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Abstract
This paper proposes a novel matrix rank-one decomposition for quaternion Hermitian matri-
ces, which admits a stronger property than the previous results in Ai W et al (Math Progr
128(1):253–283, 2011), Huang Y, Zhang S (Math Oper Res 32(3):758–768, 2007), Sturm JF,
Zhang S (Math Oper Res 28(2):246–267 2003). The enhanced property can be used to drive
some improved results in joint numerical range, S-Procedure and quadratically constrained
quadratic programming (QCQP) in the quaternion domain, demonstrating the capability of
our new decomposition technique.

Keywords Matrix rank-one decomposition · Quaternion · Joint numerical range ·
S-Procedure · Quadratic optimization

Mathematics Subject Classification 90C20 · 90C30 · 90C90 · 65F30

1 Introduction

In recent years, we have witnessed a burst of quaternion representations in many fields,
including color imaging [9–11, 27, 39], signal processing [14, 15], robotics [12], rolling
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bearing fault diagnosis [42], quaternion convolutional neural networks (QCNNs) [29, 43],
etc. Moreover, there are some noticeable steps towards optimizing the corresponding quater-
nion represented problems. Specifically, Qi et al. [31, 32] conducted a systematic study on
quaternion matrix optimization, and Flamant et al. [16] proposed a general framework for
constrained convex quaternion optimization. In terms of algorithms in the quaternion domain,
affine projection algorithms [38] and learning algorithms [21] based on gradient and Hessian
have been proposed and analyzed. Hence, the increasing number of quaternion-represented
applications and the studies on the associated optimization problems call for a deeper under-
standing of the quaternion structure that could lead to some efficient solution methods. In
this paper, we shall focus on one algebraic quaternion structure: matrix rank-one decompo-
sition, and show that such decomposition admits a stronger property than that in the real and
complex domain by leveraging the intrinsic quaternion nature. We further show that such
merit of rank-one decomposition can be extended to some of its theoretical implications such
as S-Procedure, joint numerical range and quadratically constrained quadratic programming
(QCQP) in the quaternion domain, and improve the associated results in the real and complex
domains.

The matrix rank-one decomposition that we discuss in this paper is a technique of decom-
posing a positive semidefinite Hermitian matrix into the sum of rank-one matrices to satisfy
the so-called equal inner product property, i.e., the inner product between some given matri-
ces and each rank-one term in the decomposition has the same value. The first such type
of decomposition was introduced by Sturm and Zhang in [36] with the equal inner product
property valid for onematrix, and it was used as a key technique to establish the LinearMatrix
Inequality presentation of a class of matrix cones with its quadratic form co-positive over the
real domain. Moreover, such a decomposition technique was found to be useful in quadratic
minimization [41] and designing approximation algorithms for biquadratic optimization [25].
Soon after the work of [36], Huang and Zhang [20] extended the matrix rank-one decom-
position to the complex domain such that the equal inner product property holds for two
matrices. Interestingly, we find that such property remains valid for four matrices when the
rank-one decomposition is conducted in the quaternion domain. Moreover, our proof is fully
constructive and the corresponding computational procedure is summarized in Algorithm 1.

Theoretical implications of our novel matrix decomposition technique are quite versatile
and yield stronger results than those in the real and complex domains. The first two theo-
retical implications are in joint numerical range and S-Procedure, both of which have some
fundamental impacts and wide applications in many fields. In particular, the joint numerical
range is an important tool in linear algebra and convex analysis, and it is found to be useful
in spectrum analysis [33] and quantum computing [13, 35]. S-Procedure occupies a crucial
position in the field of robust optimization [2, 3, 17], statistics [19], signal processing [26],
among others [30]. With our matrix rank-one decomposition result, we manage to establish
the convexity of joint numerical range [4, 28] for fivematrices and the lossless ofS-Procedure
for four Hermitian forms. As a comparison, similar results only hold for fewer matrices in
the real and complex domains. In addition, our result can also be applied to quadratically
constrained quadratic programming (QCQP). To be specific, when the number of quadratic
constraints is no larger than 4, we show that a rank-one solution of the SDP relaxation of
(QCQP), which is hence an optimal solution of (QCQP), can be recovered from our matrix
rank-one decomposition technique.

This paper is organized as follows. In Sect. 2, we introduce some notations and definitions
used throughout this paper. Section 3 is devoted to the new quaternion matrix rank-one
decomposition theorem. To showcase the capability of our new theorem, we illustrate some
improved results in the joint numerical range in Sect. 4 and the S-Procedure in Sect. 5.
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Finally, we present how to solve the (QCQP) with our novel decomposition technique as
another theoretical implication of our result in Sect. 6.

2 Preliminaries

In this section, we introduce some basic algebraic operations in the quaternion domain for
scalars, vectors and matrices.

2.1 Quaternion operations for scalars

We define the set of quaternionsH as a 4-dimensional normed division algebra over the real
numbers R. It has a canonical basis {1, i, j , k}, where i, j , k are imaginary units such that

i2 = j2 = k2 = i j k = −1, i j = − j i = k. (1)

Then, any quaternion q ∈ H can be written as

q = qa + qb i + qc j + qdk,

where qa, qb, qc, qd ∈ R are the components of q . The real and imaginary parts of q are
denoted as Re q = qa and Im q = qb i + qc j + qdk respectively. Note that, in contrast with
the product operation in the real and complex domain, the product operation in the quaternion
domain is noncommutative, i.e., q · p �= p · q for p, q ∈ H.

We denote by q = Re q − Im q the quaternion conjugate of q , and it holds that (p · q) =
q · p. For a given quaternion q ∈ H, |q| denotes its modulus and can be expressed as

|q| = √q · q = √q · q =
√
q2a + q2b + q2c + q2d .

At last, any non-zero quaternion q has an inverse q−1 = q/|q|2 and the inverse of the product
of two quaternions is (p · q)−1 = q−1 · p−1.

2.2 Quaternion vectors and quaternionmatrices

Similar to the scalar case, a quaternion vector q ∈ H
n can be written as

q = qa + qb i + qc j + qdk,

where qa, qb, qc, qd ∈ R
n are the components of q. For a quaternion vector q, q� denotes

the transpose of q, and qH = (q)� = (q�) denotes its conjugate transpose. Any quaternion
matrix A ∈ H

m×n can be expressed as

A = Aa + Ab i + Ac j + Adk

with Aa, Ab, Ac, Ad ∈ R
m×n . The transpose and the conjugate transpose of A are A� and

AH = (A)� = (A�), respectively. For two quaternion matrices A ∈ H
m×n and B ∈ H

n×p,
we have (AB)H = BH AH ; however, due to the noncommutativity of the product operation,
(AB)� �= B�A� and (AB) �= A B. For two vectors q, p ∈ H

n , their inner product

q • p = Re (qH p) = q�
a pa + q�

b pb + q�
c pc + q�

d pd .
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Similarly, for two matrices A, B ∈ H
n×n , their inner product is defined as

A • B := Re (tr AH B) = tr (A�
a Ba + A�

b Bb + A�
c Bc + A�

d Bd),

where ‘tr’ denotes the trace of a matrix.

2.3 Hermitian and positive semidefinite matrices

We call X a quaternion Hermitian matrix if it satisfies X = XH . The cone of quaternion
Hermitian matrices is denoted as Hn . Then uH Xu is real for all u ∈ H

n if and only if X ∈
Hn . We denote by Sn+(Sn++), Cn+(Cn++) and Hn+(Hn++) the cones of real symmetric positive
semidefinite (positive definite), complex Hermitian positive semidefinite (positive definite)
and quaternion Hermitian positive semidefinite (positive definite) matrices, respectively. The
notation X � 0 (X � 0) means that X is positive semidefinite (positive definite). Then, for
any matrix X � 0 (X � 0), we have uH Xu is real and nonnegative (positive) for all u ∈ H

n

(0 �= u ∈ H
n).

3 The quaternionmatrix Rank-One decompositionmethod

In this section,we discuss a particular rank-one decomposition ofmatrices over the quaternion
domain such that the inner product between some given matrices and each rank-one term in
the decomposition has the same value.

In the real domain, Sturm and Zhang [36] showed that for a rank-r symmetric positive
semidefinite matrix Y ∈ Sn+ and a real symmetric matrix B ∈ Sn , there is a rank-one
decomposition of Y such that:

Y =
r∑

i=1

yi y
�
i and y�

i B yi = ( yi y
�
i ) • B = B • Y

r
, for i = 1, 2, · · · , r .

Subsequently, Huang and Zhang [20] proved that the above decomposition could hold for
two matrices in the complex domain. In particular, suppose Z ∈ Cn+ is a complex Hermitian
positive semidefinite matrix of rank r , and C1,C2 ∈ Cn are two given complex Hermitian
matrices. Then, there is a rank-one decomposition of Z such that:

Z =
r∑

i=1

zi zHi and zHi Ck zi = Ck • Z

r
, for i = 1, 2, · · · , r and k = 1, 2.

Thus, a natural question arises: can a similar decomposition holds for more matrices over the
quaternion domain?

3.1 Themain result

The following theorem is the main result of this paper and gives an affirmative answer to the
question above.

Theorem 1 Let Ak ∈ Hn, k = 1, 2, 3, 4, and rank-r matrix X � 0. There exists a rank-one
decomposition of X such that

X =
r∑

i=1

xi xH
i and xH

i Akxi = Ak • X

r
, for i = 1, · · · , r (2)
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and k = 1, 2, 3, 4.

Proof We start with a weaker version of (2) such that it holds only for two matrices A1 and
A2, i.e., there exists a rank-one decomposition of X such that:

X =
r∑

i=1

uiuH
i and uH

i Akui = Ak • X

r
, for i = 1, · · · , r and k = 1, 2 (3)

according to the similar argument of Theorem 2.1 in [20]. The rest of the proof consists of
two steps.
Step 1: prove (2) for k = 1, 2, 3

The conclusion follows if the decomposition in (3) is also valid for matrix A3, i.e.,
uH
i A3ui = A3•X

r , i = 1, · · · , r . Otherwise, without loss of generality, there exist two
vectors u1 and u2 such that

uH
1 A3u1 >

A3 • X

r
and uH

2 A3u2 <
A3 • X

r
.

Denote uH
1 A1u2 = a1 + b1 i + c1 j + d1k and uH

1 A2u2 = a2 + b2 i + c2 j + d2k. Let
ω = ωa + ωb i + ωc j + ωdk ∈ H and construct

v1 = u1ω + u2√
1 + |ω|2 , v2 = −u1 + u2ω√

1 + |ω|2 .

Then, it is easy to verify that

v1v
H
1 + v2v

H
2

= 1

1 + |ω|2
(
(u1ω + u2)(u1ω + u2)H

)
+ 1

1 + |ω|2
(
(−u1 + u2ω)(−u1 + u2ω)H

)

= 1

1 + |ω|2
(
(u1ωωuH

1 + u1ωuH
2 + u2ωuH

1 + u2uH
2 )

+ (u1uH
1 − u1ωuH

2 − u2ωuH
1 + u2ωωuH

2 )
)

= |ω|2u1uH
1 + u2uH

2 + u1uH
1 + |ω|2u2uH

2

1 + |ω|2
= u1uH

1 + u2uH
2 . (4)

Note that the identity above holds for any ω, which will allow us some flexibility to find an
appropriate ω such that

(1 + |ω|2)vH1 Akv1 = (1 + |ω|2) Ak • X

r
, for k = 1, 2. (5)

In particular, observe that

(1 + |ω|2)vH1 Akv1

= (ωuH
1 + uH

2 )Ak(u1ω + u2)

= ωuH
1 Aku1ω + uH

2 Aku2 + ωuH
1 Aku2 + uH

2 Aku1ω

= (1 + |ω|2) Ak • X

r
+ 2Re (ωuH

1 Aku2)

= (1 + |ω|2) Ak • X

r
, for k = 1, 2 (6)
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as long as

Re (ωuH
1 Aku2)

= Re ((ωa − ωb i − ωc j − ωdk)(ak + bk i + ck j + dkk))

= akωa + bkωb + ckωc + dkωd = 0. (7)

Therefore, any solution of the following equations
{
a1ωa + b1ωb + c1ωc + d1ωd = 0

a2ωa + b2ωb + c2ωc + d2ωd = 0,
(8)

will make (5) valid. Moreover, for a particular solution (ωa∗, ωb∗, ωc∗, ωd∗) of (8) with
ω2
a∗ + ω2

b∗ + ω2
c∗ + ω2

d∗ = 1, ω(α) = α(ωa∗ + ωb∗ i + ωc∗ j + ωd∗k) is also a solution of
(8) with |ω(α)| = α for any α > 0, as (8) is homogeneous. To extend the validness of (5) to
matrix A3 for some α, i.e.,

(1 + α2)vH1 A3v1 = (1 + |ω(α)|2)vH1 A3v1 = (1 + α2)
A3 • X

r
, (9)

we compute

(1 + |ω(α)|2)vH1 A3v1

= (ω(α)uH
1 + uH

2 )A3(u1ω(α) + u2)

= ω(α)uH
1 A3u1ω(α) + uH

2 A3u2 + 2Re (ω(α)uH
1 A3u2)

= |ω(α)|2uH
1 A3u1 + uH

2 A3u2 + 2Re (ω(α)uH
1 A3u2)

= α2uH
1 A3u1 + uH

2 A3u2 + 2Re (ω(α)uH
1 A3u2).

(10)

Combing (10) and Re (ω(α)uH
1 A3u2) = αRe (ω∗uH

1 A3u2), identity (9) that we want to
prove is equivalent to

(
uH
1 A3u1 − A3 • X

r

)
α2 + 2ι · α +

(
uH
2 A3u2 − A3 • X

r

)
= 0, (11)

ι = Re (ω∗uH
1 A3u2) and ω∗ = ωa∗ + ωb∗ i + ωc∗ j + ωd∗k. Then (11) is just a quadratic

equation in α, and it must have two real roots with opposite signs since uH
1 A3u1 > A3•X

r and

uH
2 A3u2 < A3•X

r . Let α∗ be the positive root of (11) and construct ω∗ = α∗(ωa∗ + ωb∗ i +
ωc∗ j +ωd∗k). Then (9) holds with α = α∗, and thus vH1 Akv1 = Ak•X

r for k = 1, 2, 3. Since
X =∑r

i=1 xi x
H
i , we have

X − v1v
H
1

(4)=
r∑

j=3

u juH
j + v2v

H
2 � 0.

Therefore, rank(X − v1v
H
1 ) = r − 1, uH

i Akui
(3)= Ak•X

r , i = 3, · · · , r for k = 1, 2, and

vH2 Akv2 = Ak • (v2v
H
2 ) = Ak •

⎛

⎝X −
r∑

j=3

u juH
j − v1v

H
1

⎞

⎠

(5) (3)= Ak • X − (r − 2)
Ak • X

r
− Ak • X

r
= Ak • X

r
, ∀ k = 1, 2.
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Then, we can recursively repeat the above process on X −v1v
H
1 and finally obtain a rank-one

decomposition of X such that

X =
r∑

i=1

viv
H
i and vHi Akvi = Ak • X

r
, for i = 1, · · · , r and k = 1, 2, 3. (12)

Step 2: prove (2) for k = 1, 2, 3, 4
The conclusion follows if the decomposition in (12) is also valid for matrix A4, i.e.,

vHi A4vi = A4•X
r , i = 1, · · · , r . Otherwise, without loss of generality, there exist two

vectors v1 and v2 such that

vH1 A4v1 >
A4 • X

r
and vH2 A4v2 <

A4 • X

r
.

Denote vH1 A1v2 = â1 + b̂1 i + ĉ1 j + d̂1k, vH1 A2v2 = â2 + b̂2 i + ĉ2 j + d̂2k and vH1 A3v2 =
â3 + b̂3 i + ĉ3 j + d̂3k. Let ω̂ = ω̂a + ω̂b i + ω̂c j + ω̂dk ∈ H and construct

x1 = v1ω̂ + v2√
1 + |ω̂|2 , x2 = −v1 + v2ω̂√

1 + |ω̂|2 .

Then, similar to (4), we can verify that

x1xH
1 + x2xH

2 = v1v
H
1 + v2v

H
2 (13)

holds for any ω̂. Moreover, when Re (ω̂vH1 Akv2) = 0, or equivalently âkω̂a + b̂kω̂b+ ĉk ω̂c+
d̂kω̂d = 0, it holds that

(1 + |ω̂|2)xH
1 Akx1 = (1 + |ω̂|2) Ak • X

r
, for k = 1, 2, 3. (14)

In other words, any solution of the following equations
⎧
⎪⎨

⎪⎩

â1ω̂a + b̂1ω̂b + ĉ1ω̂c + d̂1ω̂d = 0

â2ω̂a + b̂2ω̂b + ĉ2ω̂c + d̂2ω̂d = 0

â3ω̂a + b̂3ω̂b + ĉ3ω̂c + d̂3ω̂d = 0,

(15)

will make (14) valid. Since (14) is homogeneous and has three identities and four variables,
we can find a particular solution (ω̂a∗, ω̂b∗, ω̂c∗, ω̂d∗) of (15) with ω̂2

a∗+ω̂2
b∗+ω̂2

c∗+ω̂2
d∗ = 1

such that ω̂(α̂) = α̂(ω̂a∗ + ω̂b∗ i + ω̂c∗ j + ω̂d∗k) is also a solution of (15) with |ω̂(α̂)| = α̂

for any α̂ > 0. To extend the validness of (14) to matrix A4 for some α̂, i.e.,

(1 + α̂2)xH
1 A4x1 = (1 + |ω̂(α̂)|2)xH

1 A4x1 = (1 + α̂2)
A4 • X

r
, (16)

we compute

(1 + |ω̂(α̂)|2)xH
1 A4x1

= (ω̂(α̂)vH1 + vH2 )A4(v1ω̂(α̂) + v2)

= |ω̂(α̂)|2vH1 A4v1 + vH2 A4v2 + 2Re (ω̂(α̂)vH1 A4v2)

= α̂2vH1 A4v1 + vH2 A4v2 + 2Re (ω̂(α̂)vH1 A4v2).

(17)
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Combining Re (ω̂(α̂)vH1 A4v2) = α̂Re (ω̂∗vH1 A4v2) with (17), identity (16) that we want
to prove is equivalent to the following real quadratic equation in terms of α̂:

(
vH1 A4v1 − A4 • X

r

)
α̂2 + 2ι̂α̂ +

(
vH2 A4v2 − A4 • X

r

)
= 0, (18)

where ι̂ = Re (ω̂∗vH1 A4v2) is independent of α̂ as ω̂∗ = ω̂a∗ + ω̂b∗ i + ω̂c∗ j + ω̂d∗k and
vH1 A4v2 are both independent of α̂. Note that (18) must have two real roots with opposite
signs since vH1 A4v1 > A4•X

r and vH2 A4v2 < A4•X
r . Let α̂∗ be the positive root of (18) and

construct ω̂∗ = α̂∗(ω̂a∗ + ω̂b∗ i + ω̂c∗ j + ω̂d∗k). Then (16) holds with α̂ = α̂∗, and thus
vH1 Akv1 = Ak•X

r for k = 1, 2, 3, 4. Recall that X =∑r
i=1 xi x

H
i , we have

X − x1xH
1

(13)=
r∑

j=3

v jv
H
j + x2xH

2 � 0.

Therefore, rank(X − x1xH
1 ) = r − 1, vHi Akvi

(12)= Ak•X
r , i = 3, · · · , r for k = 1, 2, 3, and

xH
2 Akx2 = Ak • (x2xH

2 ) = Ak •
⎛

⎝X −
r∑

j=3

v jv
H
j − x1xH

1

⎞

⎠

(14) (12)= Ak • X − Ak • X

r
− (r − 2)

Ak • X

r
= Ak • X

r
, ∀ k = 1, 2, 3.

Repeating the above process recursively on X − x1xH
1 , we will finally obtain a rank-one

decomposition of X such that (2) holds for k = 1, 2, 3, 4. 	


3.2 The algorithm and numerical verification

Note that the rank-one decomposition procedure we provide in the proof of Theorem 1 is
actually implementable. To make it clear, we summarize all the computational procedures in
Algorithm 1 below. In particular, Step 1 and Step 2 in the proof are described by Algorithm
1 with � = 3 and � = 4, respectively.

Next, we verify Theorem 1 by implementing Algorithm 1 and decomposing some
randomly generated quaternion Hermitian positive semidefinite matrices. The details of gen-
erating those matrices are explained below.

1. Randomly generate four real n × n matrices Aa, Ab, Ac, Ad with each component fol-
lowing the standard normal distribution. Construct quaternion matrix A = Aa + Ab i +
Ac j + Adk.

2. Construct a 4n × 4n real matrix

AR =

⎡

⎢⎢
⎣

Aa −Ab −Ac −Ad

Ab Aa −Ad Ac

Ac Ad Aa −Ab

Ad −Ac Ab Aa

⎤

⎥⎥
⎦ ;

3. Compute XR = AR A�
R , and XR can be written in the form of

XR =

⎡

⎢⎢
⎣

Xa −Xb −Xc −Xd

Xb Xa −Xd Xc

Xc Xd Xa −Xb

Xd −Xc Xb Xa

⎤

⎥⎥
⎦ ;
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Algorithm 1Algorithm for computing the quaternion rank-one decomposition of � matrices
(ACQRD)
Input : Hermitian matrices Ak ∈ Hn for k = 1, · · · , �, a rank-r Hermitian

positive semidefinite matrix X ∈ Hn+ with X =∑r
i=1 ui u

H
i such that

uHi Akui = Ak•X
r , for i = 1, · · · , r and k = 1, · · · , � − 1.

Out put : X =∑r
i=1 xi x

H
i , such that xHi Ak xi = Ak•X

r , for i = 1, · · · , r
and k = 1, · · · , �.

Let U = {u1, · · · , ur } and i = 1.
for j = 1, · · · , r

If uHj A�u j = A�•X
r , then xi = u j , i = i + 1, and U = U \ u j .

end
repeat
1. Find û1 and û2 ∈ U such that ûH1 A� û1 − A�•X

r > 0 and ûH2 A� û2−
A�•X
r < 0. Let ûH1 Ak û2 = ak + bk i + ck j + dk k for k = 1, · · · , � − 1

and compute one solution (ωa∗, ωb∗, ωc∗, ωd∗) with ω2
a∗ + ω2

b∗ + ω2
c∗+

ω2
d∗ = 1 of the following the equations

akωa + bkωb + ckωc + dkωd = 0 for k = 1, · · · , � − 1.

2. Compute the positive root α∗ of the real quadratic equation:

(
ûH1 A� û1 − A� • X

r

)
α2 + 2ι · α +

(
ûH2 A� û2 − A� • X

r

)
= 0,

where ι = Re (ω∗uH1 A�u2) and ωa∗ + ωb∗ i + ωc∗ j + ωd∗k.
3. Set ω∗ = α∗(ωa∗ + ωb∗ i + ωc∗ j + ωd∗k),

v̂1 = û1ω∗ + û2√
1 + |ω∗|2

and v̂2 = −û1 + û2ω∗√
1 + |ω∗|2

.

4. Let xi := v̂1, i = i + 1, U = U \ û1. If v̂
H
2 A�v̂2 = A�•X

r , then
xi := v̂2, i = i + 1, U = U \ û2. Else U = (U \ û2)

⋃
v̂2.

until i = r + 1.

4. Construct X = Xa + Xb i + Xc j + Xdk. Then, X is a quaternion Hermitian positive
semidefinite matrix as its real representation XR [22, 24, 34] is positive semidefinite.

The procedure of randomly generating a quaternion Hermitian matrix is the same as above,
except that in step 3, we let BR = AR + A�

R and write it as

BR =

⎡

⎢⎢
⎣

Ba −Bb −Bc −Bd

Bb Ba −Bd Bc

Bc Bd Ba −Bb

Bd −Bc Bb Ba

⎤

⎥⎥
⎦ .

Then B = Ba + Bb i + Bc j + Bdk is a quaternion Hermitian matrix as the real representation
BR [22, 24, 34] is symmetric.

Now, we start to verify Theorem 1 with a toy example. In particular, we apply the above
procedures to randomly generate a 2 × 2 quaternion Hermitian positive semidefinite matrix
of rank 2:

X =
[
21.3453 4.0942 + 5.8149i + 11.5374 j − 3.1914k
4.0942 − 5.8149i − 11.5374 j + 3.1914k 22.8604

]
,
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and randomly generate four quaternion Hermitian matrices:

A1 =
[−0.1241 1.4494 + 0.9624i − 0.1539 j + 0.8378k
1.4494 − 0.9624i + 0.1539 j − 0.8378k 1.4172

]
,

A2 =
[−1.0689 −1.8769 + 1.0626i + 0.2803 j − 0.0674k

−1.8769 − 1.0626i − 0.2803 j + 0.0674k 1.4384

]
,

A3 =
[
1.0933 0.1228 + 0.5533i − 0.2985 j + 0.2600k
0.1228 − 0.5533i + 0.2985 j − 0.2600k 0.0774

]
,

A4 =
[
1.5442 −0.7028 − 1.4830i − 0.8267 j − 0.3328k
−0.7028 + 1.4830i + 0.8267 j + 0.3328k −0.7423

]
.

Then, we apply Algorithm 1 to perform the quaternion matrix rank-one decomposition with
the accuracy ε = 1e−8, and obtain:

x1 =
(−0.4022 + 1.4665i − 1.9469 j + 1.7181k

−1.2756 + 2.3439i + 1.5973 j + 1.6337k

)
,

x2 =
(−0.3345 + 2.3804i + 2.3264 j + 1.0489k

2.4951 + 0.2452i − 0.5890 j + 1.9713k

)
.

We compute the decomposition residuals

reski = xHi Akxi − Ak • X

r
, for k = 1, 2, 3, 4 and i = 1, . . . , r , (19)

and obtain

res11 = −3.5527e−15, res12 = 3.5527e−15;
res21 = 1.7764e−15, res22 = −3.5527e−15;
res31 = −7.1054e−15, res32 = 1.7764e−15;
res41 = 0, res42 = −5.3291e−15.

Thus, we can see that Theorem 1 is numerically verified as the residuals are very small.
To further verify Theorem 1 for the more general case, we randomly generate 600

instances. In each instance, matrices X , A1, A2, A3, A4 are generated according to the above
procedure. The size of those matrices is also randomly generated under the following two
settings:

(1) n = 6 + �30 ∗ ξ�, (2) n = 50 + �30 ∗ ξ�,
where ξ is uniformly drawn from [0, 1]. In particular, one half of the 600 instances are
generated under setting (1) and setting (2) respectively. After applying Algorithm 1, the
performance of each instance is measured by mean residuals, which is the average of the 4r
terms defined in (19). We plot the performance of our algorithm for 600 random instances
in Fig. 1 and Fig. 2, and the red line in the figures is the mean error, i.e., the average mean
residuals over all instances. As we can see that Algorithm 1 performs remarkably stable and
accurate as the average mean residuals is in the order of 10−13, which further numerically
verifies Theorem 1.

4 The joint numerical range

Numerical range is an important tool in linear algebra and convex analysis, and it has wide
applications in spectrum analysis [33], quantum computing [13, 35], engineering, etc. Joint
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Fig. 1 Performance of Algorithm 1 for 300 random instances under setting (1)

Fig. 2 Performance of Algorithm 1 for 300 instances under the setting (2)

numerical range was first proposed in 1979 and is an extension of numerical range [4], which
mainly focuses on the geometric properties like convexity of the joint field values of several
matrices. Joint numerical range also has as wide applications as that of numerical range,
and theoretically, it has a close connection to other fundamental results such as S-Lemma,
which will be discussed in the next section. On the other hand, people generalized the results
of joint numerical ranges in various ways [1, 8, 23, 37]. In this section, we show how to
further extend the classical results on the convexity of the joint numerical ranges [4, 28] to
the quaternion domain via the rank-one decomposition of quaternion matrices studied in the
last section. We start with some basic concepts that will be used later.
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Definition 1 Let A be any n × n quaternion matrix, the numerical range of A is given by

F(A) :=
{
xH Ax : xH x = 1, x ∈ H

n
}

⊆ H.

With this concept in hand, we formally define the joint numerical range of a set of matrices
as follows.

Definition 2 The joint numerical range of n × n quaternion matrices A1, · · · , Am is
defined to be

F(A1, · · · , Am) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

xH A1x
xH A2x

...

xH Amx

⎞

⎟⎟⎟
⎠

: xH x = 1, x ∈ H
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Regarding the convexity of the joint numerical ranges, Hausdorff [18] showed that

“ If A1 and A2 are complex Hermitian, then F(A1, A2) is a convex set.”

In a slightly different form, Brickman [8] extended the above result to three matrices, i.e.,
suppose A1, A2, A3 are n × n complex Hermitian matrices, then

⎧
⎨

⎩

⎛

⎝
xH A1x
xH A2x
xH A3x

⎞

⎠ : x ∈ C
n

⎫
⎬

⎭
(20)

is a convex set, where Cn is the set of complex vectors.
As a matter of fact, the convexity of the joint numerical ranges in complex domain can

also be extended to quaternion domain for more matrices. In particular, Au-Yeung and Poon
[4] established the following result for quaternion Hermitian matrices.

Theorem 2 (Au-Yeung and Poon [4]) If n �= 2 and A1, · · · , A5 ∈ Hn are quaternion
hermitian matrices, then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

xH A1x
xH A2x

...

xH A5x

⎞

⎟⎟⎟
⎠

: xH x = 1, x ∈ H
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(21)

is a convex set.

Note that the above theorem assumes n �= 2 and this condition is necessary as a counterex-
ample is presented in [34]. However, such condition can be relaxed if we consider the slightly
different form of (20) by Brickman, where the restriction xH x = 1 is dropped. We present
this result in Theorem 3, which is proved by our quaternion matrix rank-one decomposition
theorem.

Theorem 3 Suppose that Ak ∈ Hn, k = 1, · · · , 5. Then
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

xH A1x
xH A2x

· · ·
xH A5x

⎞

⎟⎟
⎠ : x ∈ H

n

⎫
⎪⎪⎬

⎪⎪⎭
(22)

is a convex set.
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Proof To complete the proof, it suffices to show
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

xH A1x
xH A2x

· · ·
xH A5x

⎞

⎟⎟
⎠ : x ∈ H

n

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

A1 • X
A2 • X

· · ·
A5 • X

⎞

⎟⎟
⎠ : X � 0

⎫
⎪⎪⎬

⎪⎪⎭

as the right-hand side is a convex set. Noting that the right-hand side is the convex hull of the
left-hand side, we only need to show the right-hand side is included by the left-hand side.

Take any nonzero vector
⎛

⎜⎜
⎝

v1
v2
· · ·
v5

⎞

⎟⎟
⎠ ∈

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

A1 • X
A2 • X

· · ·
A5 • X

⎞

⎟⎟
⎠ : X � 0

⎫
⎪⎪⎬

⎪⎪⎭
.

Without loss of generality, suppose v5 �= 0 and (Ak − vk
v5
A5) • X = 0, for k = 1, 2, 3, 4.

Then, by Theorem 1, there exits a rank-one decomposition X =∑r
i=1 xi x

H
i such that

xH
i

(
Ak − vk

v5
A5

)
xi = (Ak − vk

v5
A5) • X

r
= 0, k = 1, 2, 3, 4 (23)

for i = 1, · · · , r . Since v5 = A5 • X = ∑r
i=1 x

H
i A5xi , there is at least one vector, say x1

such that xH
1 A5x1 shares the same sign as v5. Let ρ = √

v5
xH1 A5x1

and x = ρx1, then we

have

xH A5x = ρ2xH
1 A5x1 = v5,

and (23) also holds for x. Plugging x and xH A5x = v5 into (23), we have

xH Akx = xH vk

v5
A5x = vk

v5
· v5 = vk

for k = 1, 2, 3, 4. Hence the vector

⎛

⎜⎜
⎝

v1
v2
· · ·
v5

⎞

⎟⎟
⎠ ∈

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

xH A1x
xH A2x

· · ·
xH A5x

⎞

⎟⎟
⎠ : x ∈ H

n

⎫
⎪⎪⎬

⎪⎪⎭
and the conclusion

follows. 	


5 S-Procedure

It is well known that S-procedure plays an important role in robust optimization [2, 3, 17],
statistics [19], signal processing [26], control and stability problems [5, 6], among others.
In this section, we discuss another interesting theoretical implication of our new rank-one
decomposition (Theorem 1) in S-procedure. We first recall the following lemma, which is
due to [40], about S-procedure in real domain.

Lemma 1 -(S-Procedure) Let F(x) = x�A0x+2b�
0 x+c0 and Gi (x) = x�Ai x+2b�

i x+
ci , i = 1, . . . ,m be quadratic functions of x ∈ R

n. Then F(x) ≥ 0 for all x such that
Gi (x) ≥ 0, i = 1, . . . ,m, if there exist τi ≥ 0 such that

[
c0 b�

0
b0 A0

]
−

p∑

i=1

τi ·
[
ci b�

i
bi Ai

]
� 0.
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Moreover, if m = 1 then the converse holds if there exists x0 such that F(x0) > 0.

We remark that the above result essentially study the relationship between

G1(x) ≥ 0,G2(x) ≥ 0, · · · ,Gm(x) ≥ 0 ⇒ F(x) ≥ 0, (24)

and

∃τ1 ≥ 0, τ2 ≥ 0, · · · , τm ≥ 0 such that F(x) −
m∑

i=1

τi Gi (x) ≥ 0 ∀x. (25)

It is obvious that (25) implies (24), and the converse also holds whenm = 1. In the following,
we call S-procedure is lossless if (24) and (25) are equivalent. Although S-procedure was
first studied in the real domain, interestingly, a stronger result has been established in the
complex domain.

Lemma 2 (Yakubovich [40]) Suppose F,G1,G2 areHermitian forms and satisfy (24).More-
over, there is x0 ∈ C

n such that Gi (x0) > 0, i = 1, 2. Then the S-procedure is lossless for
m = 2.

Inspired by such result, we further consider S-procedure in the quaternion domain and
manage to show that it is lossless for m = 4 by Theorem 1.

Theorem 4 Suppose F,G1,G2,G3,G4 are quaternion Hermitian forms and satisfy (24).
Moreover, there is

x0 ∈ H
n such that Gi (x0) > 0, i = 1, 2, 3, 4. (26)

Then the S-procedure is lossless for m = 4.

Proof To prove the conclusion, it suffices to establish (25) for m = 4. Let F(x) = xH A0x
and Gi (x) = xH Ai x for i = 1, 2, 3, 4. Consider the following set

D =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

xH A0x
xH A1x

· · ·
xH A4x

⎞

⎟⎟
⎠ : x ∈ H

n

⎫
⎪⎪⎬

⎪⎪⎭
,

which is a convex cone in R5 by Theorem 3. Moreover, since F(x) and Gi (x), i = 1, · · · , 4
satisfy (24), i.e.,

G1(x) ≥ 0, · · · ,G4(x) ≥ 0 ⇒ F(x) ≥ 0,

we have D ∩ E = ∅, where E = {(y0, y1, y2, y3, y4)| y0 < 0, yi > 0, i = 1, 2, 3, 4}.
Noting that E is also a convex cone, the standard separating hyperplane theorem [7] implies
that there exists t = (t0, t1, t2, t3, t4) �= 0 such that

4∑

k=0

tk yk ≤ 0 for all (y0, y1, y2, y3, y4) ∈ E (27)

and

4∑

k=0

tkxH Akx ≥ 0 for all x ∈ H
n . (28)
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Then we must have t0 ≥ 0 and tk ≤ 0 for k = 1, 2, 3, 4 by inequality (27). Moreover, we
can confirm that t0 > 0, otherwise since t �= 0 there exists some k ∈ {1, 2, 3, 4} such that
tk < 0 and thus for x0 in (26) it holds that

∑4
k=0 tkx

H
0 Akx0 =∑4

k=1 tkx
H
0 Akx0 < 0, which

contradicts with (28). Finally, the validness of (25) withm = 4 is implied by (28) by dividing
both sides of (28) by t0 and letting τk = −tk

t0
≥ 0 for k = 1, 2, 3, 4. 	


6 Quaternion quadratically constrained quadratic optimization

In this section, we consider the following quadratically constrained quadratic programming
in the quaternion domain:

(QCQP) max xH Qx + 2Re(xHq)

s.t. xH A j x + 2Re(xHb j ) + c j ≤ 0, j = 1, · · · ,m,

where Q, A j ∈ Hn , b j , q ∈ H
n , c j ∈ R, j = 1, · · · ,m. Normally, solving the above

problem is very challenging.However,when the number of constraintsm is small, the problem
is possibly tractable. For instance, in the complex domain, Huang and Zhang [20] showed
that the problem (QCQP) with m = 2 could be cast as an SDP and thus could be solved
in polynomial time. While regarding the quaternion domain, we shall show that a similar
result holds for a larger value ofm (in particular form = 4) by the afore-mentioned rank-one
decomposition in Theorem 1.

To relate this problem to SDP, we rewrite (QCQP) as the following matrix form:

max B0 •
[
1 xH

x xxH

]

s.t. Bj •
[
1 xH

x xxH

]
≤ 0, j = 1, · · · ,m,

(29)

where B0 =
[
0 qH

q Q

]
, Bj =

[
c j bHj
b j A j

]
, j = 1, · · · ,m. Problem (29) can be homogenized

by introducing a new variable t and requiring |t |2 = 1:

(HQCQP) max B0 •
[ |t |2 t · xH

x · t̄ xxH

]

s.t. Bj •
[ |t |2 t · xH

x · t̄ xxH

]
≤ 0, j = 1, · · · ,m,

Bm+1 •
[ |t |2 t · xH

x · t̄ xxH

]
= 1,

where Bm+1 =
[
1 0
0 0

]
. Then for any solution

(
t
x

)
of (HQCQP), since |t |2 = 1, x · t̄ is a

solution to (29) and hence a solution to (QCQP). Therefore, we shall work on (HQCQP) in
the rest of this section. By letting

X =
[ |t |2 t · xH

x · t̄ xxH

]
and dropping the constraint: rank (X) = 1,
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we obtain an SDP relaxation of (HQCQP):

(QCQPR) max B0 • X

s.t. Bj • X ≤ 0, j = 1, · · · ,m,

Bm+1 • X = 1,

X � 0,

whose dual is given by

(DQCQPR) min y0

s.t. Y =
m∑

j=1

y j B j − B0 + y0Bm+1 � 0,

y j ≥ 0, j = 1, · · · ,m, y0 free.

To proceed, we assume (QCQP) satisfies the Slater condition, that is, there exists x0 ∈ H
n

such that

q j (x0) := Bj •
[
1 xH

0
x0 x0xH

0

]
< 0, j = 1, · · · ,m. (30)

Accordingly, (QCQPR) satisfies the Slater condition as well. Now we are ready to present
the main theorem of this section, which states that (QCQP) is essentially equivalent to an
SDP when m = 4.

Theorem 5 Suppose (QCQP) satisfies the Slater condition (30) and m = 4. Then (QCQP)
and (QCQPR) have the same optimal value. Moreover, an optimal solution to (QCQP) can
be constructed from that of (QCQPR).

Proof Denote ‘�’ to be either ‘<’ or ‘=’. For the primal optimal solution X∗, the first group
of constraints in (QCQPR) can be rewritten as

Bj • X∗ � j 0, j = 1, 2, 3, 4.

Letting r = rank X∗, by Theorem 1, there exist some non-zero quaternion vectors x̃k =(
tk
xk

)
∈ H

n+1, k = 1, · · · , r , such that

X∗ =
r∑

k=1

x̃k x̃
H
k and Bj • x̃k x̃

H
k � j 0, for j = 1, 2, 3, 4, k = 1, · · · , r . (31)

Since Bm+1 • X∗ = 1, we have
∑r

k=1 |tk |2 = X∗
11 = 1 and there exits � ∈ {1, · · · , r} such

that t� �= 0. Therefore, according to (31), it holds that

q j

(
x� · 1

t�

)
= Bj •

⎡

⎢
⎣

1
(
x� · 1

t�

)H

(
x� · 1

t�

) (
x� · 1

t�

) (
x� · 1

t�

)H

⎤

⎥
⎦

= 1

|t�|2 · Bj •
[ |t�|2 t� · xH

�

x� · t̄� x�xH
�

]

= 1

|t�|2 Bj • x̃� x̃
H
� � j 0, j = 1, 2, 3, 4,
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which further implies x� · 1
t�
is a feasible solution to (QCQP).

Suppose (y∗
0 , y

∗
1 , y

∗
2 , y

∗
3 , y

∗
4 , Y

∗) is a dual optimal solution. Since the Slater condition
holds, the strong duality is valid between (QCQPR) and (DQCQPR). Consequently, the
complementary slackness condition holds, i.e.,

r∑

i=1

Y ∗ • x̃i x̃
H
i = Y ∗ • X∗ = 0, and y∗

j · (Bj • X∗) = 0 for j = 1, 2, 3, 4.

Moreover, since X∗ � 0 and Y ∗ � 0, we have Y ∗ • x̃� x̃
H
� = 0. We also observe from (31)

that

Bj • x̃� x̃
H
� � j 0 ⇔ Bj • X∗ � j 0, for j = 1, 2, 3, 4,

which indicates that

y∗
j ·
(
Bj • x̃� x̃

H
�

)
= y∗

j · (Bj • X∗) = 0 for j = 1, 2, 3, 4.

Combining the above results with

(
1

x� · 1
t�

)(
1

x� · 1
t�

)H

= 1
|t�|2 · x̃� x̃

H
� yields that

(
1

x� · 1
t�

)(
1

x� · 1
t�

)H

is complementary to (y∗
0 , y

∗
1 , y

∗
2 , y

∗
3 , y

∗
4 , Y

∗), and it is an optimal solu-

tion to (QCQPR). Therefore x� · 1
t�
is optimal for (QCQP) and the conclusion follows. 	
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