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Abstract

Stochastic gradient descent method is popular for large scale optimization but has slow
convergence asymptotically due to the inherent variance. To remedy this problem, there
have been many explicit variance reduction methods for stochastic descent, such as SVRG
Johnson and Zhang [Advances in neural information processing systems, (2013), pp. 315—
323], SAG Roux et al. [Advances in neural information processing systems, (2012), pp. 2663—
2671], SAGA Defazio et al. [Advances in neural information processing systems, (2014),
pp. 1646-1654] and so on. Conjugate gradient method, which has the same computation
cost with gradient descent method, is considered. In this paper, in the spirit of SAGA, we
propose a stochastic conjugate gradient algorithm which we call SCGA. With the Fletcher
and Reeves type choices, we prove a linear convergence rate for smooth and strongly convex
functions. We experimentally demonstrate that SCGA converges faster than the popular
SGD type algorithms for four machine learning models, which may be convex, nonconvex
or nonsmooth. Solving regression problems, SCGA is competitive with CGVR, which is the
only one stochastic conjugate gradient algorithm with variance reduction so far, as we know.

Keywords Deep learning - Empirical risk minimization - Stochastic conjugate gradient -
Linear convergence

1 Introduction

Nowadays, deep learning has been widely applied in various fields, and it performs well
in such scenarios as computer vision [1], speech recognition [2, 3], word processing [4],
and malware detection [5]. In supervised learning, we assume that there are n input-output
samples {(x;, y;)}7_, and P(x, y) is the true relationship between inputs and outputs. Ideally,
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the expected risk is defined as:
F = [ t@dp.y) =Bl

where w € R and I (w) is the loss function that measures the distance between the prediction
and the real value y. We aim to minimize F(w). While the information about P is not
complete, in practice, there is a formula that involves an estimate of the expected risk F. It
is defined as the empirical risk function:

l n
f@=;§ﬁ@,

where each f;(w) : R? — Ris the loss function corresponding to the i-th sample. Hence, the
following optimization problem ERM that minimizes the sum of loss functions over samples
from a finite training set appears frequently in deep learning:

1 n
rrgn flw) = - E fi(w). (1)
i=1

The full gradient descent algorithm [6] is a classical algorithm to solve (1), and the update
rule fork =0, 1, 2, - - - can be described as:

n
oy
W1 = wp — V[ (o) = o — o Zvﬁ(wk)~
i=1
Because of the structure of f(w), V f(w) is the average sum of every loss function gradi-
ent V fi(w), which is corresponding to i-th sample. However, the calculation of V f(w) is
challenging when n is extremely large. A modification of the full gradient descent is the
stochastic gradient descent method (SGD) [7-9] with the iteration update:

Wi+l = Wk — &k,
where gi covers the choices

V fi. (wk), i is randomly selected from (1,2, --- , n},

8k = L Z V fi(wg), S is a mini-batch of n samples.
N ieS
The calculation of g, as the estimate of full gradient V f (wx), is much cheaper than V f (wy).
Based on the above basic framework, there are two main classes of SGD variants. One is the
accelerated methods [10—12]. The other one is adaptive learning rate methods like AdaGrad
[13], AdaDelta [14], RMSProp [15] and Adam [16].

Though the expectation of g equals to full gradient V f (wy), randomly different choices
of gr may yield the variance, which causes the slow convergence rate of SGD. In fact,
the convergence rate of SGD is sublinear under certain conditions, which is slower than
full gradient descent methods. Hence, another important class, variance reduction SGD,
is proposed to improve the convergence rate. Le Roux et al. [18] proposed the stochastic
average gradient (SAG) that gets a reduction of variance for SGD, which leads to a linear
convergence rate when each f;(w) is smooth and strongly convex, but the estimation of
the gradient is biased. Johnson and Zhang [19] proposed the stochastic variance reduced
gradient (SVRG) which also accelerates the convergence rate while it needs to compute
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the gradient of all samples after every m SGD iterations. The SAGA method proposed by
Defazio, Bach and Lacoste-Julien [20] makes a trade-off between time and space. It needs
to store the gradients of all samples in a table and consequently only updates the gradient
of one sample at each iteration. Nguyen, Liu, Scheinberg and Tak4 et al. [21] proposed the
stochastic recursive gradient algorithm(SARAH) which is a new variance reducing stochastic
gradient algorithm. For strongly convex case, it has the linear convergence rate. Though it
doesn’t require a storage of the past gradients, the estimation of gradient is not unbiased.

As is known to all, the conjugate gradient method (CG) [22, 23], as another important
method in classical optimization, often performs better than full gradient descent methods.
Moreover, the calculation of CG methods is similar to full gradient descent methods. The
four classical nonlinear CG methods are FR [24], PRP [25, 26], HS [27] and DY [28]. In
recent years, other efficient CG algorithms [29, 30] are proposed. More details about the CG
can be found in [17, 31].

Itis natural to adapt the CG method in deep learning because of its advantages. Adaptations
of conjugate gradients specifically for neural networks have been proposed earlier, such as
the scaled conjugate gradient algorithm [32]. The CG method with mini-batch version has
been used successfully for training of neural networks [33]. Recently, a kind of stochastic
conjugate gradient algorithm with variance reduction (CGVR) [35] is proposed. The main
feature of CGVR is that it calculates a stochastic gradient g together with FR conjugate
parameter to compose the search direction in each iteration. But after every m iterations, it
requires to calculate the full gradient to correct the stochastic gradient. To get an efficient
performance, it needs a huge computational consumption. Inspired by SAGA, in this paper
we aim to propose a new variance reduction stochastic conjugate gradient algorithm named
as SCGA. Itis expected that it has satisfactory numerical performance and less computational
cost.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review the
variance reduction stochastic gradient descent algorithm, named SAGA. In Sect. 3, a new
stochastic conjugate gradient algorithm, called SCGA, is introduced in detail and its linear
convergence rate is proved. In Sect. 4, a series of experiments are conducted to compare
SCGA with other algorithms. Then, it is summarized in Sect. 5.

2 Brief review of the SAGA algorithm

The SAGA algorithm [20] is a stochastic gradient descent method with variance reduction
like SVRG. But compared with SVRG, SAGA doesn’t need to compute the full gradients
after every m SGD iterations. It only needs to restore the full gradient. To some sense, it
makes to a trade-off between time and space. At each iteration, SAGA computes only the
gradient of one randomly chosen sample j and then updates j-th entry of the restored full
gradient while all other entries remains unchanged. Then SAGA uses the following stochastic
vector g to approximate full gradients.

n
8 = VF5(@0) = Vo) + ~ 3V i),
s
where ;] represents the latest iterate at which V f; was evaluated. And V f; (wy(;)) is the
gradient of the j-th sample at iterate w ;.
From taking the expectation of g; above, with respect to all choices of random index
je{l,2,---, n}, it follows that the expectation of gy is exactly V f (wy), which means this
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approximation g is an unbiased estimate of full gradients. Also, such unbiased estimate of
gradient in SAGA [20] is proved obtaining a reduced variance. Benefiting from the variance
reduction, SAGA obtains a linear rate of convergence for strongly convex functions. While
its computation cost of each iteration is the same as the basic SGD algorithm.

3 A new stochastic conjugate gradient algorithm

As a stochastic conjugate gradient algorithm, although CGVR accelerates the convergence
rate of SGD by reducing the variance of the gradient estimates. It requires to calculate the
full gradient to correct the stochastic gradient after every m SGD iterations, which leads to
high computation cost. Inspired by SAGA, we propose a new stochastic conjugate gradient
algorithm called SCGA to overcome the above-mentioned disadvantages.

3.1 The framework of the new algorithm

We adapt the CG algorithm from SAGA to obtain the SCGA in Algorithm 1. At the ini-
tialization step, we compute full gradient at initial iterate and store it into a matrix, named
V f(w) = [V filwo), V fa(wo), - -+, V fu(wo)]. Consequently, at each iteration, we ran-
domly choose a subset S € {1,2,---,n}, called a mini-batch of samples, and define the
subsampled function fs(w) as

fs@) = = Y filo).
|S| ieS
where | S| denotes the number of elements in the mini-batch S. After Sy is randomly chosen,
at the current iterate wy, we don’t need to compute the full gradient, but every gradient of
the samples in S, i.e. V fj(w;), Vj € Sk, then get the average of them, named as V f&, (wy).
Also, at the last stored iterate, we compute the average gradient on Si

1

Hse = oo Z V fj (@11, @)
JESk
and the full gradient
1 n
pet = — 3V fipe). 3)

i=1
Then using the two gradients wg, and 1 at the last restored iterate, we correct V fg, at
the current iterate to obtain the new stochastic gradient

gk =V fs (wr) — s, + pi—1. 4)

It is tempting to conclude E[gx] = V f (wk), which means that (4) is an unbiased estimate of
gradient V f(wy).

In addition, such estimate of gradient can be proved have a reducing variance. In fact,
considering the variance of gradient

V =E[llgr — V£ @wl?] = Ellgel*l = IV f (@)l Q)
from Lemma 4, we see that

Elllgell*] < 4ALf (k) — f(ws) + flop) — f@o].
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Intuitively, as wy — wy and w[x] — w, the variance goes to zero asymptotically.

After obtaining the gradients of samples V f;(w;),VYj € Sk, we update the corresponding
entries of the stored matrix V f (wi)) = [Vfl (), V(ox), -+ . Vi (a)[k])], while other
entries remain unchanged. That is V f; (w(x)) <= V fj(wx),Vj € Sx. SCGA has the similar
way of determining stochastic gradients with SAGA. But compared with CGVR, it does not
need to compute the full gradient in each iteration instead to compute a mini-batch gradients
each time. Based on this, it is reasonable to expect that SCGA consumes less computation
cost than CGVR.

Algorithm 1 SCGA

1: Inmitialization: Given wg € RY, compute the full gradient at initial iterate wq and store it:
cfori=1,2,--- ,ndo

Compute V f; (wg)

Store V fi (wjo]) < V fi(wp)

: end for

1
fpo = - 27 Viiep)

no. . . .
: Set the initial stochastic gradient gg = -
: Set the initial direction pg = —go.

10: Iteration:

11: fork =1,2,--- do

12:  Find the step size o1 satisfying (9) and (10).
13:  Update iterate wy = wg—1 + 2—1 Pk—1-

14:  Randomly sample a mini-batch Sy.

15: Vj € Sk, compute V f;(wy) to obtain V fg, (wy).
16:  Compute pi5, using (2) on S.

17: Setgr =V fs, (wr) — s, + mk—1

18:  Compute B by

19: Option I:

pER gk I
FR - oKD
llgk—11I?

Option II:

~B{R i R < fﬁgR
BERTPR =1 PR i PRI < prR
BERir B R > R

20:  Determine py = —gr + Br Pk—1-
21: Update V fj(wpg)) < Vfj(wg),Vj € Sg, while other entries of the stored full gradient remain
unchanged.

1
22:  Update puy = o > Vilog)-
23: end for

To get the stochastic conjugate gradient direction, the conjugate parameter § can be chosen
as FR

ﬂFR— ||gk||2
k lgk—11I?

(©)
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Though the convergence of FR method has been well established, their numerical results are
not good. And PR method, which defines the parameter B as follows:

gl (gk — gk—1)

PR
ﬂk = T
8r—18k—1

; @)
is generally believed to be one of the most efficient CG method in practical computation
because it essentially restarts if a bad direction occurs. But in theory it may not converge. To

combine the advantages of these CG methods, our stochastic conjugate gradient algorithm
SCGA chooses a hybrid version between FR and PR:

—BIR if BPR < —prR,
pERTPR =1 PR if |BER| < BIR, (8)
BER if BPR > BER.

Note that |;3,fR+PR| < ,BkFR. Moreover, for any B satisfying |Bi| < ,BI(FR we prove the
convergence of SCGA in the following subsection.

In order to get an appropriate step size o, we introduce the inexact line search and require
oy satisty the stochastic version of the strong Wolfe conditions

Foo(wx +axpr) < fs, (1) + crawV fs, (@) pr, 9)
gt 1Pl < —cagf pr. (10)

where 0 < ¢; < ¢z < 1. In addition, The SCGA algorithm is implemented with step size
oy that satisfies condition (10) with 0 < ¢p < 1/2. It can be shown that SCGA with FR
generates the descent direction py satisfying

T —
B 1 < 8k p;; < 2¢o 1.
I—c2 ™ gkl I—c

Besides, the above bounds inequality also holds for any S satisfying || < ﬁkF R The similar
proof details can be referred to Lemma 3.1 of [22].

3.2 The convergence analysis of SCGA

We analyze the convergence of SCGA in Alogrithm 1 with any S satisfying |Br| < ﬂ{ R,
This convergence result leads to SCGA with the hybrid of FR and PR preserves its efficiency
and assures its convergence.

The convergence analysis uses the same assumptions in CGVR as follows:

Assumption 1 The SCGA algorithm is implemented with a step size oy that satisfies o €
[a1, @2],0 < a1 < a2 and condition (10) with ¢ < 1/5.

Assumption 2 The function f; is twice continuously differentiable for each 1 < i < n, and
there exists constants 0 < A < A such that

A <V fi(w) < Al

forall w € RY,

The Assumption 2 indicates that f is also strongly convex and V f is Lipschitz continuous.
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Assumption 3 There exists 8 < 1 such that

llgxll?
B = 5
llgk—1ll

<A

Using these assumptions, the following lemmas are directly derived. Lemma 1 and Lemma 2
estimate the lower bound of ||V f ()| and the upper bound of E[|| px ||>]. They are the same
as Lemma 5 [34] and Theorem 2 of [35].

Lemma 1 Suppose that f is continuously differentiable and strongly convex with parameter
L. Let w, be the unique minimizer of f. Then, for any » € R?, we have

IV F(@)? = 20(f (@) — f ().

Lemma 2 Suppose that Assumptions 1 and 3 hold for Algorithm 1. Then, for any k, we have

Elll pell*1 < n(0)E[llgoll*1, (11)
where
2 4 1+,
k) = gk _ ° B2k
n(k) l—ﬁﬁ 1_,3ﬂ

Lemma 3 According to Algorithm 1, for any k, we have
T _ LY 2
Elorgy pil = —an [Vf@o)l” + JeafELIgolI"].

Proof By the definition of py = —gi + Bk pr—1, we obtain

Eloxg! pel = El—a llgrl1*] + Elox gl pr—1]
< El—ax llgx 1”1 + El—a Brcagl  pr—il

1)

< El—o llgell*1+ @E[akﬁk llgk—111%]
2 @2 A 2

< E[—oq [lgkll”] + 1_76233[0!2,3 llgx—111"1
20, b 2

< —oE[llgell"] + Z“Z,BE[”gk—l” ]
L 2

< —ay |[E[ge]ll” + ZazﬂE[llgkflll ]

2, L2 2
= —ay |V f(o)ll” + ZQZ,BE[”gk—l” ].

The first inequality uses the strong Wolfe condition (10), the second one uses the lower bound
L op s

I . . : . :
it yields the third inequality. Note that the monotonically increasing property of the function

1= With x # 1 which implies 13-2 < 1wither < %, so the fourth inequality holds. It is

Then by using Assumption 1 (o; € [o1, @2]) and Assumption 3 (B; < ﬁ),

easy to know E[|| gk ||2] > | El[gk] ||2, which deduces the last inequality.
Furthermore, according to Assumption 3 and taking expectation, it holds that E[|| g || 2] <
BE[|lgx—111*1, and consequently, E[||gx|I>] < BXE[llgoll*1, which implies the conclusion. O

In the following Lemma 4, we estimates the upper bound of E[| gk ||2].
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Lemma4 Let w, be the unique minimizer of f. Taking expectation with respect to Si of
llgk|I? in (4), we obtain

Elllgx1*] < 4ALf (@) — f(@2) + f (o) — (@) 12)
Proof Given any mini-batch S, considering the function

hs(@) = fs(@) — fs(@s) — V fs(@) (@ — ),

we know that i g(w,) = min hg(w) since Vhg(wy) = 0. Therefore,
w

0= hs(w.) < minlhs(@ = nVhs(@))]
1
< min [hs(w) — I Vhs(@)|* + EAnz||wls(w>||2]

1
= hs(w) — ﬁ||ws(w)||2.

That is,

1V f5(@) = V fs(@I? < 28 [ fs(@) = fs@) = ¥ fs@2) @ - o).
By taking expectation with respect to S on the above inequality, we obtain
E[IVfs@) = V fs(@)]*] < 2ALf (@) — f(@)]. (13)

In case of that k # 0, taking expectation with respect to Sy on norm of g in (4), we obtain
E[llgl*]

=E[IV fs(@r) — ps + ull*]

=E[IVfs(@i) — V fs(@) + V fs(@y) — s + pll*]

<2E[|IV fs(ax) — V fs(@lI] + 2E [l s — V fs(@) — ul|*]

= 2E[|IV fs(@x) — V fs(@lI*] + 2E [llus — V fs(@,) — E s — V fs(@)] %]

<2E[|IV fs(@r) = V fs@)*] +2E [llns — V fs(@)[1%]

<AA[far) — flo) + f@x) — fw)], (14)

where A is the positive constant in Assumption 2. The first inequality uses |la — b||> <
2|la||* 4 2||b]|?. The second inequality uses E||& — E& |2 = E||£|? — |E&||> < E||£||? for
any random vector &. The third inequality uses (13).

In case of that k = 0, then gg = o = V f(wo).

E[llgoll*] = IV f(@0)lI* = IV f(wo) — Vf(w)* < 2A[f(wo) — flw)].  (15)

The above inequality uses Assumption 2. Note that w[g] = wg. Thus, for k = 0 also satisfies
(12), which together with (14) comes to the conclusion. ]

Finally, we present the convergence rate of SCGA. It can achieve a linear convergence
rate for strongly convex function.

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold. Let wy be the unique minimizer of f.
Then, for all k > 0, we have

E[f(wk+1) — f(@:)] < CEFTE[f(wo) — f(wo)],
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where parameters & and C are given by

E=1-2u012 <1,
arA(l —,3)+4oz%A2

C=1+ = =
26 -p)d=B)

L}
assuming that we choose a1 < Tﬂ

Proof By Assumption 2, the function fs, (wy) satisfies
M < V2 fs (ar) < AL

That is for all k € N, the following inequality holds

A
Fsp(@ks1) < fsp (@) + V fs (@) (@1 — 1) + = llogg1 — axll* .
2

With wi4+1 = wk + ok pr, the above inequality also can be written as

1
Foo(@s1) — fs, (1) < axgl px + Eoz%A Il pell® .
Taking expectation in this relation conditioned on Sk, this yields
E[f (wr+1)] — f (k)

T 1 2 2

< Elax gy prl + EAE[O% I px 1171
) A 1
< —a1 [V f(ool* + ZazﬁkE[llgollz] + EAIE[oz% Il prell*1
_ 2 l ok l 2 2
< o [V /@Ol + (2B + Se3 An)Ellgol*]
1 ~

< 201 AL f (@) — f(@)] + (EazAﬂk + a3 A2 ()L f (w0) — f(w)].

The second inequality uses Assumptions 1 and Lemma 3, the third inequality uses Lemma
2, and the last one uses Lemma 1 and (15).

Subtracting f (w,) from both sides of the above inequality, taking total expectations, and
rearranging, this yields

E[f(or+1) = fw)] = (1 =201 DE[f (wk) — f(@4)]

+ L AR+ a2A2y0) | E -
%2 B+ oy A n(k) | E[f(wo) — f(w4)].

For the convenience of discussion, we define

1 N
E=1-2w ¢k) =M+ AMN(K), Ax=ELf (@) = f(@)]
Then the above inequality can be written as

Apy1 < EA; + (k) Ag.
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We further obtain

Akg1 < & (EA—1 + ok — 1D Ag) + o(k) Ao
= &2 Ak +[Ep(k — 1) + 0(k)]Ag

k
<[E ) emAo.

i=0
We now compute ﬁ(:)ék_i(p(i),
Zk:Skl () 1 AZ ,é i Skza%AZXk: B i Ska%Az(l'FﬂA)Xk: ﬁZ i
1) = 70( - E——— - - -
i=0 ’ § 1-p i=0 § 1-p i=0 §
. ék+l . ék+l
L 3 £5202 A2 3
—tk_arA —+ .
2 B 1-F B
3 &
Bz k+1
G ISIEY) _(f’f)
2 A2
-5
&
o ék+l
<ét § (1 2a§A2>
3
242
gt 1A<1a2A+2a2AA>
l—é 2 1-5
3

@A = ) +403A?
26 -pHa-p)

The first and second inequality uses o] < —F which implies that £ > B > /§2. Then, we

obtain

E[f(wk+1) — f(@0)] < CEFTE[f(wo) — f(@0)].
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ridge logistic
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0.4 0.4
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[0
@
0.8 - 0.8 -
5 50 100 0 50 100
E
©
>
2 hinge sghinge
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0.4 0.4
02 0.2
0 0
0.2 0.2
04 04N F = amgrmamm =
06 . B 0.6
05 50 100 085 50 100

|----Algorithm 1(Option I) — Algorithm 1(Option II)| iterations

Fig. 1 Performance comparison of Algorithm 1 with Option I and Option II on ijcnnl data set using four
learning models shown in (16) (17) (18) and (19). (The x-axis represents the number of iterations. The y-axis
represents base-10 logarithm of loss values.)

4 Experiments

In this section we perform a series of experiments to validate the effectiveness of SCGA
presented in Algorithm 1.

First, we conduct Algorithm 1 with different S options: Option I and Option II. The
comparison results on data set i{jcnnl are shown in Fig. 1, where the four sub-figures are
corresponding to the four different models introduced in Sect. 4.1. We can see that Algorithm
1 with Option II performs much faster than that with Option I. This is consistent with our
theoretical analysis before. Also, similar performance can be found on other data sets of
Table 3.

Because of the better performance of Option II, we choose Option II for Algorithm 1,
named as SCGA. Table 1 lists all the compared algorithms in the following experiments.

For a fair comparison, we use the same code base for each algorithm, just changing the
main update rule. Each algorithm has its step size parameter chosen so as to give the fastest
convergence. The parameters of compared algorithms and loss functions are listed in Table 2.
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Table 1 Algorithms in the comparison

Algorithm Description

SCGA Proposed Algorithm 1 with Option II

SGD Mini-batch SGD with momentum acceleration [8]
SAGA Variance reduction SGD [20]

Mini-SAGA By modifying SAGA [20] to a mini-batch version
CGVR Variance reduction SCG [35]

Table 2 Parameters in algorithms

Parameter Description Value
n The step size in SGD, SAGA and mini-SAGA 1072
|S] The mini-batch size in SGD, mini-SAGA, CGVR and SCGA Jn
c1 The parameter of line search in CGVR and SCGA 10~
1) The parameter of line search in CGVR and SCGA 0.1

X The regularization parameter in loss functions 1074
m The number of inner loop iterations in CGVR 50

4.1 Machine learning models and data sets

We evaluate algorithms on the following popular machine learning models including regres-
sion and classification problems.

(1) ridge regression (ridge)

) 1 n
min 3" (i — 2] @) + Aol (16)

i=1

(2) logistic regression (logistic)

1
min — 3 (1 +exp(—yix @) + Aol (17)

i=1

(3) L2-regularized L1-loss SVM (hinge)

R
min > (1 = yix/ )4 + Aoll3 (18)

i=1

(4) L2-regularized L2-loss SVM (sqghinge)

1 ¢
min = 3 (1 = yix] @).)? + Aol 19)

i=1

where x; € R? and y; € R is the i-th sample data. And the data matrix X for all dimensions
is scaled into the range of [—1, +1] by the max-min scaled in the preprocessing stage. These
four models are convex, nonconvex or nonsmooth.
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Table 3 Data sets used in

comparison Dataset n d
a%a 32561 123
cod-rna 59535 8
ijennl 49990 22
quantum 50000 78
protein 145751 74
bodyfat 252 24
housing 506 13
pyrim 74 27
space_ga 3170 6
triazines 180 60
Average Localization Error (ALE)
in sensor node localization process in 107 6
WSNs Data Set

The data sets are presented in Table 3. The first five are the binary classification of large-
scale data sets, where the first three,a9a, cod-rna and ijcnnl, are from the LIBSVM data
website!, the next two, quantum and protein, are from the KDD Cup 2004 website2. The
remaining six data sets are regression problems. The details of data sets bodyfat, housing,
pyrim, space_ga and triazines can be also found in the LIBSVM data website. The last
one, Average Localization Error (ALE) in sensor node localization process in WSNs data
set, can be found in UCI Machine Learning Repository website>.

4.2 Numerical comparison results

In the first experiment, we compare the convergence of SCGA with several SGD type algo-
rithms on two kinds of data sets. Fig. 2 shows the convergence of these algorithms on five
binary-classification large-scale data sets. Fig. 3 presents the results on six regression data
sets. From Fig. 2 we see that SCGA has the fastest convergence on almost all of the four
models, even when the loss value reaches a notably small value. In Fig. 3, SCGA makes loss
drops fast at first and goes down fast to the minimum. In general, SCGA reduces the variance
and smoothly converges faster than SGD, SAGA and its mini-batch version.

In the second experiment, we compare the two stochastic conjugate gradient algorithms,
SCGA and CGVR [35]. Because CGVR requires computations of full gradient, while SCGA
does not. Thus we measure the computational cost by the number of gradient computations
divided by n instead of iterations.

We evaluate these two algorithms on the data sets in Table 3, including classification and
regression. For classification data sets, a9a, cod-rna, ijcnnl, quantum and protein, we conduct
the algorithms on four machine learning models shown in (16) (17) (18) and (19). From the
results, SCGA can be seen to perform similar to CGVR, only with a slight advantage. For
these data sets, we do not present the comparison plots. On the other hand, for regression

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
2 http://osmot.cs.cornell.edu/kddcup

3 http://archive.ics.uci.edu/ml/datasets/ Average+Localization+Error+ %28 ALE %29+in+sensor+node+
localization+process+in+WSNs
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Fig. 3 Performance of SCGA compared with SGD type algorithms. On ridge regression model for data sets
bodyfat, housing, pyrim,space_ga, triazines and ALE in sensor node localization process in WSNs. (The x-axis
represents numbers of iterations. The y-axis represents base-10 logarithm of loss values.)

data sets, i.e., the last six data sets in Table 3, we use ridge regression model to evaluate their
performance. Fig. 4 plots the logarithm of loss errors with respect to their computational cost.
Both of SCGA and CGVR can rapidly goes down initially as expected, but SCGA converges
to a better level in pyrim and triazines data sets.

Overall, SCGA is competitive with CGVR and clearly more advantageous than the SGD
type algorithms.
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5 Conclusion

In this paper, we propose a new stochastic conjugate gradient algorithm with variance reduc-
tion, named SCGA. At each iteration, SCGA only computes the gradients of mini-batch
samples then updates them into the stored full gradient, instead of computing full gradients
in CGVR. We prove that SCGA with a class of FR choices obtain a convergence rate for
strongly convex function. Moreover, among the class of FR choices, we introduce a choice
to SCGA, which is a hybrid of FR and PR, shown in Option II of Algorithm 1. From a series
of experiments, it demonstrates that SCGA converges faster than SGD type algorithms. And
compared with CGVR, SCGA is a competitive algorithm, especially for some regression
problems.
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