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Abstract
In this paper, the behavior of the solutions of a multi-objective optimization problem, whose
the objective functions are perturbed by adding a small linear term, is analyzed. In this
regard, a new notion of Lipschitzian stability, by means of the Aubin property of the solution
set, is defined. Lipschitz stable locally efficient solutions, as generalization of tilt/full stable
solutions, are introduced and characterized by modern variational analysis tools. Applying
the weighted sum method, the relationships between these solutions and full-stable local
optimal solutions of the scalarized problem are investigated. The key tools in deriving our
results come from the first- and second-order variational analysis.

Keywords Variational analysis · Perturbation in optimization · Multi-objective
programming · Aubin stability · Tilt-stability · Full-stability

Mathematics Subject Classification 90C29 · 49J52 · 90C31

1 Introduction

One of the important topics in optimization is analyzing the behavior and the sensitivity of
the solutions of a mathematical programming problem against the data perturbation. There
are various approaches for dealing with and investigating perturbation in optimization, see,
e.g. [1, 3] and the references therein. In recent decades, Lipschitz stability, a well-known
concept in this field, has caught the attention of scholars; see [3, 5, 6, 11, 14, 20, 34] among
others. Surveying many references, Klatte and Kummer [14] and Dontchev and Rockafellar
[5] presented overviews of Lipschitz stability definitions. In the following, we briefly review
some of the works related to our problem.
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To the best of our knowledge, Robinson [33] is the pioneer of studying Lipschitz behavior
of the optimal solutions of single-objective optimization problems. Shapiro and Bonnans
[36] considered parametric optimization problems with cone constraints in Banach spaces
and investigated local behavior of the optimal solutions of these problems. One of the most
important concepts in Lipschitz stability framework is tilt-stability, introduced by Poliquin
and Rockafellar [28]. This notion addresses Lipschitz behavior of locally optimal solutions of
a single-objective unconstrained optimization problemwhose extended real-valued objective
function is perturbed by adding small linear terms. Poliquin and Rockafellar applied positive-
definiteness of the Hessian matrix in smooth case and positive-definiteness of the generalized
Hessian/the second-order subdifferential (in the sense of Mordukhovich [18]) in nonsmooth
case, and achieved necessary and sufficient conditions for tilt-stability.After that, especially in
the recent years, characterizing tilt-stability for various classes of optimization problems has
been done in many publications. See, e.g., [7, 8, 16, 21–23, 25, 27] and the references therein.
Along the lines of [28], Levy et al. [15] introduced a new Lipschitz stability concept, called
full-stability, as an extension of tilt-stability. This work was done by applying a parametric
objective function and then, creating general parametric perturbations alongside of the tilt
perturbations considered by Poliquin and Rockafellar [28]. Similar to the tilt-stability, many
researchers provided necessary and sufficient conditions to characterize full-stability based
on the variational analysis tools [15, 24, 26]. The interested readers can find interesting results
about tilt and full stability in the aforementioned papers and the references therein.

The main aim of the current paper is to analyze the behavior of the efficient solutions
of a multi-objective optimization problem, with extended real-valued objective functions,
against small perturbations (by adding linear terms to the objective functions). We introduce
a new Lipschitz stability notion in multi-objective programming, invoking Aubin prop-
erty (also called pseudo-Lipschitzian) of the local strictly efficient solution map. This new
notion, called Lipschitz-stable local efficiency, extends tilt-stability in the single-objective
case. We prove that the defined stability concept ensures the Lipschitzian behavior of the
(locally) efficient value mapping when the objective functions are locally Lipschitz. After
that, we establish necessary conditions for Lipschitz-stable locally efficient solutions and tilt-
stable local minimizers utilizing the first-order subdifferentials. On the other hand, we show
that the full-/tilt-stable local optimal/minimum solutions of the scalarized weighted sum
problem are Lipschitz-stable locally efficient for the considered multi-objective program-
ming problem. Furthermore, invoking some modern variational analysis tools, including the
extended second-order subdifferential, the second-order conditions, and partial strong met-
ric regularity of the subdifferential mappings, we obtain various sufficient conditions for
Lipschitz-stable local efficiency. Moreover, we derive a necessary condition in terms of the
local metric regularity of the first-order subdifferential of the objective functions.

The rest of the paper is organized as follows. Section 2 contains the required preliminaries.
In Sect. 3, some basic variational analysis tools applied in the proofs of the main results are
reviewed. Section 4 is devoted to defining Lipschitz-stable local efficient solutions in multi-
objective programming and establishing their properties. Some necessary conditions for
characterizingLipschitz-stable locally efficient solutions and tilt-stable localminimumpoints
are derived in this section. In Sect. 5, invoking the weighted sum method, the relationships
between Lipschitz-stable local efficiency and full-stability are investigated. Various sufficient
conditions accompanying a necessary condition in terms of the local metric regularity are
provided.
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2 Preliminaries

In this section, we address some basic notions, necessary conventions and preliminaries.
Given a nonempty set X ⊆ R

n , we denote the complement, the convex hull, and the convex
conical hull (the generated convex cone) of X by Xc, conv X , and pos X , respectively. We
reserve the notation IX for the indicator function corresponding to X , whose values are equal
to zero on X and +∞ outside of X .

Given two vectors x, y ∈ R
n , xT and 〈x, y〉 stand for the transpose of x and the inner

product of x, y, respectively. Throughout the paper, we use the Euclidean norm ‖y‖ =√〈y, y〉 for each y ∈ R
n and the Frobenius norm ‖C‖ =

√∑
i, j |ci j |2 for each real p × n

matrix C = [ci j ] ∈ R
p×n . Also, we define Sn := {y ∈ R

n : ‖y‖ = 1}, Bn := {y ∈ R
n :

‖y‖ < 1}, and Bp×n := {C ∈ R
p×n : ‖C‖ < 1}. Furthermore, we set B(x̄; δ) := {y ∈ R

n :
‖y − x̄‖ < δ} and B[x̄; δ] := {y ∈ R

n : ‖y − x̄‖ ≤ δ} for x̄ ∈ R
n and δ > 0.

To compare two vectors x, y ∈ R
p , we apply the following component-wise orders:

• x � y iff xi ≤ yi for each i = 1, 2, . . . , p,
• x ≤ y iff x � y and x 
= y,
• x < y iff xi < yi for each i = 1, 2, . . . , p.

The inequalities �, ≥, and > are understood analogously. Corresponding to these three
orders, we have three sets Rp

� := {x ∈ R
p : x � 0}, Rp

≥ := {x ∈ R
p : x ≥ 0}, and

R
p
> := {x ∈ R

p : x > 0}, respectively. Also, we define �
p
> := {x ∈ R

p
> : ∑p

j=1 x j = 1},
�

p
≥ := {x ∈ R

p
≥ : ∑p

j=1 x j = 1}.
Consider the following Multi-Objective programming Problem (MOP):

min f (x) := ( f1(x), f2(x), . . . , f p(x))
s.t . x ∈ X ,

(1)

where fi : Rn −→ R, i = 1, 2, . . . , p, are the objective functions and the nonempty set
X ⊆ R

n is the feasible set. In the following, some solution concepts known in the multi-
objective programming literature are recalled. See, e.g., [9] as a reference monograph.

Definition 1 A vector x̄ ∈ X is called

• an efficient solution of (1) if there is no x ∈ X with f (x) ≤ f (x̄).
• a locally efficient solution of (1) if, for some δ > 0, there is no x ∈ X ∩ B[x̄; δ] with

f (x) ≤ f (x̄).
• a strictly efficient solution of (1) if there is no x ∈ X \ {x̄} with f (x) � f (x̄).
• a local strictly efficient solution of (1) if, for some δ > 0, there is no x ∈ X∩B[x̄; δ]\{x̄}

with f (x) � f (x̄).
• a properly efficient solution of (1) (in the sense of Geoffrion [12]) if there is a real number

M > 0 such that for each i ∈ {1, 2, . . . , p} and x ∈ X satisfying fi (x) < fi (x̄) there
exists some j ∈ {1, 2, . . . , p} such that f j (x) > f j (x̄) and

fi (x̄)− fi (x)
f j (x)− f j (x̄)

≤ M .
• a local properly efficient solution of (1) if there are real numbers δ, M > 0 such that for

each i ∈ {1, 2, . . . , p} and x ∈ X ∩ B[x̄; δ] satisfying fi (x) < fi (x̄) there exists some
j ∈ {1, 2, . . . , p} such that f j (x) > f j (x̄) and

fi (x̄)− fi (x)
f j (x)− f j (x̄)

≤ M .

In local (strict/proper) efficiency defined above, the scalar δ is called a local (strict/proper)
efficiency radius.
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3 Somematerial from variational analysis

In the current section, some basic concepts in generalized differentiation and variational
analysis, extracted from [18, 19, 26, 34], are briefly reviewed.

Let ϕ : Rn −→ R := (−∞,+∞] and x̄ ∈ dom ϕ := {x ∈ R
n : ϕ(x) < +∞}. The

regular subdifferential of ϕ at x̄ , denoted by ∂̂ϕ(x̄), is defined as

∂̂ϕ(x̄) :=
{
v ∈ R

n : lim inf
x−→x̄

ϕ(x) − ϕ(x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0

}
.

This is known as pre-subdifferential and Fréchet (or viscosity) subdifferential as well.
The Mordukhovich subdifferential (known as general, limiting, and basic first-order sub-

differential) of ϕ at x̄ , denoted by ∂ϕ(x̄), is defined as the set of all v ∈ R
n such that there are

sequences {xν}ν and {vν}ν converging to x̄ and v, respectively, with vν ∈ ∂̂ϕ(xν) for each ν

and ϕ(xν) −→ ϕ(x̄).
The horizon subdifferential of ϕ at x̄ , denoted by ∂∞ϕ(x̄), is defined as the set of all

v ∈ R
n such that there are sequences {xν}ν and {vν}ν with vν ∈ ∂̂ϕ(xν) such that xν → x̄ ,

ϕ(xν) → ϕ(x̄), and λνvν → v for some scalar sequence {λν}ν with λν ↓ 0.
Given a nonempty set X ⊆ R

n and x̄ ∈ X , the regular (resp. basic/limiting) normal cone
to X at x̄ is defined by N̂ (X; x̄) := ∂̂ IX (x̄) (resp. N (X; x̄) := ∂ IX (x̄)). If X is locally convex
at x̄ , i.e., X ∩ B(x̄; δ) is convex for some δ > 0, then

N (X; x̄) = N̂ (X; x̄) = {v ∈ R
n : 〈v, x − x̄〉 ≤ 0, ∀x ∈ X ∩ B(x̄; δ)}.

In the rest of the current section, F : Rn ⇒ R
p is a set-valued mapping. The graph of F

is graph F := {(x, y) ∈ R
n × R

p : y ∈ F(x)}.
The coderivative of F at (x̄, ȳ) ∈ graph F is a set-valuedmapping D∗F(x̄, ȳ) : Rp ⇒ R

n

defined by

D∗F(x̄, ȳ)(u) := {w ∈ R
n : (w,−u) ∈ N

(
(x̄, ȳ); graph F

)}, u ∈ R
p.

If F : Rn −→ R
p is a single-valued mapping and F ∈ C1, then the coderivative of F at x̄ is

a single-valued mapping D∗F(x̄) : Rp −→ R
n with D∗F(x̄)(u) = {∇F(x̄)T u}, u ∈ R

p .
The set-valued mapping F is called inner semicontinuous at (x̄, ȳ) ∈ graph F , if for

each sequence {xν}ν ⊆ R
n converging to x̄ with F(xν) 
= ∅, ν ∈ N, there exists a sequence

{yν}ν ⊆ R
p converging to ȳ with yν ∈ F(xν), ν ∈ N.

Definition 2 [19] The set-valued mapping F is called locally Lipschitz-like around (x̄, ȳ) ∈
graph F with modulus L ≥ 0, if there are neighborhoods U of x̄ and V of ȳ such that for
every x, z ∈ U one has

F(x) ∩ V ⊆ F(z) + L‖x − z‖Bp.

The property addressed in Definition 2 is also known in the literature as the pseudo-
Lipschitzian, Aubin property, and Lipschitz-like property; see, e.g., [17] for more references
and discussions.

Definition 3 [19] Given nonempty subsets U ⊆ R
n and V ⊆ R

p , the set-valued mapping F
is called metrically regular on U relative to V with modulus μ > 0 if

d(x; F−1(y)) ≤ μd(y; F(x)),

for all x ∈ U and y ∈ V satisfying d(y; F(x)) 
= ∞.
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The second-order subdifferential (known also as generalized Hessian) of ϕ at x̄ relative
to a subgradient v̄ ∈ ∂ϕ(x̄) is defined by

∂2ϕ(x̄, v̄)(u) := (D∗∂ϕ)(x̄, v̄)(u), u ∈ R
n .

If ϕ ∈ C2 with the Hessian matrix ∇2ϕ(x̄), then ∂2ϕ(x̄)(u) = {∇2ϕ(x̄)u}, for each
u ∈ R

n .
Let h : Rn ×R

p → R be an extended real-valued function of two variables (x, λ) ∈ R
n ×

R
p . The partial first-order subdifferential mapping ∂xh : Rn × R

p ⇒ R
n at (x̄, λ̄) ∈ dom h

is defined by

∂xh(x̄, λ̄) := ∂hλ̄(x̄),

where hλ̄ : Rn −→ R is defined by hλ̄(·) := h(·, λ̄). Also, the partial inverse of ∂h is defined
by

Sh(λ, v) := {x ∈ R
n : v ∈ ∂xh(x, λ)}, (λ, v) ∈ R

p × R
n .

Furthermore, the extended partial second-order subdifferential of h with respect to x at
(x̄, λ̄) ∈ dom h relative to some v̄ ∈ ∂xh(x̄, λ̄) is defined by

∂̃2x h(x̄, λ̄, v̄)(u) := (D∗∂xh)(x̄, λ̄, v̄)(u), u ∈ R
n . (2)

If h ∈ C2 with v̄ = ∇x h(x̄, λ̄), then for each u ∈ R
n ,

∂̃2x h(x̄, λ̄)(u) = {(∇2
xxh(x̄, λ̄)u,∇2

xλh(x̄, λ̄)u)}. (3)

Notice that, the second-order subdifferential addressed in (2) is different to the standard
partial second-order subdifferential defined as

∂2x h(x̄, λ̄, v̄)(u) := (D∗∂xhλ̄)(x̄, v̄)(u) = ∂2x hλ̄(x̄, v̄)(u), u ∈ R
n . (4)

Even in the smooth case (i.e., h ∈ C2), we have ∂2x h(x̄, λ̄)(u) = {∇2
xxh(x̄, λ̄)u}. Comparing

this equality with (3) makes the difference of two above-mentioned second-order subdiffer-
entials clear.

Definition 4 [26] Let h : Rn × R
p → R. Given (x̄, λ̄) ∈ dom h and v̄ ∈ ∂xh(x̄, λ̄), the

partial subdifferential mapping ∂xh : R
n × R

p ⇒ R
n is called partial strong metrically

regular at (x̄, λ̄, v̄) if its partial inverse, Sh , admits a Lipschitzian single-valued localization
around this point.

4 Lipschitz-stable locally efficient solutions

In the current section, after discussing some stability concepts addressed in the literature, we
introduce and investigate a new stability notion in multi-objective programming.

A given constrained optimization problem, minimization of ϕ0 : R
n −→ R over the

feasible set X ⊂ R
n , can be converted to the unconstrained problem, minimization of the

extended real-valued function ϕ over the whole spaceRn , where ϕ ≡ ϕ0 on X , and ϕ ≡ +∞
outside of X . So, we start our analysis with the single-objective unconstrained case.

Given ϕ : Rn −→ R, consider the minimization of ϕ over Rn . Poliquin and Rockafellar
[28] considered the following parametric unconstrained optimization problem, derived by a
linear perturbation in ϕ:

min
x∈Rn

ϕ(x) − 〈v, x〉.
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Following Robinson [33] and motivated by some numerical algorithms, Poliquin and
Rockafellar [28] investigated the Lipschitz behavior of the local minimizers of ϕ via the
aforementioned perturbed problem and introduced the so-called “tilt stability" notion. Later
on, Levy et al. [15] extended the tilt-stability concept by focusing on a parametric extended
real-valued function h : Rn × R

p −→ R, of two variables (x, λ) ∈ R
n × R

p , instead of ϕ.
They considered a family of optimization problems, min h(x, λ) s.t . x ∈ R

n , parameterized
by λ ∈ R

p and chose the problem

P : min
x∈Rn

h(x, λ̄),

for given λ̄ ∈ R
p . After that, by varying λ near the associated parameter λ̄ and adding a

small linear perturbation term to the objective function, they adopted the two-parametric
unconstrained problem

P(λ, v) : min
x∈Rn

h(x, λ) − 〈v, x〉,
and introduced “full-stable local optimality" as a new notion related to the Lipschitzian
stability. In P(λ, v), the general parametric perturbation created in P by λ ∈ R

p and the
linear perturbation added to the objective function by v ∈ R

n are called the “basic" and “tilt"
perturbations, respectively [15].

Definition 5 [15, 26, 28] Let λ̄ ∈ R
p and the feasible solution x̄ ∈ R

n to P (i.e., h(x̄, λ̄) <

+∞) be given. For δ > 0, consider the mappingsmδ : Rp×R
n −→ R and Mδ : Rp×R

n ⇒
R
n defined by

mδ(λ, v) := inf‖x−x̄‖≤δ

{
h(x, λ) − 〈v, x〉}, (λ, v) ∈ R

p × R
n

Mδ(λ, v) := argmin‖x−x̄‖≤δ

{
h(x, λ) − 〈v, x〉}, (λ, v) ∈ R

p × R
n .

The feasible solution x̄ is called

• a tilt-stable localminimumof h(λ̄, ·), under the fixed parameterλ = λ̄, if there exist δ > 0
and neighborhood V of v = 0n such that the mapping v �→ Mδ(λ̄, v) is single-valued
and Lipschitz on V , with Mδ, f (λ̄, 0n) = {x̄}.

• a full-stable local optimal solution of P(λ̄, v̄) for some v̄ ∈ R
n if there exist δ > 0 and

neighborhoods � of λ̄ and V of v̄ such that the mapping (λ, v) �→ Mδ(λ, v) is single-
valued and Lipschitz on � × V , with Mδ, f (λ̄, v̄) = {x̄}, and the function (v, λ) �→
mδ(λ, v) is likewise Lipschitz on � × V .

Tilt-stability defined in [28, Definition 1.1] can be derived from the above definition by
setting h(·, λ̄) := ϕ(·) for some λ̄ ∈ R

p .
In the current paper, motivated by tilt-stability concept, we introduce a new Lipschitz

stability notion for Multi-Objective programming Problems (MOPs). Consider MOP (1). By
using the indicator function IX , this MOP can be reformulated as the unconstrained MOP

min
x∈Rn

f̄ (x) := ( f̄1(x), f̄2(x), . . . , f̄ p(x)), (5)

where f̄ : R
n −→ R

p
is an extended vector-valued mapping with f̄i := fi + IX , i =

1, 2, . . . , p. Establishing the equivalence of two MOPs (1) and (5) is straightforward. So,
hereafter, we concentrate on the MOP,

min
x∈Rn

f (x) := ( f1(x), f2(x), . . . , f p(x)), (6)
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in which fi : Rn −→ R, i = 1, 2, . . . , p, are objective functions and

dom f := {x ∈ R
n : fi (x) < +∞, i = 1, 2, . . . , p} 
= ∅.

Let x̄ ∈ dom f and δ > 0. We consider the set-valued mappings Mδ, f : Rp×n ⇒ R
n

and mδ, f : Rp×n ⇒ R
p such that Mδ, f (C) is the set of strictly efficient solutions of the

perturbed MOP
(PC,δ) : min‖x−x̄‖≤δ

f (x) − Cx, (7)

and mδ, f (C) := { f (x) − Cx : x ∈ Mδ, f (C)}, for C ∈ R
p×n .

If x ∈ Mδ, f (C), then x is a strictly efficient solution of (PC,δ). For x̄ itself, x̄ ∈ Mδ, f (C)

means the local strict efficiency of x̄ with radius δ for

min
x∈Rn

f (x) − Cx . (8)

Now, we are ready to introduce Lipschitz-stable local efficiency in multi-objective pro-
gramming. It is defined utilizing local Lipschitz-like property for set-valued mappings,
dealing with sensitivity and perturbation.

Definition 6 A vector x̄ ∈ dom f is called a Lipschitz-stable (briefly, L-stable) locally
efficient solution of (6), if there exists δ > 0 such that Mδ, f (·) 
= ∅ around 0p×n

with x̄ ∈ Mδ, f (0p×n), and the set-valued mapping Mδ, f is locally Lipschitz-like around
(0p×n, x̄) ∈ graph Mδ, f .

L-stability in multi-objective programming, in the sense of Definition 6, analyses the Lip-
schitzian behavior of the solution set of the perturbed problem around the point in question.
Indeed, a local strictly efficient solution x̄ of (6) with radius δ, is an L-stable locally effi-
cient solution, if Mδ, f (·) 
= ∅ around 0p×n and furthermore there are scalar L > 0 and
neighborhoods U of x̄ and V of 0p×n such that

Mδ, f (C) ∩ U ⊆ Mδ, f (D) + L‖C − D‖Bn, ∀C, D ∈ V. (9)

The last inclusion means for each strictly efficient solution x̂ ∈ U of (PC,δ), there exists a
strictly efficient solution x0 of (PD,δ) such that

‖x̂ − x0‖ ≤ L‖C − D‖.
According to the above explanations, in the single-objective case (when p = 1) L-stability
is equivalent to the tilt-stability. In this case, the strict efficiency coincides with the unique
optimality, and Mδ, f (v) = argmin

x
{ f (x)−〈v, x〉 : ‖x− x̄‖ ≤ δ} andmδ, f (v) = inf

x
{ f (x)−

〈v, x〉 : ‖x − x̄‖ ≤ δ} for each v ∈ R
n .

Theorem 1 If x̄ ∈ dom f is an L-stable locally efficient solution of (6) with δ > 0 and fi ,
i = 1, 2, . . . , p, are continuous at x̄ , then x̄ fulfills L-stability for each γ ∈ (0, δ].
Proof Assume that x̄ is an L-stable locally efficient solution of (6) with δ. Then Mδ, f (·) 
= ∅
around 0p×n with x̄ ∈ Mδ, f (0p×n) and there are a scalar L > 1 and neighborhoods U of x̄
and V of 0p×n such that (9) holds. Let γ ∈ (0, δ] be arbitrary and constant hereafter. It is easy
to see that Mγ, f (·) 
= ∅ around 0p×n and x̄ ∈ Mγ, f (0p×n). Now, we claim that there exists
some ε ∈ (0, γ ) such that Mγ, f (C) ∩ B(x̄; ε) = Mδ, f (C) ∩ B(x̄; ε) for any C ∈ εBp×n .
The inclusion Mδ, f (C) ∩ B(x̄; ε) ⊆ Mγ, f (C) ∩ B(x̄; ε) holds trivially (by choosing ε less
than γ ). To prove the converse inclusion, by indirect proof, assume that there are sequences
εν ∈ R> with εν −→ 0, Cν ∈ R

p×n with ‖Cν‖ < εν , and xν ∈ Mγ, f (Cν) ∩ B(x̄; εν) such
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that xν /∈ Mδ, f (Cν). Then, for any ν ∈ N, there exists yν ∈ R
n such that γ < ‖yν − x̄‖ ≤ δ

and

f (yν) − Cν yν � f (xν) − Cνxν .

These imply yν −→ ȳ for some ȳ ∈ B(x̄; δ) (by choosing an appropriate subsequence if
necessary) with ȳ 
= x̄ and f (ȳ) � f (x̄). This contradicts x̄ ∈ Mδ, f (0p×n) and the claim is
proved.

Now, without loss of generality, consider ε ∈ (0, γ ) such that B(x̄; ε) ⊆ U , εBp×n ⊆ V ,
and Mγ, f (C)∩B(x̄; ε

2
) = Mδ, f (C)∩B(x̄; ε

2
) for any C ∈ ε

2Bp×n . Let C0, D0 ∈ ε

4L
Bp×n

be arbitrary. Assume x̂ ∈ Mγ, f (C0) ∩ B(x̄; ε

2
). Then, x̂ ∈ Mδ, f (C0) ∩ U . Taking D0 ∈

ε

2L
Bp×n ⊆ V into account, by (9), there exists some x0 ∈ Mδ, f (D0) such that

‖x̂ − x0‖ ≤ L‖C0 − D0‖.
Furthermore,

‖x0 − x̄‖ ≤ ‖x0 − x̂‖ + ‖x̂ − x̄‖ ≤ L(‖C0‖ + ‖D0‖) + ε

2
≤ L(

ε

4L
+ ε

4L
) + ε

2
= ε < γ.

This implies x0 ∈ B(x̄; γ ), and hence x0 ∈ Mγ, f (D0).

Hence, by setting U0 := B(x̄; ε

2
) and V0 := ε

4L
Bp×n , we have

Mγ, f (C0) ∩ U0 ⊆ Mγ, f (D0) + L‖C0 − D0‖Bn, ∀C0, D0 ∈ V0.

This completes the proof. ��
Now, we continue with a discussion about two stability notions existing in the literature.
A stability property for local strictly efficient solutions of MOPs has been defined in [35]:

x̄ ∈ dom f a said to be a stable locally efficient solution of (6) if there are scalars δ, ε > 0
and γ, λ ≥ 0 such that x̄ ∈ Mδ, f (0p×n) and

(i) for any C ∈ εBp×n , there is x ∈ Mδ, f (C) such that ‖x − x̄‖ ≤ γ ‖C‖;
(ii) for any C, D ∈ εBp×n , there are x ∈ Mδ, f (C) and y ∈ Mδ, f (D) such that ‖x − y‖ ≤

γ ‖C − D‖;
(iii) for any C, D ∈ εBp×n, x ∈ Mδ, f (C), and y ∈ Mδ, f (D) with ‖x − y‖ ≤ γ ‖C − D‖,

the inequality ‖ f (x) − f (y)‖ ≤ λ‖C − D‖ holds.

The authors of [35] have investigated their stability concept under Lipschitzness assumption.
If fi , i = 1, 2, . . . , p, are Lipschitz on B[x̄; δ], then condition (iii) automatically holds (for
some λ ≥ 0). So, it can be ignored. Therefore, under Lipschitzness assumption, the above
conditions are equivalent to

{
x̄ ∈ Mδ, f (C) + γ ‖C‖Bn, ∀C ∈ εBp×n,

0n ∈ Mδ, f (C) − Mδ, f (D) + γ ‖C − D‖Bn, ∀C, D ∈ εBp×n .

In the single-objective case (i.e., p = 1), the above conditions imply the classic Lipschitz
property for the single-valued function Mδ, f . However, it is not necessarily valid in the
multi-objective case, p > 1, when Mδ, f is set-valued. In other words, the above conditions
do not result in the Lipschitz-like property for Mδ, f , necessarily, while it is expected from
stability notions. According to the literature, the main idea behind defining stable solutions
is the investigation of the Lipschitzian behavior of these solutions against perturbation.
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A popular method in the literature for dealing with sensitivity and perturbation is robust-
ness. In recent decades, various robustness concepts have been introduced and investigated;
see, e.g., [1, 2, 10] and the references therein. Georgiev et al. [13] and Zamani et al.
[37] defined a robustness notion for linear and nonlinear MOPs, respectively. Rahimi and
Soleimani-damaneh [30, 32] extended it to the vector optimization. In these works, an effi-
cient solution is said a robust efficient solution if it remains efficient under small perturbations
in the objective functions. More precisely, according to [37, Definition 3.1], an efficient solu-
tion x̄ ∈ X of (1) is called a norm-based robust efficient solution, if there exists a scalar r > 0
such that x̄ is an efficient solution of the following problem for any C ∈ rBp×n ,

min f (x) + Cx
s.t . x ∈ X .

(10)

Pourkarimi and Soleimani-damaneh [29, Theorem 3.9] showed that norm-based robust
efficiency in the linear case is equivalent to the strict efficiency. Furthermore, Rahimi and
Soleimani-damaneh [31, Theorem 4.1 and Corollary 4.2] proved the coincidence of norm-
based robust efficiency and isolated efficiency for the non-linear case.1 Moreover, it is
evidently seen that x̄ is stable locally efficient in the sense of [35] if fi , i = 1, 2, . . . , p, are
locally Lipschitz at x̄ and it is a norm-based robust efficient solution of (1) with X = B[x̄; δ].
The following example shows that norm-based robust efficiency does not necessarily lead in
L-stability.

Example 1 Consider the multi-objective optimization problem

min f (x) = (max{x, 0},max{−x, 0})T s.t . x ∈ [−1, 1]. (11)

According to [32, Example 5.1], x̄ := 0 is a norm-based robust efficient solution of (11).
Hence, x̄ is a stable locally efficient solution in the sense of [35]. We establish that x̄ is
not an L-stable locally efficient solution. By indirect proof, assume that there exist scalars
1 > δ > ε > 0 and L > 1 such that

∀C, D ∈ εB2×1 : Mδ, f (C) ∩ B(x̄; ε) ⊆ Mδ, f (D) + L‖C − D‖B1. (12)

Consider two matrices C := ε

3L
(−1, 0)T and D := 02×1. We get Mδ, f (D) = {x̄} and

Mδ, f (C) = {x : −δ ≤ x ≤ 0}. Therefore, − ε

2
∈ Mδ, f (C) and due to (12),

| − ε

2
− x̄ | ≤ L‖C − D‖ �⇒ ε

2
≤ ε

3
.

This contradiction implies that x̄ is not an L-stable locally efficient solution.

Example 2 shows that L-stable local efficiency does not necessarily imply norm-based
robust efficiency (and proper efficiency) even if the objective functions are convex and the
feasible set is convex and compact.

Example 2 Consider the multi-objective optimization problem

min f (x) := (x, x2)T , s.t . x ∈ R. (13)

Let x̄ := 0, δ := 2, and ε := 1. Let C = (c1, c2)T ∈ B2×1. Then, Mδ, f (C) = [−2,
c2
2

]. It
is easy to show that Mδ, f is locally Lipschitz-like around (02×1, x̄) with modulus L := √

2.

1 See [31] for definition of isolated efficiency.
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Therefore, x̄ := 0 is an L-stable locally efficient solution of (13). According to [37, Theorem
3.1], x̄ = 0 is not a norm-based robust efficient solution of (13).

In the single-objective case, p = 1, if f is lower semicontinuous, then the optimal value
function v �−→ inf

x
{ f (x)−〈v, x〉 : ‖x− x̄‖ ≤ δ} is finite and concave on some neighborhood

of v = 0n . So, it is locally Lipschitz at v = 0n . In the following theorem, we show that L-
stability ensures the Lipschitzian behavior of the (locally) efficient value mapping of the
perturbed problem.

Theorem 2 If x̄ ∈ dom f is an L-stable locally efficient solution of (6) and fi , i =
1, 2, . . . , p, are locally Lipschitz at x̄ , then there exists some δ > 0 such that the set-valued
mapping mδ, f is locally Lipschitz-like around (0p×n, f (x̄)) ∈ graph mδ, f .

Proof Assume that x̄ ∈ dom f is an L-stable locally efficient solution of (6). Then, there
exist scalars δ, L > 0 and neighborhoods U of x̄ and V of 0p×n such that

∀C, D ∈ V : Mδ, f (C) ∩ U ⊆ Mδ, f (D) + L‖C − D‖Bn .

Without loss of generality, assume that fi is Lipschitz on B[x̄; δ] with constant Ki . We claim
that there exists some ε > 0 such that B(x̄; ε) ⊆ U , εBp×n ⊆ V , and if f (x) − Cx ∈
mδ, f (C) ∩ B( f (x̄); ε) with C ∈ εBp×n and x ∈ Mδ, f (C), then x ∈ U .
If not, there are sequences {Cν}ν ⊆ R

p×n and {xν}ν ⊆ B[x̄; δ] such that Cν → 0, xν ∈
Mδ, f (Cν), f (xν) − Cνxν −→ f (x̄), and {xν}ν ∩ U = ∅. Then, f (xν) −→ f (x̄). As
the sequence xν is bounded, without loss of generality, we assume xν −→ x̂ for some
x̂ ∈ B[x̄; δ] with x̂ 
= x̄ . Therefore, f (xν) −→ f (x̂) and so f (x̂) = f (x̄). This contradicts
x̄ ∈ Mδ, f (0p×n) and the claim is proved.

Now, suppose that C, D ∈ εBp×n are arbitrary and constant hereafter. Consider f (x) −
Cx ∈ mδ, f (C) ∩ B( f (x̄); ε). Then, taking the aforementioned claim into account, x ∈
Mδ, f (C) ∩ U and so, there exists some y ∈ Mδ, f (D) such that ‖x − y‖ ≤ L‖C − D‖.
Hence,

‖ f (x) − Cx − ( f (y) − Dy)‖
≤ ‖ f (x) − f (y)‖ + ‖Dy − Cx‖
≤

p∑
i=1

| fi (x) − fi (y)| + ‖D(y − x) + (D − C)x‖

≤
p∑

i=1
Ki‖y − x‖ + ‖D‖‖y − x‖ + ‖D − C‖‖x‖

≤
(
L

p∑
i=1

Ki + εL + δ + ‖x̄‖
)

‖C − D‖.

Therefore, by setting L ′ := L
∑p

i=1 Ki + εL + δ + ‖x̄‖, we have
∀C, D ∈ εBp×n : mδ, f (C) ∩ B( f (x̄); ε) ⊆ mδ, f (D) + L ′‖C − D‖Bp,

and the proof is complete. ��

In Theorem 3 below, we provide a necessary condition for L-stability.

Theorem 3 Let x̄ ∈ R
n. Assume that fi , i = 1, 2, . . . , p, are finite-valued and convex around

x̄. If x̄ is an L-stable locally efficient solution of (6), then
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(i) for each ν > 0 there exist scalars δ, α, ε, L > 0 such that

α√
p
Bn ⊆

⋃
x∈B(x̄;ν)

(
conv

( p⋃
i=1

∂ fi (x)
) ⋂(‖x − y‖

L
√
p

Bn

)c)
, (14)

for any y ∈ Mδ, f (0p×n) ∩ B(x̄; ε).
(ii) for each ν > 0 there exist scalars δ, ε > 0 such that

⋃
x∈B(y;ν)

pos
( p⋃
i=1

∂ fi (x)
)

= R
n, (15)

for any y ∈ Mδ, f (0p×n) ∩ B(x̄; ε).

Proof Let ν > 0 be arbitrary and constant hereafter. Assume that x̄ is an L-stable locally
efficient solution of (6). So, there exists some δ > 0 such that x̄ ∈ Mδ, f (0p×n) and there are

scalars L > 1, ε ∈ (0,
δ

2
), and α ∈ (0,

δ

2L
) such that

C, D ∈ αBp×n : Mδ, f (C) ∩ B(x̄; ε) ⊆ Mδ, f (D) + L‖C − D‖Bn . (16)

Due to Theorem 1, without loss of generality, assume that δ < ν and fi , i = 1, 2, . . . , p, are
finite-valued and convex on B[x̄; δ].

To prove (i), assume y ∈ Mδ, f (0p×n) ∩ B(x̄; ε) and d ∈ α√
p
Bn are arbitrary. Consider

the matrix D ∈ R
p×n whose each row is the vector dT . Then, D ∈ αBp×n and so, by (16),

there exists some x0 ∈ Mδ, f (D) such that

‖y − x0‖ ≤ L‖D‖ = L
√
p‖d‖.

Furthermore,

‖x0 − x̄‖ ≤ ‖x0 − y‖ + ‖y − x̄‖ < αL + ε <
δ

2
+ δ

2
= δ < ν.

On the other hand, due to the weighted-sum scalarization method [9], x0 ∈ Mδ, f (D) implies
the existence of a vector λ ∈ �

p
≥ such that x0 is an optimal solution of

min
p∑

i=1

λi fi (x) − 〈d, x〉 s.t . x ∈ B[x̄; δ].

Thus, according to [19, Proposition 1.114] and [4, Theorem 4.10], we get

d ∈
p∑

i=1

λi∂ fi (x
0).

Hence,

d ∈
⋃

x∈B(x̄;ν)

(
conv

( p⋃
i=1

∂ fi (x)
) ⋂ (‖x − y‖

L
√
p

Bn

)c)
,

and (i) is proved.
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To prove (ii), suppose that y ∈ Mδ, f (0p×n) ∩B(x̄; ε) and d ∈ R
n are arbitrary. Consider

the matrix D ∈ αBp×n whose each row is the vector
α

L
√
p‖d‖d

T . Therefore, by (16), there

exists some x∗ ∈ Mδ, f (D) with

‖y − x∗‖ ≤ L‖D‖ = α < ν.

Following a manner similar to the last part of the proof of part (i), ‖x∗ − x̄‖ < δ < ν and
there exists a vector λ ∈ �

p
≥ such that x∗ is an optimal solution of

min
p∑

i=1

λi fi (x) − α

L
√
p‖d‖〈d, x〉 s.t . x ∈ B[x̄; δ].

So, we get

α

L
√
p‖d‖d ∈

p∑
i=1

λi∂ fi (x
∗),

whiles implies

d ∈
⋃

x∈B(y;ν)

pos
( p⋃
i=1

∂ fi (x)
)
,

and the proof is complete. ��

Corollary 1 is a direct consequence of Theorem 3.

Corollary 1 Let x̄ ∈ R
n. Assume that fi , i = 1, 2, . . . , p, are finite-valued, convex, and

continuously differentiable around x̄. If x̄ is an L-stable locally efficient solution of (6), then

(i) for each ν > 0 there exist scalars δ, α, ε, L > 0 such that

α√
p
Bn ⊆

⋃
x∈B(x̄;ν)

(
conv

{
∇ f1(x),∇ f2(x), . . . ,∇ f p(x)

} ⋂ (‖x − y‖
L
√
p

Bn

)c)
,

for any y ∈ Mδ, f (0p×n) ∩ B(x̄; ε).
(ii) for each ν > 0 there exist scalars δ, ε > 0 such that

⋃
x∈B(y;ν)

pos
{
∇ f1(x),∇ f2(x), . . . ,∇ f p(x)

}
= R

n,

for any y ∈ Mδ, f (0p×n) ∩ B(x̄; ε).

Theorem 4 provides a necessary condition for tilt-stability without convexity assumption.

Theorem 4 Let x̄ ∈ R
n. Assume that p = 1 and f is finite-valued around x̄. If x̄ is a tilt-

stable local minimum of f , then for each ν > 0 there exist scalars α > 0 and L > 1 such
that

αBn ⊆
⋃

x∈B(x̄;ν)

(
∂ f (x)

⋂ (‖x − x̄‖
L

Bn

)c)
. (17)
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Proof Assume that x̄ is a tilt-stable local minimum of f . Then, there exists some δ > 0 such
that Mδ, f (0n) = {x̄} and there exist scalar L > 1 and neighborhood V of v = 0n such that
the mapping Mδ, f is single-valued on V and for each u, v ∈ V,

‖Mδ, f (u) − Mδ, f (v)‖ ≤ L‖u − v‖.
Also, without loss of generality, assume that f is finite-valued on B[x̄; δ]. If (17) holds for
some ν̂ > 0, then it holds for any ν > ν̂. So, consider ν ∈ (0, δ). There exists sufficiently
small α > 0 such that αBn ⊆ V and αL < ν. Let d ∈ αBn be arbitrary and constant
hereafter. Then, there exists x̂ ∈ B(x̄; δ) such that Mδ, f (d) = {x̂} and

‖x̂ − x̄‖ ≤ L‖d‖ < Lα < ν.

Therefore, x̂ ∈ B(x̄; ν) and d /∈ ‖x̂ − x̄‖
L

Bn . On the other hand, Mδ, f (d) = {x̂} and

‖x̂ − x̄‖ < δ lead in d ∈ ∂ f (x̂), invoking [19, Proposition 1.114]. Hence,

d ∈
⋃

x∈B(x̄;ν)

(
∂ f (x)

⋂ (‖x − x̄‖
L

Bn

)c)
,

and the proof is complete. ��

The following example shows that in Theorem 4, the tilt-stability assumption cannot be
replaced by unique optimality.

Example 3 Consider the function f : R → R defined by

f (x) :=
{
x3, x ≥ 0,
−x3, x < 0

Here, x̄ := 0 is the unique minimizer of f which does not satisfy (17). More precisely, let
ν = 1. If (17) holds for some α > 0 and L > 1, then considering d ∈ (0,min{α, 1

3L2 }),
we have d ∈ αB1, and so d ∈ ∂ f (x) = {3x2} for some x ∈ R with |x | < 1. We have
3x2 = d < 1

3L2 leading in 9x4 < x2

L2 and then 3x2 <
|x |
L = |x−x̄ |

L . This implies d ∈ |x−x̄ |
L B1

which contradicts (17).

5 Weighted sum scalarization and L-stable local efficiency

One of the most popular and important approaches for handling and solving the multi-
objective programming problems is the scalarization. There are several scalarization
techniques in the literature. The weighted sum scalarization method is one of the most
operational and interpretable ones [9]. In the current section, we provide a bridge between
L-stability and some corresponding notions defined for the single-objective case, by means
of the weighted sum technique.

Given λ ∈ R
p
≥, the single-objective weighted sum problem corresponding to (6) is as

follows:

min
p∑

i=1

λi fi (x).

s.t . x ∈ R
n
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We define the extended real-valued function h : Rn × R
p −→ R by

h(x, λ) := 〈λ, f 〉(x) :=
p∑

i=1

λi fi (x), (x, λ) ∈ R
n × R

p.

Also, we consider the single-objective optimization problem

P(λ, v) : min h(x, λ) − 〈v, x〉 s.t. x ∈ R
n,

as a two-parametric unconstrainedoptimizationproblemwith parametersλ ∈ R
p andv ∈ R

n .
Now, we present some characterizations of L-stable locally efficient solutions, utilizing

the weighted sum problem. In the following, we show that, under appropriate assumptions,
full-stability and tilt-stability for the weighted sum problem imply L-stability for MOP (6).

Theorem 5 Let fi , i = 1, 2, . . . , p, be locally convex at x̄ ∈ dom f . Assume that there
exists a unique vector λ̄ ∈ �

p
> such that x̄ is a locally optimal solution of P(λ̄, 0n). If x̄ is a

full-stable local optimal solution of P(λ̄, 0n), then x̄ is an L-stable locally efficient solution
of (6).

Proof Assume that x̄ ∈ dom f is a full-stable local optimal solution of P(λ̄, 0n). There exist
scalars δ > 0 and K > 0 and neighborhoods � of λ̄ and V of 0n such that the mapping
Mδ(·, ·) is single-valued on � × V with Mδ(λ̄, 0n) = {x̄} and

‖Mδ(λ, v) − Mδ(μ, u)‖ ≤ K‖(λ, v) − (μ, u)‖, (18)

for any (λ, v), (μ, u) ∈ �×V .Without loss of generality, we assume that fi , i = 1, 2, . . . , p,
are convex on B[x̄; δ]. Due to Mδ(λ̄, 0n) = {x̄}, the vector x̄ is a unique locally optimal
solution of P(λ̄, 0n) with radius δ. So, thanks to [9, Proposition 3.9], x̄ is a local strictly
efficient solution of (6) with radius δ. Hence, x̄ ∈ Mδ, f (0p×n).
We consider γ > 0 sufficiently small such that B(λ̄; γ ) ⊆ � ∩ R

p
>. Now, we claim that

there exists ε ∈ (0, δ) such that εBp ⊆ V and for any C ∈ ε

‖λ̄‖ + γ
Bp×n and any x ∈

Mδ, f (C) ∩ B(x̄; ε), x is a locally optimal solution of P(λ,
∑p

i=1 λiCi ) with radius δ for
some λ ∈ B(λ̄; γ ). Hereafter, Ci stands for the i-th row of the matrix C .
Proof of the claim: By indirect proof, assume that there are sequences εν −→ 0, Cν −→
0p×n , and xν ∈ Mδ, f (Cν)∩B(x̄; εν) such thatW ν ∩B(λ̄; γ ) = ∅ for any ν ∈ N, whereW ν

denotes the set of all λ ∈ �
p
≥ that xν is a locally optimal solution of P(λ,

∑p
i=1 λiCν

i ) with
radius δ. The local strict efficiency of the vector xν onB[x̄; δ] and local convexity assumption
yield W ν 
= ∅, for each ν ∈ N (Due to [9, Proposition 3.10]). Consider λν ∈ W ν, ν ∈ N.
Then λν −→ λ̃ for some λ̃ ∈ �

p
≥. It is clear that λ̃ /∈ B(λ̄; γ ). Let y ∈ B[x̄; δ] be arbitrary.

We get

p∑
i=1

λν
i fi (xν) −

p∑
i=1

λν
i C

ν
i xν ≤

p∑
i=1

λν
i fi (y) −

p∑
i=1

λν
i C

ν
i y, ∀ν ∈ N,

leading in

p∑
i=1

λ̃i fi (x̄) ≤
p∑

i=1

λ̃i fi (y),
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by ν → ∞. On the other hand,
∑p

i=1 λ̄i fi (x̄) ≤ ∑p
i=1 λ̄i fi (y), due to the local optimality

of x̄ for P(λ̄, 0n) with radius δ. Therefore,

p∑
i=1

(λ̄ + λ̃)i

2
fi (x̄) ≤

p∑
i=1

(λ̄ + λ̃)i

2
fi (y).

So, x̄ is a locally optimal solution of P(
λ̄ + λ̃

2
, 0n) with radius δ and

λ̄ + λ̃

2
∈ �

p
>. This

contradicts the uniqueness of λ̄. Hence, the claim is correct.

Now, let Ĉ, D̂ ∈ ε

‖λ̄‖ + γ
Bp×n and x̂ ∈ Mδ, f (Ĉ) ∩ B(x̄; ε). Then, there exists λ̂ ∈

B(λ̄; γ ) such that x̂ is a locally optimal solution of P(λ̂,
∑p

i=1 λ̂i Ĉi ) with radius δ. As
∥∥∥∥∥

p∑
i=1

λ̂i Ĉi

∥∥∥∥∥ ≤ ‖λ̂‖‖Ĉ‖ < (‖λ̄‖ + γ )
ε

‖λ̄‖ + γ
= ε,

we have Mδ(λ̂,
∑p

i=1 λ̂i Ĉi ) = {x̂}. On the other hand, the problem P(λ̂,
∑p

i=1 λ̂i D̂i ) admits

a locally optimal solution with radius δ. If ẑ is a locally optimal solution ofP(λ̂,
∑p

i=1 λ̂i D̂i )

with radius δ, then similar to what was already proven, Mδ(λ̂,
∑p

i=1 λ̂i D̂i ) = {ẑ} and so,

ẑ ∈ Mδ, f (D̂). We have

‖x̂ − ẑ‖ = ‖Mδ(λ̂,

p∑
i=1

λ̂i Ĉi ) − Mδ(λ̂,

p∑
i=1

λ̂i D̂i )‖

≤ K‖
p∑

i=1

λ̂i Ĉi −
p∑

i=1

λ̂i D̂i‖ [By (18)]

= K‖
p∑

i=1

λ̂i (Ĉi − D̂i )‖

≤ K‖λ̂‖‖Ĉ − D̂‖ ≤ K (‖λ̄‖ + γ )‖Ĉ − D̂‖.

Therefore, by setting U0 := B(x̄; ε), V0 := ε

‖λ̄‖ + γ
Bp×n , and L := K (‖λ̄‖ + γ ), we have

Mδ, f (C0) ∩ U0 ⊆ Mδ, f (D0) + L‖C0 − D0‖Bn, ∀C0, D0 ∈ V0.

So, x̄ is an L-stable locally efficient solution of (6) and the proof is complete. ��
The following example shows that the converse of Theorem 5 is not valid necessarily.

Example 4 Consider the multi-objective optimization problem

min f (x) = ( f1(x), f2(x)) s.t . x ∈ R,

where

f1(x) :=
{
x, x ≥ −1,
−1, x < −1,

f2(x) :=
{−1, x ≥ 1,

−x, x < 1.

Let x̄ := 0, δ := 1, and ε := 0.5. The objective function of the above problem on B[x̄; δ] is
g(x) := f|B[x̄;δ](x) = (x,−x). Furthermore, Mδ, f (0) = B[x̄; δ]. Also, for any C = (c1, c2)
with ‖C‖ < ε, we get g(x)+Cx = (1+ c1, c2 −1)x and so Mδ, f (C) = B[x̄; δ]. Therefore,
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x̄ = 0 is an L-stable locally efficient solution of the above problem. On the other hand, x̄ is
a properly efficient solution of this problem. It is a locally optimal solution of P(λ̄, 0) for
the unique vector λ̄ := (0.5, 0.5) ∈ �2

>, while it is not the unique locally optimal solution.
In fact, Mν(λ̄, 0) = B[x̄; ν] for any ν ≤ δ. Thus, x̄ is not a full-stable local optimal solution
for P(λ̄, 0).

The following theorem provides sufficient conditions for L-stability in terms of the
extended second-order subdifferential.

We define the set-valued mapping

S : Rn × R
p × R

n ⇒ R
n × R

n × . . . × R
n

︸ ︷︷ ︸
n order

,

by

S(x, λ, v) :=
{
(v1, v2, . . . , vn) :

p∑
i=1

vi = v, vi ∈ λi∂ fi (x), i = 1, 2, . . . , p

}
.

Theorem 6 Let fi , i = 1, 2, . . . , p, be convex around x̄ ∈ dom f . Assume that there exists a
unique vector λ̄ ∈ �

p
> such that 0n ∈ ∑p

i=1 λ̄i∂ fi (x̄). Then x̄ is an L-stable locally efficient
solution of (6), if either (a) or (b) holds.

(a) {
(0n, μ) ∈ ∂̃2x 〈·, f 〉(x̄, λ̄, 0n)(0n) �⇒ μ = 0,
(
(w,μ) ∈ ∂̃2x 〈·, f 〉(x̄, λ̄, 0n)(u), u 
= 0n

) �⇒ 〈u, w〉 > 0.
(19)

(b) There exist v̄i ∈ λ̄i∂ fi (x̄), i = 1, 2, . . . , p, with
∑p

i=1 v̄i = 0n, such that S is inner
semicontinuous at (x̄, λ̄, 0n, v̄1, v̄2, . . . , v̄n). Furthermore, for each k = 1, 2, . . . , p, the
constraint qualification

∂̃2x hk(x̄, λ̄, v̄k)(0n)
⋂ ( − ∂̃2x

[ p∑
i=k+1

hi
]
(x̄, λ̄,

p∑
i=k+1

v̄i )(0n)
) = {(0n, 0p)}, (20)

holds, and the second-order conditions
{

(0n, μ) ∈ ∑p
i=1 ∂̃2x hi (x̄, λ̄, v̄i )(0n) �⇒ μ = 0,

(
(w,μ) ∈ ∂̃2x hi (x̄, λ̄, v̄i )(u), u 
= 0n

) �⇒ 〈u, w〉 > 0,
(21)

are fulfilled, where hi (x, λ) := λi fi (x).

Proof Assume (a). The convexity assumption ensures the “prox-regularity” and “subdif-
ferential continuity" of 〈·, f 〉 at (x̄, λ̄, 0n) (defined in [34, Definitions 13.27 and 13.28,
respectively]). Also, by [19, Corollary 1.81],

∂∞〈·, f 〉(x̄, λ̄) = {(0n, 0p)}.
On the other hand,

0n ∈
p∑

i=1

λ̄i∂ fi (x̄) = ∂

( p∑
i=1

λ̄i fi

)
(x̄) = ∂x 〈·, f 〉(x̄, λ̄).

So, thanks to [26, Theorem3.2] (or [15, Theorem2.3]), x̄ is a full-stable local optimal solution
of P(λ̄, 0n). Hence, according to Theorem 5, x̄ is an L-stable locally efficient solution of (6).
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Now, assume (b). Consider v̄0 := 0n . For each k = 1, 2, . . . , p − 1, we define the
set-valued mapping Sk : Rn × R

p × R
n ⇒ R

n × R
n by

Sk(x, λ, v) :=
{
(v1, v2) : v1 ∈ λk∂ fk(x), v2 ∈

p∑
i=k+1

λi∂ fi (x), v1 + v2 = v

}
.

It can be shown that the set-valuedmappings Sk are inner semicontinuous at (x̄, λ̄,−∑k−1
i=0 v̄i ,

v̄k,
∑p

i=k+1 v̄i ). Invoking the constraint qualification (20) and the definition of the extended
second-order subdifferential mapping (2), by [19, Theorem 3.10], for each u ∈ R

n we get

∂̃2x 〈·, f 〉(x̄, λ̄, 0n)(u) ⊆ ∂̃2x h1(x̄, λ̄, v̄1)(u) + ∂̃2x
[ p∑
i=2

hi
]
(x̄, λ̄,

p∑
i=2

v̄i )(u)

⊆
2∑

i=1

∂̃2x hi (x̄, λ̄, v̄i )(u) + ∂̃2x
[ p∑
i=3

hi
]
(x̄, λ̄,

p∑
i=3

v̄i )(u)

...

⊆
p∑

i=1

∂̃2x hi (x̄, λ̄, v̄i )(u).

Letu ∈ R
n and (w,μ) ∈ ∂̃2x 〈·, f 〉(x̄, λ̄, 0n)(u). Then, there exist (wi , μi ) ∈ ∂̃2x hi (x̄, λ̄, v̄i )(u),

i = 1, 2, . . . , p, such that

(w,μ) =
p∑

i=1

(wi , μi ) =
( p∑

i=1

wi ,

p∑
i=1

μi

)
.

Now, according to second-order condition (21), if u = w = 0n , μ = ∑p
i=1 μi = 0, and

u 
= 0n , then 〈u, wi 〉 > 0 for each i = 1, 2, . . . , p leading in

〈u, w〉 = 〈u,

p∑
i=1

wi 〉 > 0.

Thus, the second-order condition (19) holds and by part (a), x̄ is an L-stable locally efficient
solution of (6). The proof is complete. ��

InDefinition 5 (extracted from [15, 26, 28]), the full stability has been defined for a general
function, while in our setting the function ϕ has a special structure inspired by the weighted
sum scalarization. This leads us to define another stability notion, called λ̄-tilt-stability, which
depends on a given weight vector λ̄ ∈ R

p
≥. This concept has a simpler structure in compared

to the general one.

Definition 7 Consider the function ϕ : Rn × R
p
≥ −→ R, of variables (x, λ) ∈ R

n × R
p
≥,

defined by ϕ(x, λ) := 〈λ, f 〉(x). Given x̄ ∈ R
n and λ̄ ∈ R

p
≥, we say that x̄ is a λ̄-tilt-stable

locally optimal solution of ϕ (with respect to the variable x), if there are scalars δ, L > 0
and neighborhoods � of λ̄ and V of 0n such that the mapping

v �−→ Mδ(λ, v)

is single-valued with Mδ(λ̄, 0n) = {x̄} and Lipschitz on V with Lipschitz constant L , for any
λ ∈ � ∩ R

p
≥.
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In Theorem 7 below, the function ϕ : Rn × R
p
≥ −→ R, of variables (x, λ) ∈ R

n × R
p
≥,

is defined by ϕ(x, λ) := 〈λ, f 〉(x) =
p∑

i=1

λi fi (x).

Theorem 7 Let fi , i = 1, 2, . . . , p, be locally convex at x̄ ∈ dom f . Assume that there
exists the unique vector λ̄ ∈ �

p
≥ such that x̄ is a locally optimal solution of P(λ̄, 0n). If x̄

is a λ̄-tilt-stable locally optimal solution of ϕ (with respect to the variable x), then x̄ is an
L-stable locally efficient solution of (6).

Proof The proof is similar to that of Theorem 5 and is hence omitted. ��
Notice that in Theorem 7, λ̄ ∈ R

p
≥, while in Theorem 5, λ̄ ∈ R

p
>. Indeed, the existence

of λ̄ ∈ R
p
> (resp. λ̄ ∈ R

p
≥) such that x̄ is a locally optimal solution of P(λ̄, 0n), assumed in

Theorem 5 (resp. Theorem 7), is equivalent with local proper (resp. weak) efficiency of x̄
for P(λ̄, 0n).

In the following, we present necessary and sufficient conditions for L-stability in terms
of the metric regularity of the subgradient mapping. First, we derive a sufficient condition.

Theorem 8 Let fi , i = 1, 2, . . . , p, be locally convex at x̄ ∈ dom f . If 0n ∈ ∂xh(x̄, λ̄) for
a unique vector λ̄ ∈ �

p
>, and ∂xh is partial strong metrically regular at (x̄, λ̄, 0n), then x̄ is

an L-stable locally efficient solution of (6).

Proof Apply Theorem 5 and [26, Theorem 3.4]. ��
Weclose the paper by a necessary condition for L-stability in terms of themetric regularity.

In this regard, we need to the set-valued mapping � : Rn ⇒ R
n defined by

�(x) := conv
( p⋃
i=1

∂ fi (x)
)
, x ∈ R

n .

If fi , i = 1, 2, . . . , p, are convex, then by [4, Proposition 10.15], we have

�(x) =
⋃

λ∈�
p
≥

∂xh(x, λ),

and

�−1(u) = π1(∂xh)−1(u) := {x ∈ R
n : u ∈ ∂xh(x, λ) for some λ ∈ �

p
≥}.

Theorem 9 Let x̄ ∈ dom f be an L-stable locally efficient solution of (6) with δ > 0. If
fi , i = 1, 2, . . . , p, are strictly convex on B[x̄; δ], then the mapping � is local metrically
regular at (x̄, 0n) ∈ graph �.

Proof The vector x̄ ∈ dom f is an L-stable locally efficient solution of (6). Then, there exist
scalars δ > 0 and L > 0 and neighborhoods U ⊆ B[x̄; δ] of x̄ and V of 0p×n such that x̄ is
a local strictly efficient solution of (6) with radius δ and for any C, D ∈ V ,

Mδ, f (C) ∩ U ⊆ Mδ, f (D) + L‖C − D‖Bn .

The local strict efficiency of x̄ for (6) and the strict convexity assumption lead in the existence
of some λ̄ ∈ �

p
≥ such that x̄ is a unique locally optimal solution of P(λ̄, 0n), due to [9,

Proposition 3.10]. Thus,

0n ∈ ∂
( p∑

i=1

λ̄i fi
)
(x̄) = ∂xh(x̄, λ̄) ⊆ �(x̄),
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due to [4, Proposition 4.12]. Consider ε ∈ (0,
δ

L
) sufficiently small such that εBp×n ⊆ V .

Assume that u, v ∈ ε√
p
Bn and x ∈ �−1(u)∩U are arbitrary and constant hereafter. Consider

two matrices C, D ∈ εBp×n such that their all rows are uT and vT , respectively. We get
u ∈ ∂xh(x, λ) for some λ ∈ �

p
≥ and so, x is a unique locally optimal solution of P(λ, u)

with radius δ. Thus, x ∈ Mδ, f (C) ∩ U . Now, since C, D ∈ V , there exists y ∈ Mδ, f (D)

such that

‖x − y‖ ≤ L‖C − D‖ ≤ L
√
p‖u − v‖.

On the other hand, y ∈ Mδ, f (D) implies that y is the unique locally optimal solution of
P(μ, v) with radius δ for some μ ∈ �

p
≥ and so, v ∈ ∂xh(y, μ). Therefore, y ∈ �−1(v).

Hence, for any u, v ∈ ε√
p
Bn , we get

�−1(u) ∩ U ⊆ �−1(v) + L
√
p‖u − v‖Bn .

So, � is local metrically regular at (x̄, 0n) ∈ graph � due to [19, Theorem 1.49]. ��
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