
like [21, 36] in terms of the required computational and communication costs, as well as
the required knowledge of global system parameters such as the global (maximal) Lipschitz
constant of the local gradients L , strong convexity constant μ and the network parameters.

From the theoretical point of view the following results are established. First, for the
quadratic cost functions, we show that either a sequence generated by the EFIX method
is unbounded or it converges to the exact solution of the original problem (1). The worst-
case complexity result of order O(ε−1) is proved. For strongly convex costs with Lipschitz
continuous gradients, the obtained result corresponds to thewell-known result in the classical,
centralized optimization - if the iterative sequence converges then its limit is the solution
of the original problem. Admittedly, this result is weaker than what is known for existing
alternatives like, e.g., [21], but are enough to theoretically certify the methods and are in line
with the general theory of quadratic penalty methods; see, e.g., [19]. Numerical examples
nevertheless demonstrate advantages of the proposed approach. Moreover, the convergence
results of the proposed method are obtained although the Linear Independence Constraint
Qualification, LICQ is violated.
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It is worth noting that penalty approaches have been studied earlier in the context of
distributed consensus optimization, e.g., [14, 15, 27, 40]. The authors of [40] allow for non-
differentiable costs, but their analysis relies on Lagrange multipliers and the distance from a
closed, convex feasible set which plays a crucial role in the analysis. In [27], a differentiable
exact penalty function is employed, but the problem under consideration assumes local con-
straints and separable objective function. Moreover, LICQ is assumed to hold. In our case,
separating the objective function yields the constrained optimization problem (2) where the
LICQ is violated. The authors of [15] consider more general problems with possibly non-
diffrenetiable part of the objective function and linear constraints and provide the analysis
for the decentralized distributed optimization problems (Section 4 of [15]). They show the
convergence to an exact solution by carefully designing the penalty parameters and the step
size sequence. The proposed algorithm boils down to the distributed gradient with time-
varying step sizes. The convergence is of the orderO(1/

√
k), i.e.,O(1/k) for the accelerated

version. We notice that EFIX algorithm needs the gradient calculations only in the outer
iterations, whenever the penalty parameter is increased and a new subproblem is generated,
which makes it computationally less demanding. The numerical efficiency of the method in
[15] is not documented to the best of out knowledge, although the convergence rate results
are very promising. The strong convexity is not imposed in [15], and possibilities for relax-
ation of convexity requirements in EFIX are going to be the subject of further research. The
algorithm presented in [14] is also based on penalty approach. A sequence of subproblems
with increasing penalty parameters is defined and solved by accelerated proximal gradient
method. Careful adjustment of algorithmic parameters yields a better complexity result than
the results presented here. However, with respect to existing work, the proposed EFIX frame-
work is more general in terms of the subsumed algorithms and can accommodate arbitrary
R-linearly-converging solver for quadratic penalty subproblems. Finally, another important
advantage of EFIX is the robustness with respect to algorithmic parameters.

The paper is organized as follows. In Sect. 2 we give some preliminaries. EFIX method
for quadratic problems is defined and analyzed in Sect. 3. The analysis is extended to general
convex case in Sect. 4 and the numerical results for both quadratic and general case are
presented in Sect. 5. Some conclusions are drawn in Sect. 6. All proofs are moved to the
Appendix.

2 Preliminaries

The notation we will use further is the following. With A,B, . . . we denote matrices in
R
nN×nN with block elements A = [Ai j ], Ai j ∈ R

n×n and elements ai j ∈ R. The vectors
of corresponding dimensions will be denoted as x ∈ R

nN with sub-blocks xi ∈ R
n as well

as y ∈ R
n . The vector (matrix) norm ‖ · ‖ is the Euclidean (spectral) norm.

Let us specify more precisely the setup we consider here. The network of connected
computational nodes is represented by a graph G = (V , E), where V is the set of nodes
{1, . . . , N } and E is the set of undirected edges (i, j). Denote by Oi the set of neighbors
of node i and let Ōi = Oi

⋃{i}. Let W and L = I − W denote the communication
matrix and the corresponding Laplacian matrix. The communication matrixW is a weighted
adjacency matrix of G with additional properties as stated in Assumption 1 below. We also
define augmented communication matrixW = W ⊗ I ∈ R

nN×nN and augmented weighted
Laplacian matrix L = I − W, where I ∈ R

nN×nN is the identity matrix and ⊗ denotes the
Kronecker product. The properties of the communication matrix W are stated as follows.
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A 1 The matrix W ∈ R
N×N is symmetric, doubly stochastic and

wi j > 0 if j ∈ Ōi , wi j = 0 if j /∈ Ōi

The network G is connected and undirected.

Let us assume that each of N nodes has its local cost function fi and has access to the
corresponding derivatives of this local function. Under the assumption A1, the problem (1)
has the equivalent form

min
x∈RnN

F(x) :=
N∑

i=1

fi (xi ) s. t. L
1/2x = 0, (2)

where x = (x1; . . . ; xN ) ∈ R
nN . Notice that under Assumption A1 the constraint L1/2x =

0 is actually stating that the feasible vectors x = (x1; . . . ; xN ) have the property xi =
x j , i, j = 1, . . . , N . Hence, the equivalence of (1) and (2) is in the following sense. Let us
denote by y∗ ∈ R

n the solution of (1). Then x∗ = (y∗, . . . , y∗) ∈ R
nN is a solution of (2).

Conversely, let x∗ be the solution to (2). Then, x∗ = (y∗ . . . ., y∗), where y∗ is the solution
to (1). Now, the quadratic penalty reformulation of this problem associated with graph G is

min
x∈RnN

�θ(x) := F(x) + θ

2
xTLx, (3)

where θ > 0 is the penalty parameter. Clearly, each solution of (3) depends on the value of
θ . Given that the quadratic penalty is not exact, to achieve equivalence we need θ → ∞.

Otherwise, for any fixed value of θ one can show that the solution of (3), say x̃ ∈ R
nN has

the property that for any i = 1, .., N , there holds ‖x̃i − y∗‖ = O(θ). For further details
one can see [38]. The EFIX method proposed in the sequel follows the sequential quadratic
programming framework where the sequence of problems (3) with increasing values of the
penalty parameters are solved approximately. Therefore, asymptotically we reach an exact
solution of (1) as the penalty parameter goes to infinity. The communication matrix W
influences the rate of convergence of the method but given thatWx = x is the constraint that
ensures x1 = x2 = . . . = xN for all W that satisfy A1, it does not influence the equivalence
of the reformulation, i.e., equivalence of the problems (1) and (2). Regarding the influence
of matrix W on the relation between (2) and (3), it can be shown that, for a fixed θ , the
difference between the solutions of (2) and (3) is on the order O(1/(1 − λ2)), where λ2 is
the modulus of the second largest in modulus eigenvalue of W . See, e.g., Theorem 4 in [38]
or equations (7) and (8) in [7].

3 EFIX-Q: Quadratic problems

Quadratic costs are very important subclass of problems that we consider. One of the typical
example is linear least squares problem which comes from linear regression models, data
fitting etc. We start the analysis with the quadratic costs given by

fi (y) = 1

2
(y − bi )

T Bii (y − bi ), (4)

where Bii = BT
ii ∈ R

n×n, bi ∈ R
n . Let us denote by B = diag(B11, . . . , BNN ) the block-

diagonal matrix and b = (b1; . . . ; bN ) ∈ R
nN . Then, the penalty function defined in (3) with
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the quadratic costs (4) becomes

�θ(x) = 1

2
(x − b)TB(x − b) + θ

2
xTLx

and

∇�θ(x) = (B + θL)x − Bb.

Thus, solving ∇�θ(x) = 0 is equivalent to solving the linear system

A(θ)x = c, A(θ) := B + θL, c := Bb. (5)

Clearly, matrixA(θ) depends on parameter theta as well as a number of matrices and vectors
derived from A below. To simplify the notation we will omit θ further on if θ is a generic
parameter and place it whenever θ has some specific value. Under the following assumptions,
this system can be solved in a distributed, decentralized manner by applying a suitable linear
solver. To make the presentation more clear we concentrate here on the JORmethod, without
loss of generality.

A 2 Each function fi , i = 1, . . . , N is μ-strongly convex.

This assumption implies that the diagonal elements of Hessian matrices Bii are positive,
bounded by μ from below. This can be easily verified by the fact that yT Bii y ≥ μ‖y‖2 for
y = e j , j = 1, . . . , nwhere e j is the j-th columnof the identitymatrix I ∈ R

n×n .Clearly, the
diagonal elements ofA are positive.Moreover,A is positive definite with minimal eigenvalue
bounded from below with μ. Therefore, for arbitrary x0 ∈ R

nN andA, c given in (5), we can
define the JOR iterative procedure as

xk+1 = Mxk + p, (6)

M = qD−1
G + (1 − q)I, p = qD−1c, (7)

where D is a diagonal matrix with dii = aii for all i = 1, . . . , nN , G = D − A, I is
the identity matrix and q is the relaxation parameter. The structure of A and M makes the
iterative method specified in (6) completely distributed assuming that each node i has the
corresponding (block) row ofM, and thus we do not need any additional adjustments of the
linear solver to the distributed network.

The JOR method (6)-(7) can be stated in the distributed manner as follows. Notice that
the blocks of A are given by

Aii = Bii + θ(1 − wi i )I , and Ai j = −θwi j I for i �= j . (8)

Therefore, we can represent JOR iterative matrix M in similar manner, i.e., M = [Mi j ]
where

Mii = qD−1
i i Gii + (1 − q)I , Mi j = qθwi j D

−1
i i for i �= j, (9)

and p = (p1; . . . ; pN ) is calculated as

pi = qD−1
i i Bii bi . (10)

Thus, each node i can update its own vector xi by

xk+1
i =

∑

j∈Ōi

Mi j x
k
j + pi . (11)
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Notice that (11) requires only the neighbouring xkj , and the corresponding elements of

Mi j , j ∈ Ō j , i.e. the method is fully distributed.
The convergence interval for the relaxation parameter q is well known in this case, see

e.g. [8].

Lemma 3.1 Suppose that the assumptions A1-A2 are satisfied. Then the JOR method con-
verges for all q ∈ (0, 2/σ(D−1

A)), with σ(D−1
A)) being the spectral radius of (D−1

A)).

Lemma 3.1 gives the interval for relaxation parameter q that ensures that the spectral
radius of M is smaller than 1 and hence gives the sufficient and necessary condition for
convergence. Estimating the spectral radius of D−1

A is not an easy task in general and
several results are derived for specific matrix classes that specify the interval for q such that
a sufficient condition for convergence holds, i.e. values of q that give ‖M‖p < ρ ≤ 1 for
p = 1, 2,∞.

Let us now estimate the interval stated in Lemma 3.1. We have

σ(D−1
A) ≤ ‖D−1

A‖ ≤ ‖D−1‖‖A‖.
Since the diagonal elements of Bii are positive and D is the diagonal matrix with elements
dii = bii + θ�i i , i = 1, . . . , nN , with L = [�i j ] ∈ R

nN×nN , we can upper bound the norm
of D−1 as follows

‖D−1‖ ≤ 1

θ(1 − w̄)
,

where w̄ := maxi wi i < 1. On the other hand,

‖A‖ ≤ ‖B‖ + 2θ ≤ max
i

li + 2θ := L + 2θ,

where li is the largest eigenvalue of Bii . So, the convergence interval for the relaxation
parameter can be set as

q ∈
(
0,

2θ(1 − w̄)

L + 2θ

)
. (12)

Alternatively, one can use the infinity norm and obtain a bound as above with B̄ :=
maxi ‖Bii‖∞ instead of L .

The iterative matrix M depends on the penalty parameter and the EFIX algorithm we
define further on solves a sequence of penalty problems defined by a sequence of penalty
parameters θs, s = 0, 1, . . . . Thus (12) can be updated for each penalty subproblem, defined
with a new penalty parameter. However the upper bound in (12) is monotonically increasing
with respect to θ , so one can set q ∈ (0, 2θ0(1 − w̄)/(L + 2θ0)) without updating with the
change of θ. In the test presented in Sect. 5 we use θ0 = 2L , which further implies that the
JOR parameter can be fixed to any positive value smaller than 4(1 − w̄)/5.

The globally convergent algorithm for problem (1) with quadratic functions (4) is given
below. In each subproblem we have to solve a linear system of type (5). The algorithm is
designed such that these linear systems are solved within an inner loop defined by (11). The
penalty parameters {θs} with the property θs → ∞, s → ∞, and the number of inner
iterations k(s) of type (11) are assumed to be given. Also, we assume that the relaxation
parameters q(s) are defined by a rule that fulfills (12). Thus, for given θs the linear system
A(θs)x = c is solved approximately in each outer iteration, with the iterative matrix

M(θs) = q(s)D−1
G + (1 − q(s))I.
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The global constants L and w̄ are needed for updating the relaxation parameter in each
iteration but the nodes can settle them through initial communication at the beginning of
iterative process. Thus, they are also treated as input parameters for the algorithm. Notice
that constants L andw represent maxima of certain scalar quantities distributed across nodes
in the network. Let us consider L , while similar arguments hold forw as well. Assuming that
each node i knows the Lipschitz constant li of ∇ fi , then each node can obtain L after the
nodes perform a distributed algorithm to calculate L that can be taken as L = maxi li . There
are several ways to calculate maximum in a fully distributed way inexpensively, e.g., [26].
Such algorithm converges in O(diam) iterations (communication rounds), where diam is
the network diameter.
Algorithm EFIX-Q.

Given: {θs}, x0i ∈ R
n, i = 1, . . . , N , {k(s)} ⊂ N, L, w̄. Set s = 0.

S1 Set k = 0 and choose q according to (12) with θ = θs . Let M = M(θs), z0i = xsi , i =
1, . . . , N .

S2 For each i = 1, . . . , N compute the new local solution estimates

zk+1
i =

∑

j∈Ōi

Mi j z
k
j + pi

and set k = k + 1.
S3 If k < k(s) go to step S2. Else, set xs+1 = (zk1, . . . , z

k
N ), s = s + 1 and go to step S1.

The above algorithm relies on distributed implementation of the fixed point solver JOR.
Thus each node has a set of local information, to be more specific each node i has the
corresponding i th block-row of the matrix M and the corresponding vector pi . In fact,
having in mind the structure of matrix M, one can see that each node i , besides the input
parameters, only needs to store the following: the Hessian of the local cost function, i.e.,
Bii ∈ R

n×n ; the vector bi ∈ R
n ; and the weights (wi1, wi2, . . . , wi N ) ∈ R

N , i.e., the i th row
of the matrixW . For instance, notice that the block Mi j of the matrixM can be derived from
the stored data since it varies through j directly with wi j and Dii is the diagonal matrix with
the diagonal which coincides with the diagonal of Aii = Bii + θ(1 − wi i )I . Additionally,
node i can also store the vectors pi , diag(D

−1
i i ) ∈ R

n and the matrix Mii ∈ R
n×n in order

to avoid unnecessary calculations within inner iterations. Each node computes zk+1
i in Step

2, using zkj , j ∈ Ōi from its neighbors and computing Mi j zkj and after that transmits the

new approximation zk+1
i to the neighbors. Thus, at each iteration, each node i sends to its

immediate neighbors in graph G vector zk+1
i ∈ R

n and receives the corresponding estimates
of the neighboring nodes zk+1

j ∈ R
n, j ∈ Oi .

Our analysis relies on the quadratic penalty method, so we state the framework algorithm
(see [19] for example). We assume again that the sequence of penalty parameters {θs} has
the property θs → ∞ and that the tolerance sequence {εs} is such that εs → 0.
Algorithm QP.

Given: {θs}, {εs}. Set s = 0.

S1 Find xs such that

‖∇�θs (x
s)‖ ≤ εs . (13)

S2 Set s = s + 1 and return to S1.

Let us demonstrate that the EFIX-Q fits into the framework of Algorithm QP, that is given
a sequence {εs} such that εs → 0, there exists a proper choice of the sequence {k(s)} such
that (13) is satisfied for all penalty subproblems.
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Lemma 3.2 Suppose that the assumptions A1-A2 are satisfied. If ‖∇�θs (x
s)‖ ≤ εs then

‖∇�θs+1(x
s+1)‖ ≤ εs+1 for

k(s) =
⌈∣∣∣

log(μεs+1) − log(L + 2θs+1)(εs + 2c̄)

log(ρs+1)

∣∣∣
⌉
, (14)

where ρs+1 is a constant such that ‖M(θs+1)‖ ≤ ρs+1 < 1 and c̄ = ‖c‖.
The previous lemma shows that EFIX-Q fits into the framework of quadratic penalty

methods presented above if we assume εs → 0 and set k(s) as in (14), with {xs} being
the outer iterative sequence of Algorithm EFIX-Q. Notice that the inner iterations (that rely
on the JOR method) stated in steps S2-S3 of EFIX-Q can be replaced with any solver of
linear systems or any optimizer of quadratic objective function which can be implemented in
decentralized manner and exhibits linear convergence with factor ρs . Moreover, it is enough
to apply a solver with R-linear convergence, i.e., any solver that satisfies

‖zk − x∗
θs+1

‖ ≤ Cs+1‖xs − x∗
θs+1

‖ρk
s+1,

where Cs+1 is a positive constant. In this case, the slightly modified k(s) with (L + 2θs+1)

multiplied with Cs+1 in (14) fits the proposed framework.
Although the LICQ does not hold for (2), following the steps of the standard proof and

modifying it to cope with LICQ violation, we obtain the global convergence result presented
below.

Theorem 3.1 Suppose that the assumptions A1-A2 are satisfied. Assume that εs → 0 and
k(s) is defined by (14). Let {xs} be a sequence generated by algorithm EFIX-Q. Then, either
the sequence {xs} is unbounded or it converges to a solution x∗ of the problem (2) and x∗

i is
the solution of problem (1) for every i = 1, . . . , N.

Theprevious theoremstates that the only requirement on {εs} is that it is a positive sequence
that tends to zero. On the other hand, quadratic penalty function is not exact penalty function
and the solution x∗

θ of the penalty problem (3) is only an approximation of the solution y∗
of problem (1). Moreover, it is known (see Corollary 9 in [38]) that for every i = 1, . . . , N ,

there holds

e1i,θ := ‖x∗
i,θ − y∗‖ = O(θ−1).

More precisely, denoting by λ2 the second largest eigenvalue of W in modulus, we have

e1i,θs ≤ L J

θsκ(1 − λ2)

√
4 − 2κθ−1

s + J

θs(1 − λ2)
, (15)

where κ = μL/(μ + L) and J = √
2L f (0) since the optimal value of each local cost

function is zero. Thus, looking at an arbitrary node i and any outer iteration s we have

‖xsi − y∗‖ ≤ ‖xsi − x∗
i,θs‖ + ‖x∗

i,θs − y∗‖ := e2i,θs + e1i,θs . (16)

So, there is no need to solve the penalty subproblem with more accuracy than e1i,θ - the
accuracy of approximating the original problem. Therefore, using (27) and (15) and balancing
these two error bounds we conclude that a suitable value for εs, see (27), can be estimated
as

εs = μ

(
L J

θsκ(1 − λ2)

√
4 − 2κθ−1

s + J

θs(1 − λ2)

)
(17)
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Similar idea of error balance is used in [39], to decide when to decrease the step size.
Assume that we define εs as in (17) Together with (27) we get

‖xsi − x∗
i,θs‖ = O

(
1

θs

)
.

Furthermore, using (15) and (16) we obtain

‖xsi − y∗‖ = O
(
1

θs

)
.

Therefore, the following result concerning the outer iterations holds.

Proposition 3.1 Suppose that the assumptions of Theorem 3.1 hold and that εs is defined by
(17). Let {xs} be a bounded sequence generated by EFIX-Q . Then for every i = 1, . . . , N
there holds

‖xsi − y∗‖ = O
(
1

θs

)
.

The complexity result stated below for the special choice of penalty parameters, θs = s can
be easily derived using the above Proposition.

Corollary 3.1 Suppose that the assumptions of Proposition 3.1 hold and θs = s for s =
1, 2, . . ..

Then after at most

s̄ =
⌈
2J (3 + 2L/μ)

(1 − λ2)
ε−1

⌉

iterations we have ‖x s̄i − y∗‖ ≤ ε for all i = 1, . . . , N and any ε > 0, where J and λ2 are
as in (15).

Notice that the number of outer iterations s̄ to obtain the ε-optimal point depends directly
on J , i.e., on f (0) and the Lipschitz constant L . Moreover, it also depends on the network
parameters - recall that λ2 represents the second largest eigenvalue of the matrix W , so the
complexity constant can be diminished if we can chose the matrixW such that λ2 is as small
as possible for the given network.

4 EFIX-G: Strongly convex problems

In this section, we consider strongly convex local cost functions fi that are not necessar-
ily quadratic. The main motivation comes from machine learning problems such as logistic
regression where the Hessian is easy to calculate and, under regularization, satisfies Assump-
tion A2. The main idea now is to approximate the objective function with a quadratic model
at each outer iteration s and exploit the previous analysis. Instead of solving (13), we form
a quadratic approximation Qs(x) of the penalty function �θs (x) defined in (3) as

Qs(x) := F(xs−1) + ∇T F(xs−1)(x − xs−1) +
+1

2
(x − xs−1)T∇2F(xs−1)(x − xs−1) + θs

2
xTLx (18)

and search for xs that satisfies

‖∇Qs(xs)‖ ≤ εs . (19)
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In other words, we are solving the system of linear equations

Asx = cs,

where

As := ∇2F(xs−1) + θsL,

cs := ∇2F(xs−1)xs−1 − ∇F(xs−1).

Under the stated assumptions, As is positive definite with eigenvalues bounded with μ from
below and the diagonal elements ofAs are strictly positive. Therefore, using the same notation
and formulas as in the previous section with ∇2 fi (x

s−1
i ) instead of Bii in (8) we obtain the

same bound for the JOR parameter, (12).
Before stating the algorithm, we repeat the formulas for completeness. The matrix As =

[Ai j ] has blocks Ai j ∈ R
n×n given by

Aii = ∇2 fi (x
s−1
i ) + θs(1 − wi i )I , and Ai j = −θswi j I for i �= j . (20)

The JOR iterative matrix is Ms = [Mi j ] where
Mii = qs D

−1
i i Gii + (1 − q)I , Mi j = qsθswi j D

−1
i i for i �= j, (21)

and the vector ps = (p1; . . . ; pN ) is calculated as ps = qD−1
s cs , where Ds is a diagonal

matrix with dii = aii for all i = 1, . . . , nN and Gs = Ds − As , i.e.,

pi = qD−1
i i ci , where ci = ∇2 fi (x

s−1
i )xs−1

i − ∇ fi (x
s−1
i ). (22)

The algorithm presented below is a generalization of EFIX-Q and we assume the same
initial setup: the global constants L and w̄ are known, the sequence of penalty parameters {θs}
and the sequence of inner iterations counters {k(s)} are input parameters for the algorithm.
Algorithm EFIX-G.

Input: {θs}, x0i ∈ R
n, i = 1, . . . , N , {k(s)} ⊂ N, L, w̄. Set s = 0.

S1 Each node i sets q according to (12) with θ = θs .

S2 Each node calculates∇ fi (xsi ) and∇2 fi (xsi ). DefineM = Ms given by (21), z0i = xsi , i =
1, . . . , N and set k = 0.

S3 For i = 1, . . . , N update the solution estimates

zk+1
i =

∑

j∈Ōi

Mi j z
k
j + pi

and set k = k + 1.
S4 If k < k(s) go to step S3. Else, set xs+1 = (zk1; . . . ; zkN ), s = s + 1 and go to step S1.

The algorithm differs from the quadratic case EFIX-Q in step S2, where the gradients
and the Hessians are calculated in a new point at every outer iteration. Each node i , besides
the input parameters, stores the weights (wi1, wi2, . . . , wi N ) ∈ R

N . Moreover, it calculates
the Hessian of the local cost function ∇2 fi (xsi ) ∈ R

n×n and the corresponding gradient
∇ fi (xsi ) ∈ R

n at each outer iteration and stores them through the inner iterations. Similarly
to the EFIX-Q case, node i can also store the vectors pi , diag(D

−1
i i ) ∈ R

n and the matrix
Mii ∈ R

n×n calculated at each outer iteration in order to avoid unnecessary calculations
within the corresponding inner iterations. At each iteration, each node exchanges the current
estimates of the solution (vectors zkj ) with its immediate neighbors as explained in EFIX-Q
case.
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Following the same ideas as in the proof of Lemma 3.2, we obtain the similar result under
the following additional assumption.

A 3 For each y ∈ R
n there holds ‖∇2 fi (y)‖ ≤ li , i = 1, . . . , N.

Notice that this assumption implies that ‖∇2F(x)‖ ≤ L := maxi li .

Lemma 4.1 Suppose that Assumptions A1-A3 hold. If ‖∇Qs(xs)‖ ≤ εs holds then
‖∇Qs+1(xs+1)‖ ≤ εs+1 for

k(s) =
⌈∣∣∣

log(μεs+1) − log(L + 2θs+1)(εs + c̄s + c̄s+1)

log(ρs+1)

∣∣∣
⌉
, (23)

where ρs+1 is a constant such that ‖Ms+1‖ ≤ ρs+1 < 1 and c̄s = ‖cs‖.
The Lemma above implies that EFIX-G is a penalty method with the penalty function Q

instead of�, i.e., with (19) instead of (13). Notice that due to assumption A2, without loss of
generality we can assume that the functions fi are nonnegative and thus the relation between
εs and θs can remain as in (17). We have the following convergence result which corresponds
to the classical statement in centralized optimization, [19].

Theorem 4.1 Let the assumptions A1-A3 hold. Assume that {xs} is a sequence generated by
Algorithm EFIX-G such that k(s) is defined by (23) and εs → 0. If {xs} is bounded then every
accumulation point of {xs} is feasible for the problem (2). Furthermore, if lims→∞ xs = x∗
then x∗ is the solution of problem (2), i.e., x∗

i is the solution of problem (1) for every i =
1, . . . , N.

5 Numerical results

5.1 Quadratic case

We test EFIX-Q method on a set of quadratic functions (4) defined as in [12]. Vectors bi
are drawn from the Uniform distribution on [1, 31], independently from each other. Matrices
Bii are of the form Bii = Pi Si Pi , where Si are diagonal matrices with Uniform distribution
on [1, 101] and Pi are matrices of orthonormal eigenvectors of 1

2 (Ci + CT
i ) where Ci have

components drawn independently from the standard Normal distribution.
The network is formed as follows, [12]. We sample N points randomly and uniformly

from [0, 1] × [0, 1]. Two points are directly connected if their distance, measured by the
Euclidean norm, is smaller than r = √

log(N )/N . The graph is connected. Moreover, if
nodes i and j are directly connected, we set wi, j = 1/max{deg(i), deg( j)}, where deg(i)
stands for the degree of node i and wi,i = 1 − ∑

j �=i wi, j . We test on graphs with N = 30
and N = 100 nodes.

The error metrics is the following

e(xk) := 1

N

N∑

i=1

‖xki − y∗‖
‖y∗‖ , (24)

where y∗ �= 0 is the exact (unique) solution of problem (1).
The parameters are set as follows. The Lipschitz constant is calculated as L = maxi li ,

where li is the largest eigenvalue of Bii . The strong convexity constant is calculated as
μ = mini μi , where μi > 0 is the smallest eigenvalue of Bii .
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The proposed method is denoted by EFIX-Q k(s) balance to indicate that we use the
number of inner iterations given by (14) where L, μ, c̄ are calculated at the initial phase
of the algorithm and imposing (17) to balance two types of errors as discussed in Sect. 3.
The initial value of the penalty parameter is set to θ0 = 2L . The choice is motivated by
the fact that the usual step size bound in many gradient-related methods is α < 1/(2L)

and 1/α corresponds to the penalty parameter. Hence, we set θ ≥ 2L . Further, the penalty
parameter is updated by θs+1 = (s+1)θs . The inner solver used at Step 3 of EFIX-Qmethod
is the Jacobi method, i.e., JOR method with q = 1. In the quadratic case, the Jacobi method
converged and the bounds derived in (12) were not needed. The Jacobi method (JOR method
in general) is used to solve the sequence of quadratic problems up to accuracy determined
{εs}. Clearly, the precision, measured by εs determines the computational costs. On the other
hand it is already discussed that the error in solving a particular quadratic problem should
not be decreased too much given that the quadratic penalty is not an exact method and hence
each quadratic subproblem is only an approximation of the original constrained problem,
depending on the penalty parameter θs . Therefore, we tested several choices of the inner
iteration counter and parameter update, to investigate the error balance and its influence on
the convergence. The method abbreviated as EFIX-Q k(s) is obtained with ε0 = θ0 = 2L ,
εs = ε0/s for s > 0, and k(s) defined by (14). Furthermore, to demonstrate the effectiveness
of k(s) stated in (14) we also report the results from the experiments where the inner iterations
are terminated only if (13) holds, i.e. without a predefined sequence k(s). We refer to this
method as EFIX-Q stopping. Notice that the exit criterion of EFIX-Q is not computable in
the distributed framework and the test reports here are performed only to demonstrate the
effectiveness of (14).

The proposed method is compared with the state-of-the-art method [17, 21] abbreviated
as DIGing 1/(mL), where 1/(mL) represents the step size, i.e., α = 1/(mL) for different
values of m ∈ {2, 3, 10, 20, 50, 100}. This method is defined as follows

xk+1
i =

N∑

j=1

wi j x
k
j − αuki , uk+1

i =
N∑

j=1

wi j u
k
j + Bii (x

k+1
i − xki ), u

0
i = ∇ fi (x

0
i ).

We model the total computational cost by counting the total number of n-dimensional SPs
(scalar products of two n-dimensional real vectors) per node evaluated during the algorithm
run, i.e., we let the unit computational cost be a single n-dimensional SP evaluation. Here,
we model a single N -dimensional scalar product computational cost as ξ := N/n unit costs.
Thus, the computational cost of DIGing method per node, per iteration, can be estimated to
n + 2nξ since

∑
j wi j xkj takes nξ unit computational costs (n N -dimensional SPs) as well

as
∑

j wi j ukj , and Bii (x
k+1
i − xki ) takes n unit computational costs (n n-dimensional SPs).

In the sequel, we refer to unit computational costs as SPs.
In order to compare the costs, we unfold the proposed EFIX-Q method considering all

inner iterations consecutively (so k below is the cumulative counter for all inner iterations)
as follows

xk+1
i = qD−1

i i Gii x
k
i + (1 − q)xki + qθD−1

i i

∑

i �= j

wi j x
k
j + qD−1

i i Bii bi .

Since Dii is a diagonalmatrix, qD−1
i i Gii xki takes n+1 SPs and D−1

i i

∑
i �= j wi j xkj takes 1+nξ

SPs. Moreover, Bii bi is calculated only once, at the initial phase, so D−1
i i Bii bi costs only 1

SPs (unit costs). Thus, the cost of EFIX-Qmethod can be estimated to n+3+nξ SPs per node,
per iteration. The difference between EFIX-Q and DIGing can be significant especially for
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Fig. 1 The EFIX methods (dotted lines) versus the DIGing method, error (24) propagation through iterations
for n = 100, N = 30 (left) and n = 100, N = 100 (right)

larger value of N , given the relative difference between quantities 3 and nξ = N . Moreover,
DIGing method requires at each iteration the exchange of two vectors, x j and u j among
all neighbors, while EFIX requires only the exchange of x j , so it is 50% cheaper than the
DIGing method in terms of communication costs per iteration.

We set x0 = 0 for all the tested methods and consider n = 10 and n = 100. Figure 1
presents the errors e(xk) throughout iterations k for N = 30 and N = 100. The results for
different values of n appear to be very similar and hence we report only the case n = 100.

Comparing the number of iterations of all considered methods, from Fig. 1 one can see
that EFIX-Q methods are highly competitive with the best DIGing method in the case of
N = 30. Furthermore, EFIX-Q outperforms all the convergent DIGing methods in the case
of N = 100. Moreover, we can see that EFIX-Q k(s) balance behaves similarly to EFIX-Q
stopping, so the number of inner iterations k(s) given in Lemma 3.2 is well estimated. Also,
EFIX-Q k(s) balance improves the performance of EFIX-Q k(s) and the balancing of errors
yields a more efficient method.

We compare the tested methods in terms of computational costs, measured by scalar
products and communication costs as well. The results are presented in Fig. 2 where we
compare EFIX-Q k(s) balance with the best convergent DIGing method in the cases n =
10, N = 30 (top) and n = 100, N = 100 (bottom). The results show clear advantages of
EFIX-Q, especially in the case of larger n and N .

5.2 Strongly convex problems

EFIX-Gmethod is tested on the binary classification problems for data sets: Mushrooms [32]
(n = 112, total sample size T = 8124), CINA0 [5] (n = 132, total sample size T = 16033)
and Small MNIST [20] (n = 100, total sample size T = 7603). For each of the problems,
the data is divided across 30 nodes of the graph described in Sect. 5.1 The logistic regression
with the quadratic regularization is used and thus the local objective functions are of the form

fi (y) =
∑

j∈Ji

log(1 + e−ζ j dTj y) + μ

2
‖y‖2 :=

∑

j∈Ji

f̃ j (y),

where Ji collects the indices of the data points assigned to node i , d j ∈ R
n is the correspond-

ing vector of attributes and ζ j ∈ {−1, 1} represents the label. The gradient and the Hessian
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Fig. 2 The proposed method (dotted line) versus the DIGing method, error (24) and the computational cost
(left) and communications (right) for n = 10, N = 30 (top) and n = 100, N = 100 (bottom)

of f̃ j (y) are given by

∇ f̃ j (y) = 1 − ψ j (y)

ψ j (y)
ζ j d j + μy, ∇2 f̃ j (y) = ψ j (y) − 1

ψ2
j (y)

d jd
T
j + μI ,

ψ j (y) := 1 + e−ζ j dTj y .

Thus, evaluating the gradient of f̃i (y) costs 1 SPs. Also, we estimate the cost of calculating
the Hessian of f̃i (y) with n/2 SPs. Moreover, (ψ j (y) − 1)/ψ2

j (y) ∈ (0, 1) and thus all the
local cost functions areμ-strongly convex. The data is scaled in a such way that the Lipschitz
constants li are 1 and thus L = 1 + μ. We set μ = 10−4.

We test EFIX-G k(s) balance, the counterpart of the quadratic version EFIX-Q k(s)
balance, with k(s) defined by (23). The JOR parameter qs is set according to (12), more
precisely, we set q = 2θs(1 − w̄)/(L + 2θs). We report here that, unlike the quadratic case,
Jacobi method did not converge and we had to use the estimate (12). A rough estimation of
c̄s is s 3L

√
N since

‖cs‖ ≤ ‖∇2F(xs−1)‖‖xs−1‖ + ‖∇F(xs−1) − ∇F(x̃)‖ ≤ L3max{‖xs−1‖, ‖x̃‖},

where x̃ is a stationary point of the function F . The remaining parameters are set as in the
quadratic case.
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Since the solution is unknown in general, the different error metric is used - the average
value of the original objective function f across the nodes’ estimates

v(xk) = 1

N

N∑

i=1

f (xki ) = 1

N

N∑

i=1

N∑

j=1

f j (x
k
i ). (25)

We compare the proposedmethodwithDIGingwhich takes the following form for general,
non-quadratic problems

xk+1
i =

N∑

j=1

wi j x
k
j − αuki , uk+1

i =
N∑

j=1

wi j u
k
j + ∇ fi (x

k+1
i ) − ∇ fi (x

k
i ), u

0
i = ∇ fi (x

0
i ).

For each of the data sets we compare the methods with respect to iterations, communications
and computational costs (scalar products). The communications of the DIGing method are
twice more expensive than for the proposed method, as in the quadratic case. Denote ξ̃ =
|Ji |/n. The computational cost of the DIGing method is estimated to 2nξ +nξ̃ +|Ji | SPs per
iteration, per node: weighted sum of xkj (nξ SPs); weighted sum of ukj (nξ SPs); evaluating

∇ fi (xki ) (nξ̃ +|Ji | SPs) because evaluating of each gradient∇ f̃ j (xki ), j ∈ Ji costs 1 SP (for
dTj x

k
i needed for calculatingψ j (xki )) and evaluating the gradient∇ fi (xki ) takes the weighted

sum of d j vectors

∇ fi (x
k
i ) =

∑

j∈Ji

1 − ψ j (xki )

ψ j (xki )
ζ j d j + μxki ,

which costs nξ̃ SPs (n |Ji |-dimensional scalar products). On the other hand, the cost of EFIX-
G k(s) balance per node remains nξ + n + 3 scalar products at each inner iteration while in
the outer iterations (s) we have additional |Ji | + 2nξ̃ + ξ̃n2/2 scalar products for evaluating
Hessian (ξ̃n2/2) and ci given by

ci =
∑

j∈Ji

ψ j (x
s−1
i ) − 1

ψ2
j (x

s−1
i )

d jd
T
j x

s−1
i + μxs−1

i − ∇ fi (x
s−1
i ),

i.e., in order to evaluate ci we have |Ji | scalar products of the form dTj x
s−1
i , a weighted sum

od d j vectors which costs nξ̃ SPs and the gradient ∇ fi (x
s−1
i ) which costs only nξ̃ SPs since

the scalar products dTj x
s−1
i are already evaluated and calculated in the first sum.

The results are presented in Fig. 3, (y-axes is in the log scale). The first column contains
graphs forEFIX -G k(s)balance and allDIGingmethodswith errormetrics through iterations.
Obviously, the EFIX -G method is either comparable or better in comparison with DIGing
methods in all tested problems, except for SmallMNIST dataset . To emphasize the difference
in computational costs we plot in column two the graphs of error metrics with respect to SPs
for EFIX -G and the two best DIGing method. The same is done in column three of the graph
for the communication costs.

5.3 Additional comparisons

Weprovide additional comparisonswith the very recent algorithm termedOPTRA in [36], as a
further representative of state of the art. The authors of [36] show that, up to universal constants
and in the smooth convex (non strongly convex) setting, OPTRA matches theoretical lower
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Fig. 3 The proposed method (dotted line) versus the DIGing method on Mushrooms (top), CINA0 (middle)
and Small MNIST data set (bottom)

complexity bounds in terms of communication and computation, with respect to oracles
as defined in [36]. Also, the numerical examples in [36] show that OPTRA is competitive
with several state of the art alternatives. Therefore, we compare EFIX also with OPTRA.
We perform tests on well connected communication matrix W defined at the beginning of
Sect. 5.1 and on ring structure represented by Wring communication matrix to examine the
behavior on the network which is not well connected. In this case, we set diagonal elements
of Wring to 0.5 and the relevant (nonzero) off-diagonal elements are 0.25.

All the parameters for EFIX methods are the same as in the previous two subsections and
we consider the same set test problems. We test OPTRA algorithm with number of inner
consensus iterations set to K = 2 and the parameter which influences the step size set to
ν = 100. The choice was motivated by the the numerical results presented in [36]. The total
number of (outer) iterations along which the algorithms will be run is set to T = 200. This is
also the number of EFIX overall (total number of inner) iterations. Notice that this is relevant
for OPTRA as certain OPTRA’s parameters explicitly depend on T . On the other hand, for
EFIX, no parameter depends on T .

The metrics and the cost measures are retained as in the previous subsections. Using
the same logic, we conclude that the communication cost of each OPTRA iteration is 2K
(i.e., 2K times more costly that EFIX iteration). This comes from the fact that each OPTRA
iteration calls the inner procedure namedAccGossip two times and eachAccGossip performs
K consensus steps. For the quadratic case, the computational cost (in SPs) is 2Knξ + n per
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Fig. 4 The proposed method (dotted line) versus the OPTRAmethods on strongly convex quadratic functions
(n = 100, N = 30) on well connected graph represented by W (left) and ring graph represented by Wring
(right)

node per iteration - the cost of calculating the gradient is n SPs per node and the of each
consensus step is nξ SPs. For the logistic regression case, the cost of calculating the gradient
is nξ̃ + |Ji | SPs and we obtain the total cost of (2K ξ + 1)n + |Ji | + nξ̃ SPs per node, per
iteration.

The results are presented at Figs. 4, 5 and 6. Figure 4 represents the results obtained on
quadratic costs for the two types of communication graphs and n = 100, N = 30. Figures
5 and 6 correspond to logistic regression problem with datasets Small MNIST, Mushrooms
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Fig. 5 The proposed method (dotted line) versus the OPTRA methods on Mushrooms (top), CINA0 (middle)
and Small MNIST data set (bottom) on well connected graph with 30 nodes

and CINA0. Figure 5 represents the results on well connected graph, while Fig. 6 deals with
the ring graph.

Notice that, for the considered iteration horizon T , OPTRA achieves a very precise final
accuracy for certain experiments, like for datasets Small MNIST and Mushrooms in Figs.
5 and 6 (top and bottom rows). On the other hand, OPTRA seems to saturate at a plateau
or progresses very slowly on other experiments, like for the quadratic case in Fig. 4. This
behavior is not in contradiction with the theory of OPTRA in [36], where the authors are con-
cerned with providing the number of iterations needed to reach a prescribed finite accuracy,
and are not concerned with asymptotic convergence as k tends to infinity. (See Theorem 7
in [36]). Both methods exhibit initial oscillatory behavior on CINA0 dataset in Figs. 5 and 6
(middle), but it seems that EFIX stabilizes sooner, while OPTRA continues to oscillate. So,
for CINA0 dataset, EFIX method outperforms OPTRA. On the other hand, after the initial
advantage of EFIX in terms of communication costs and iterations, OPTRA takes the lead
and outperforms EFIX. The advantage of OPTRA is obvious in terms of computational costs
measured in SPs (Figs. 5 and 6, middle). Notice that the conclusions are rather similar on
both tested graphs. Taking into account all the presented results, the tested methods appear
to be competitive.

We also comment on an advantage of EFIX with respect to OPTRA in terms of parameter
tuning. Notice that for each problem at hand, we apply the same universal rules to set the
EFIX parameters. In contrast, OPTRA has a free parameter ν > 0 that seems to be difficult to
tune. In terms of guidelines for setting ν, reference [36] suggests (up to universal constants) a
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Fig. 6 The proposed method (dotted line) versus the OPTRA methods on Mushrooms (top), CINA0 (middle)
and Small MNIST data set (bottom) on ring graph with 30 nodes

theoretical optimized value of ν. For such value of ν, OPTRA achieves the lower complexity
bounds with respect to the oracle defined in [36]; however, the optimized value of ν depends
on the gradient of the cost function at the solution and is hence difficult to specify. Reference
[36] does not give guidelines how to approximate the optimized value of ν, but it rather hand-
tunes ν for each given data set and each given network. Another advantage of EFIX over
OPTRA is that OPTRA’s parameters τ and γ depend on the total iteration budget T. In other
words, for different total iteration budgets T, OPTRA parameters should be set differently.
In contrast, EFIX parameters are set universally irrespective of a value of T set beforehand.

6 Conclusions

The quadratic penalty framework is extended to distributed optimization problems. Instead of
standard reformulation with quadratic penalty for distributed problems, we define a sequence
of quadratic penalty subproblems with increasing penalty parameters. Each subproblem is
then approximately solved by a distributed fixed point linear solver. In the paper we used the
Jacobi and Jacobi Over-Relaxationmethod as the linear solvers, to facilitate the explanations.
The first class of optimization problems we consider are quadratic problems with positive
definite Hessian matrices. For these problems we define the EFIX-Q method, discuss the
convergence properties and derive a set of conditions on penalty parameters, linear solver
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precision and inner iteration number that yield an iterative sequence which converges to the
solution of the original, distributed and unconstrained problem. Furthermore, the complexity
bound ofO(ε−1) is derived. In the case of strongly convex generic function we define EFIX-
G method. It follows the reasoning for the quadratic problems and in each outer iteration we
define a quadratic model of the objective function and couple that model with the quadratic
penalty. Hence, we are again solving a sequence of quadratic subproblems. The convergence
statement is weaker in this case but nevertheless corresponds to the classical statement in
the centralized penalty methods - we prove that if the sequence converges then its limit is a
solution of the original problem. The method is dependent on penalty parameters, precision
of the linear solver for each subproblem and consequently, the number of inner iterations for
subproblems. As quadratic penalty function is not exact, the approximation error is always
present and hencewe investigated themutual dependence of different errors.A suitable choice
for the penalty parameters, subproblem accuracy and inner iteration number is proposed for
quadratic problems and extended to the generic case. The method is tested and compared
with the state-of-the-art first order exact method for distributed optimization, DIGing. It is
shown that EFIX is comparable with DIGing in terms of error propagation with respect to
iterations and that EFIX computational and communication costs are lower in comparison
with DIGing methods. EFIX is also compared to recently developed primal-dual method -
OPTRA. The comparison is made on both well connected and weekly connected graphs and
the EFIX method proves to be at least competitive with the tested counterpart with respect
to practical performance, while the advantage of EFIX lies in universal parameter settings.
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Appendix

Proof of Lemma 3.2 Notice that A(θ) is positive definite for all θ > 0 and thus there exists
an unique stationary point x∗

θ of �θ , i.e., an unique solution of A(θ)x = c. With notation
zk = (zk1; . . . ; zkN ), z0 = xs, we have

‖∇�θs+1(z
k)‖ = ‖∇�θs+1(z

k) − ∇�θs+1(x
∗
θs+1

)‖
≤ ‖A(θs+1)‖‖zk − x∗

θs+1
‖
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≤ (L + 2θs+1)‖zk − x∗
θs+1

‖
≤ (L + 2θs+1)ρ

k
s+1‖xs − x∗

θs+1
‖

≤ (L + 2θs+1)ρ
k
s+1(‖xs − x∗

θs
‖ + ‖x∗

θs
− x∗

θs+1
‖). (26)

Let us now estimate the norms in the final inequality. First, notice that

∇�θs (x
s) = ∇�θs (x

s) − ∇�θs (x
∗
θs

) = A(θs)(xs − x∗
θs

).

Thus, since μI � A(θs) we obtain

‖xs − x∗
θs

‖ ≤ ‖A−1(θs)‖‖∇�θs (x
s)‖ ≤ εs

μ
. (27)

Moreover, for any θ we have

‖x∗
θ‖ ≤ ‖A−1(θ)‖‖c‖ ≤ c̄

μ
. (28)

Putting (27) and (28) into (26) we obtain

‖∇�θs+1(z
k)‖ ≤ (L + 2θs+1)ρ

k
s+1(εs + 2c̄)

μ
.

Imposing the inequality

(L + 2θs+1)ρ
k
s+1(εs + 2c̄)

μ
≤ εs+1,

and then applying the logarithm and rearranging, we obtain that ‖∇�θs+1(z
k)‖ ≤ εs+1 for

all k ≥ k(s) defined by (14). Therefore, for zk(s) = xs+1 we get the statement. ��
Proof of Theorem 3.1 Assume that {xs} is bounded and consider the problem (2), i.e.,

min F(x), s.t. h(x) = 0

where

h(x) = L
1/2x.

Let x∗ be an arbitrary accumulation point of the bounded sequence {xs} generated by algo-
rithm EFIX-Q, i.e., let

lim
s∈K1

xs = x∗.

The inequality (13) implies

θs‖∇T h(xs)h(xs)‖ − ‖∇F(xs)‖ ≤ εs . (29)

Since ∇T h(xs) = (L1/2)T = L
1/2, we obtain

∇T h(xs)h(xs) = Lxs,

and (29) implies

‖Lxs‖ ≤ 1

θs
(‖∇F(xs)‖ + εs). (30)

Taking the limit over K1 we haveLx∗ = 0, i.e., h(x∗) = 0, so x∗ is a feasible point. Therefore
Wx∗ = x∗, or equivalently x∗

1 = x∗
2 = . . . = x∗

N , so the consensus is achieved.
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Now, we prove that x∗ is an optimal point of problem (2). Let us define λs := θsh(xs).
Considering the gradient of the penalty function we obtain

∇�θs (x
s) = ∇F(xs) + θsLxs = ∇F(xs) + L

1/2λs . (31)

Since xs → x∗ over K1 and εs → 0, from (30) we conclude that ζs := θsLxs must be
bounded over K1. Therefore, λs = θsL

1/2xs is also bounded over K1 and thus, there exist
K2 ⊆ K1 and λ∗ such that

lim
s∈K2

λs = λ∗. (32)

Indeed, by the eigenvalue decomposition, we obtain L = UVU
T , where U is an unitary

matrix and V is the diagonal matrix with eigenvalues of L. Let us denote them by vi . The
matrix is positive semidefinite, so vi ≥ 0 for all i and we also know that L1/2 = UV

1/2
U
T .

Since ζs is bounded over K1, the same is true for the sequence UT ζs = VθsU
T xs := Vνs .

Consequently, all the components vi [νs]i are bounded over K1 and the same is true for√
vi [νs]i . By unfolding we get thatV1/2θsU

T xs is bounded over K1 and thus the same holds
for

UV
1/2θsU

T xs = θsL
1/2xs = λs .

Now, using (32) and taking the limit over K2 in (31) we get

0 = ∇F(x∗) + L
1/2λ∗,

i.e., ∇F(x∗)+∇T h(x∗)λ∗ = 0, which means that x∗ is a KKT point of problem (2) with λ∗
being the corresponding Lagrange multiplier. Since F is assumed to be strongly convex, x∗
is also a solution of the problem (2). Finally, notice that x∗

i is a solution of the problem (1)
for any given node i = 1, . . . , N .

We have just proved that, for an arbitrary i , every accumulation point of the sequence
{xsi } is the solution of problem (1). Since the function f is strongly convex, the solution of
problem (1) must be unique. So, assuming that there exist accumulation points x∗ and x̃ such
that x∗ �= x̃ yields contradiction. Therefore we conclude that all the accumulation points
must be the same, i.e., the sequence {xs} converges. This completes the proof. ��
Proof of Corollary 3.1 Notice that (16), (15) and (27) imply for arbitrary i

‖xsi − y∗‖ ≤ εs

μ
+ e1i,θs ≤ 2

(
L J

θsκ(1 − λ2)

√
4 − 2κθ−1

s + J

θs(1 − λ2)

)

≤ 2J

θs(1 − λ2)

(
2(μ + L)

μ
+ 1

)
≤ 2J

θs(1 − λ2)
(3 + 2L/μ).

For θs = s, the right-hand side of the above inequality is smaller than ε for

s ≥ 2J (3 + 2L/μ)

(1 − λ2)
ε−1 (33)

which completes the proof. ��
Proof of Lemma 4.1 Notice that Qs is strongly convex for all θ > 0, i.e., for all s. Moreover,
its Hessian As satisfies μI � As � (L + 2θs)I. Thus, there exists an unique stationary point
x∗
θs
of Qs , i.e., an unique solution of Asx = cs . With notation zk = (zk1; . . . ; zkN ), z0 = xs,

we have

‖∇Qs+1(zk)‖ = ‖∇Qs+1(zk) − ∇Qs+1(x∗
θs+1

)‖
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≤ ‖As+1‖‖zk − x∗
θs+1

‖
≤ (L + 2θs+1)‖zk − x∗

θs+1
‖

≤ (L + 2θs+1)ρ
k
s+1‖xs − x∗

θs+1
‖

≤ (L + 2θs+1)ρ
k
s+1(‖xs − x∗

θs
‖ + ‖x∗

θs
− x∗

θs+1
‖). (34)

Let us now estimate the norms in the final inequality. First, notice that

∇Qs(xs) = ∇Qs(xs) − ∇Qs(x∗
θs

) = As(xs − x∗
θs

).

Thus, we obtain

‖xs − x∗
θs

‖ ≤ ‖A−1
s ‖‖∇Qs(xs)‖ ≤ εs

μ
. (35)

Moreover, for any s we have

‖x∗
θs

‖ ≤ ‖A−1
s ‖‖cs‖ ≤ c̄s

μ
. (36)

Putting (35) and (36) into (34) we obtain

‖∇Qs+1(zk)‖ ≤ (L + 2θs+1)ρ
k
s+1(εs + c̄s + c̄s+1)

μ
.

Imposing the inequality

(L + 2θs+1)ρ
k
s+1(εs + c̄s + c̄s+1)

μ
≤ εs+1,

and then applying the logarithm and rearranging, we obtain that ‖∇Qs+1(zk)‖ ≤ εs+1 for
all k ≥ k(s) defined by (14). Therefore, for zk(s) = xs+1 we get the statement. ��
Proof of Theorem 4.1 Let us consider the problem (2) and denote h(x) = L

1/2x. Let x̃ =
lims∈K xs be an arbitrary accumulation point. Notice that for the penalty function�θs defined
in (3) there holds

‖∇�θs (x
s) − ∇Qs(xs)‖

= ‖∇F(xs) − ∇F(xs−1) + ∇2F(xs−1)(xs − xs−1)‖
≤ 2L‖xs − xs−1‖ := rs (37)

and thus the error of the quadratic model rs is also bounded over K . Now, inequality (19)
together with the previous inequality implies that

‖∇�θs (x
s)‖ ≤ εs + rs, (38)

i.e., we obtain

‖Lxs‖ ≤ 1

θs
(‖∇F(xs)‖ + εs + rs).

Taking the limit over K in the previous inequality, we conclude thatLx̃ = 0, so the feasibility
condition is satisfied, i.e., we have x̃1 = x̃2 = . . . = x̃N .

If lims→∞ xs = x∗ we have that the error in quadratic model converges to zero from (37),
i.e. lims→∞ rs = 0 and thus (38) implies that

lim
s∈K ∇�θs (x

s) = 0.
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Following the same steps as in the second part of the proof of Theorem 3.1, we conclude that
x∗ is optimal and the statement follows. ��
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39. Yousefian, F., Nedić, A., Shanbhag, U.V.: On stochastic gradient and subgradient methods with adaptive
steplength sequences. Automatica 48(1), 56–67 (2012)

40. Zhou, H., Zeng, X., Hong, Y.: Adaptive Exact Penalty Design for Constrained Distributed Optimization.
IEEE Trans. Autom. Control 64(11), 4661–4667 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1205.1733
http://arxiv.org/abs/1905.02637
http://arxiv.org/abs/1907.05448
http://arxiv.org/abs/1909.10144
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://web.stanford.edu/~boyd/papers/avg_metropolis.html
http://arxiv.org/abs/2002.11534

	EFIX: Exact fixed point methods for distributed optimization
	Abstract
	1 Introduction
	2 Preliminaries
	3 EFIX-Q: Quadratic problems
	4 EFIX-G: Strongly convex problems
	5 Numerical results
	5.1 Quadratic case
	5.2 Strongly convex problems
	5.3 Additional comparisons

	6 Conclusions
	Acknowledgements
	Appendix
	References




