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Abstract
A new framework for portfolio diversification is introduced which goes beyond the classical
mean-variance approach and portfolio allocation strategies such as risk parity. It is based
on a novel concept called portfolio dimensionality that connects diversification to the non-
Gaussianity of portfolio returns and can typically be defined in terms of the ratio of risk
measures which are homogenous functions of equal degree. The latter arises naturally due
to our requirement that diversification measures should be leverage invariant. We introduce
this new framework and argue the benefits relative to existing measures of diversification in
the literature, before addressing the question of optimizing diversification or, equivalently,
dimensionality. Maximising portfolio dimensionality leads to highly non-trivial optimization
problems with objective functions which are typically non-convex and potentially have mul-
tiple local optima. Two complementary global optimization algorithms are thus presented.
For problems of moderate size and more akin to asset allocation problems, a deterministic
Branch and Bound algorithm is developed, whereas for problems of larger size a stochastic
global optimization algorithm based on Gradient Langevin Dynamics is given. We demon-
strate analytically and through numerical experiments that the framework reflects the desired
properties often discussed in the literature.

Keywords Portfolio diversification · Global optimization · Branch and Bound · Gradient
Langevin dynamics

1 Introduction

Diversification as a concept is as old as investing itself, coming into focus in particular during
crisis periods. The global financial crisis of 2008, for example, induced heavy losses for
most asset portfolios held by institutional investors, prompting practitioners to question their
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portfolio construction methodologies and understanding of the level of diversification that
can thus be achieved. This led to increased activity in both academia and the financial industry
seeking to develop new portfolio construction techniques with the goal of obtaining a well
diversified portfolio. Despite the fact that an overwhelmingmajority of investors seeks to hold
awell diversified portfolio, there is still no agreed upondefinition ormeasure of diversification
in the literature or amongpractitioners.A commonunderstanding is that a diversified portfolio
should provide risk dissemination and be protected against large drawdowns. Expressed
differently, the risk of the portfolio should not be concentrated to only a few risk factors and
the tail risk of the portfolio should be controlled. In the diversification literature, the focuswas
initially purely on volatility reduction, but this definition cannot lead to a useful measure as
hedging reduces volatility but does not lead to a better risk dissemination.Most diversification
measures and constructionmethods in the literature are based on the covariancematrix which
can be traced back to the seminal paper on mean-variance optimization by Markowitz [55].
Other approaches, with a growing literature used by many asset managers and institutional
investors, include the risk parity approach coined by Qian [59] (see also e.g. Qian [60],
Roncalli [63] andRoncalli andWeisang [64]) and themost diversified portfolio of Choueifaty
and Coignard [21] (see also Choueifaty et al. [22]). Another portfolio diversification measure
based on the covariance matrix is introduced in Meucci [58]. There, the asset universe is
orthogonalized via Principal Component Analysis of the covariance matrix leading to a
new universe consisting of uncorrelated so called principal portfolios. Based on the squared
weighted volatilities of the portfolio in the new universe, a portfolio diversification measure
based on the dispersion of the squared weighted volatilities is defined. The interpretation of
this measure put forth by Meucci is that it represents the effective number of uncorrelated
bets that the portfolio is exposed to.

The primary drawback with existing portfolio diversification approaches is that they are
based on the distribution of portfolio volatilities or marginal contributions to volatility; how-
ever, as far as we are aware, there is not a direct connection from these measures to the
distributional or sampling properties of portfolio returns. This in turn leads to a situation
where different metrics are shown to behave intuitively in particular cases, while singular
counterexamples raise questions about how broadly a technique can be applied. For example,
unintuitive behaviour is observed in risk parity portfolios when highly correlated assets are
added to the portfolio, leading to over-allocation to them. Unintuitive behaviour of the mea-
sure introduced in Meucci [58] led to the introduction of a new technique in Meucci (2013).
For this reason we argue, following Fleming and Kroeske [31], that it is helpful to augment
the covariance based frameworks and connect diversification to additional properties of the
distribution of portfolio returns such as higher order moments.

Bringing in higher order moments allows us to move beyond limiting Gaussian assump-
tions. As a relatively extreme example, consider a two strategy portfolio combining an equity
index exposure and a volatility selling strategy on the same index. The volatility of most
volatility selling strategies is lower than that of the equity index, while the negative skewness
and the kurtosis are more pronounced. A portfolio construction strategy based on volatility
would thus put largerweight to the volatility selling strategy in order to decrease volatility risk
at the expense of being more exposed to tail risk. Such a portfolio would have suffered heavy
losses during the VIX spike on 5 February 2018. On that day the VIX index experienced its
largest one-day jump in its 25 year history, rising 20 points from 17.31 from the previous
day’s close to 37.32 at the end of the trading day. This example highlights why we require
our diversification measure to have a direct link to the tail properties of the distribution of
portfolio returns. Secondly, we want the measure to be leverage invariant as being 100%
exposed to S&P 500 is as diversified as being 50% exposed to S&P 500 and leaving the
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rest in cash. Thus, the diversification measure should not be based on portfolio volatility or
Expected Shortfall alone. After all, the best strategy to reduce volatility or Expected Shortfall
is to havemore capital allocated in cash but that does not increase the diversification, it simply
represents a reduced exposure to risky assets.

In this paper we introduce a framework that offers a coherent foundation for understanding
portfolio diversification by connecting it to the non-Gaussian properties of portfolio returns.
The requirement that the diversification measure is leverage invariant naturally leads to mea-
sures based on ratios of homogeneous functions of equal degree, such as kurtosis (degree 4)
or the square of skewness (degree 6). Even though, for example, the fourth moment and the
square of variance are both convex functions, the ratio that yields kurtosis is not necessarily
convex. Optimizing ratios of convex functions is a global optimization problem with poten-
tially several local optima which are not equal to the global optimum or optima. We therefore
develop two methods, one deterministic and one stochastic, for the global optimization of
ratios of convex functions and use them to conduct initial numerical experiments.

2 Non-Gaussianity as ameasure of diversification

In this section we present a framework which first connects non-Gaussianity and diversifica-
tion before introducing the notion of portfolio dimensionality. The main goal of the portfolio
diversification framework is to manage the distribution of the portfolio returns. One observes
in fact that, the distribution of portfolio volatilities or marginal contributions to volatility
across assets, which make up the portfolio, is irrelevant within a mean-variance framework.
This is due to the underlying assumption of normally distributed returns. All that matters
is portfolio variance. From this simple observation, we argue that meaningful measures of
diversification must be related to additional properties of the distribution of portfolio returns.
A natural extension of existing frameworks is to connect the concept of diversification to the
non-Gaussian properties of the distribution of portfolio returns. Given that the mean-variance
framework assumes Gaussianity, diversification can then be seen as an augmentation which
relates to model limitations.

2.1 A novel approach to portfolio diversification: dimensionality

In an ideal world, we propose that one could define portfolio dimensionality as the number of
equally sized independent return streams in the portfolio. This definition is intuitively related
to risk dissemination and, arguments based on the Central Limit Theorem (CLT) imply
that adding independent exposures to the portfolio leads to a portfolio whose distribution is
closer to the Gaussian distribution and thereby the tail risk is reduced. Obviously, financial
markets do not obey the idealized assumptions of independent and identically distributed
(i.i.d.) returns of the standard CLT (see [10], for some examples of the CLT with relaxed
assumptions). The idea behind our diversification measures is to base them on the degree
of non-Gaussianity of the portfolio return distribution. A portfolio with a low degree of
non-Gaussianity is a well diversified portfolio, and vice versa. Measuring the degree of
non-Gaussianity is directly related to the tail properties of the portfolio and naturally leads
to measures which are leverage invariant. Measuring and optimizing non-Gaussianity have
been thoroughly studied in the Independent Component Analysis (ICA) literature, see e.g.
Hyvärinen and Oja [44]. A common measure of non-Gaussianity in the ICA literature is
kurtosis, and other frequently used measures are based on neg-entropy or Kullback–Leibler
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divergence. Inspired by the ICA literature, we initially link the notion of a well diversified
portfolio to a portfolio with a low kurtosis which implies a low (symmetric) tail risk. Other
attractive aspects of using kurtosis are that we see it as a natural extension of a symmetric
risk framework and it is also related to the distribution of sample variance. In particular, it is
known that the variance of the distribution of sample variance is positively related to kurtosis
(see e.g. [75]). Reducing kurtosis therefore increases confidence in estimates of portfolio
variance.

That said, asymmetry in the form of skewness is also of interest to investors where empir-
ical results from the risk premia literature (Lempérière et al. [53]) show that maximising the
Sharpe ratio of a portfolio is strongly linked to maximizing the negative skewness of port-
folio returns. There are several ways to incorporate skewness into a portfolio diversification
framework. In Lassance and Vrins [51], a portfolio risk measure based on exponential Rényi
entropy is used in order to incorporate higher order moments into the portfolio decision
framework. Through a truncated Gram–Charlier expansion of Rényi entropy they demon-
strate that their portfolio risk measure can be directly expressed as a function of portfolio
skewness and kurtosis. Another approach, see e.g. Jondeau and Rockinger [46], relies on a
higher order Taylor expansion of the investors utility function, which leads to an expression
in terms of the non-standardized portfolio moments. This latter approach suffers from the
drawback of optimizing an objective function which is not invariant to leverage. In the fol-
lowing, we offer a general framework which allows us to look at various measures including
skewness and kurtosis but for the purposes of these initial numerical investigations we focus
on kurtosis.

2.2 From non-Gaussianity to dimensionality: definition and examples

With all the above in mind, we proceed with defining a diversification framework which is
invariant to leverage and directly linked to the tail properties of the distribution of portfolio
returns. It is also flexible enough to allow different objective functions, such as excess kurtosis
and the square of skewness (along with any suitable linear or polynomial combination), but
within a robust setting for measuring, in an appropriate sense, the level of non-Gaussianity of
resulting portfolios. Furthermore, in order to have an intuitive interpretation of diversification
we link it with the tail risk of an equally weighted reference portfolio of i.i.d. reference assets.
This reference portfolio is representative of the given asset universe and we proceed to define
the notion of portfolio dimensionality relative to the tail risk of the reference asset.

Definition 1 Let p be a positive integer and Lp denote the set of all random variables with
finite p-th (absolute) moment. Let alsoX be a convex subset ofLp andN denote the set of all
Gaussian random variables. We define a function ν : Lp �→ R+ that satisfies the following
properties:

(i) ν(t X) = ν(X), for any t > 0 and X ∈ Lp . (leverage invariance)
(ii) Let Y ∈ X and, moreover, let Y1, Y2, . . . ∈ X and independently follow Law(Y ). The

function

φY ,ν(n) = ν

(
n∑

i=1

Yi

)
(1)

is strictly decreasing in n ∈ N for any Y ∈ X . (strict monotonicity for i.i.d. data)
(iii) ν(X) ≥ 0 for every X ∈ X ∪ N with equality holding only if X ∈ N . (positivity)
(iv) ν(X) = ν(Y ) for any X , Y ∈ Lp such that Law(X) = Law(Y ). (law invariance)
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(v) For constant c ∈ R, ν(X + c) = ν(X) for every X ∈ Lp . (cash invariance)

Remark 2.1 One notes that the functional ν, which sometimes is referred to as a risk measure
without necessarily adhering to the formal definition of a risk measure as in Artzner et
al. [4] but rather follow the generic description in asset management, is only required to
be nonnegative over X ∪ N . Moreover, ν is used henceforth to measure the level of non-
Gaussianity of resulting portfolios. See also the kurtosis example below alongwith the related
discussion.

Then, one proceeds by defining a measure of diversification relative to a reference random
variable Z ∈ X . First, let us recall the definition for the (n − 1)-dimensional probability
simplex, which is given by Wn = {w ∈ R

n | ∑n
i=1 wi = 1, wi ≥ 0, i = 1, . . . , n} where

w = [w1, . . . , wn]�.
Definition 2 Let Z , X1, . . . , Xn ∈ X and ν satisfy the properties (i)–(v) from Definition 1.
Let also ν

(∑n
i=1 wi Xi

)
be a continuous function in w ∈ Wn . Then, the function DZ , ν :

Wn �→ R+ is defined by

(Diversification measure) : DZ , ν(w) = ν(Z)

ν
(∑n

i=1 wi Xi
) . (2)

Remark 2.2 In the context of asset management, the above setting for the diversification
measure is understood as Xi ∈ X being the return of the i-th asset of the portfolio and wi is
the corresponding portfolio weight.

Definition 3 Let X be a convex subset of Lp . Let also {Zi }i≥1 be a sequence of i.i.d. random
variables such that each Zi ∈ X and let Z ∈ X . Moreover, suppose that Law(Z1) = Law(Z)

and that ν satisfies the properties (i)–(v) from Definition 1. We define η̂ : N\{0} �→ R+ by

η̂(k) = ν(Z)

ν
(
1
k

∑k
i=1 Zi

) , for any k ∈ N\{0}.

We further define the function η : R+ �→ R+ as the continuous, monotonic (linear) interpo-
lation of η̂ on R+.

Recall here that given a collection of i.i.d. random variables {Zi }1≤i≤n and Z , which
belong to X , such that Law(Z1) = Law(Z), η̂(k) represents the diversification measure of
an equally weighted portfolio in those Zi ’s. Moreover, due to the leverage invariance of ν

and the strict monotonicity of the function φZ ,ν , see (1), one guarantees the existence of the
function η : N\{0} �→ R+, which is also a strictly increasing function. Hence, the definition
of portfolio dimensionality follows naturally by considering a suitable transformation, which
involves the inverse of the function η.

Definition 4 Let DZ , ν(w) be described by Definition 2 and the function η by Definition 3.
We define the function dZ , ν : Wn �→ R+ by

(Portfolio dimensionality) : dZ , ν(w) = η−1 (DZ , ν(w)
)
. (3)

Remark 2.3 One observes that, for any k ≤ n,

DZ , ν(w) = ν(Z)

ν
(
1
k

∑k
i=1 Zi

) ν
(∑k

i=1 Zi

)
ν
(∑n

i=1 wi Xi
) = η(k)

ν
(∑k

i=1 Zi

)
ν
(∑n

i=1 wi Xi
) . (4)
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Thus,

ν

(
n∑

i=1

wi Xi

)
= ν

(
1

k

k∑
i=1

Zi

)
⇒ dZ , ν(w) = k,

since the denominator in (4) is equal to φZ ,ν(k), which implies that DZ , ν(w) = η(k). Thus,
we see that the portfolio dimensionality is exactly the number of independent return streams.

Remark 2.4 In general, a judicious selection of the reference asset as representative of the
investment universe will produce values of DZ , ν > 1 as we achieve some relative diversi-
fication benefit; however, we note that DZ , ν < 1 is also possible if we worsen the relative
non-Gaussianity.

Let us concentrate now on the case where ν is either excess kurtosis or the square of
skewness (as this allows us to consider other suitable linear or polynomial combinations of
interest using these two riskmeasures). Using the leverage invariance property of ν and taking
into account the findings of Fleming and Kroeske [31], where the notion of the distribution
of portfolio variance is used and the effective size of its support is related to the spectrum
of Rényi entropies, one identifies η with the identity function and dZ , ν(w) = DZ , ν(w).
For completeness, we present here the relevant derivations, although they can be found in
Fleming and Kroeske [31], albeit with different notation.

Proposition 2.5 Let X be a convex subset of Lp. Then

(a) For p ≥ 3, the square of skewness, i.e. ν(·) =
(

E[(·−E[·])3]
(E[(·−E[·])2])3/2

)2
, satisfies properties

(i)–(v) from Definition 1, provided that ν(X) > 0 for every X ∈ X . Moreover, η̂(k) = k
for any k ∈ N.

(b) For p ≥ 4, the excess kurtosis, i.e. ν(·) = E[(·−E[·])4]
(E[(·−E[·])2])2 − 3, satisfies properties (i)–(v)

from Definition 1, provided that ν(X) > 0 for every X ∈ X . Moreover, η̂(k) = k for any
k ∈ N.

Proof We start the proof by considering an arbitrary sequence of i.i.d. random variables
{Yi }i≥1 such that each Yi ∈ X .

(a) One observes that properties (i), (iii), (iv) and (v) are satisfied trivially due to the
definition of the square of skewness, the linearity of expectation and the assumption that
ν(X) > 0 for every X ∈ X . It remains to show property (ii). To this end, one considers an
arbitrary convex combination of n i.i.d. random variables, say

∑n
i=1 wi Yi , where wi ∈ [0, 1]

and
∑n

i=1 wi = 1. Further and without loss of generality, it is assumed that the Yi ’s have
mean zero (as the central second and third moments are considered in the definition of
skewness). One further defines pi := w2

i /
∑

i w
2
i , the vector pn := [p1, . . . , pn]� inRn and

the function

D3/2(pn) :=
(

n∑
i=1

p3/2i

)−2

, with D3/2(pn) = n when w1 = . . . = wn = 1/n.
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One then calculates, due to the i.i.d. nature and zero mean property of the random variables
under consideration,

ν

(
n∑

i=1

wi Yi

)
=
( ∑n

i=1 w3
i E[Y 3

1 ](∑n
i=1 w2

i E[Y 2
1 ])3/2

)2

= ν(Y1)

( ∑n
i=1 w3

i(∑n
i=1 w2

i

)3/2
)2

=ν(Y1)

(
n∑

i=1

p3/2i

)2

= ν(Y1)

D3/2(pn)
.

Thus, due to property (i), i.e. leverage invariance and the fact that D3/2(pn) = n when
w1 = . . . = wn = 1/n, one obtains

ν

(
n∑

i=1

Yi

)
= ν

(
n∑

i=1

1

n
Yi

)
= ν(Y1)

n
,

which is strictly decreasing in n. Moreover, for any Y ∈ X such that Law(Y1) = Law(Y ),

η̂(k) = ν(Y )

ν
(
1
k

∑k
i=1 Yi

) = k
ν(Y )

ν(Y1)
= k,

and thus the desired result is obtained.
(b) Following the approach from (a), one observes that again the properties (i), (iii),

(iv) and (v) are satisfied trivially due to the definition of excess kurtosis, the linearity of
expectation and the assumption that ν(X) > 0 for every X ∈ X . Also, in a similar approach
one considers an arbitrary convex combination of n i.i.d. random variables, which is denoted
again by

∑n
i=1 wi Yi . One, however, now considers the function

D2(pn) :=
(

n∑
i=1

p2i

)−1

, with D2(pn) = n when w1 = . . . = wn = 1/n.

Consequently, one calculates by taking into consideration the i.i.d. nature and zero mean
property of the random variables under consideration

ν

(
n∑

i=1

wi Yi

)
=
∑n

i=1 w4
i E[Y 4

1 ] + 3
∑

i 
= j w
2
i w

2
j (E[Y 2

1 ])2(∑n
i=1 w2

i E[Y 2
1 ])2 − 3

=
⎛
⎝ E[Y 4

1 ]
(E[Y 2

1 ])2
∑n

i=1 w4
i(∑n

i=1 w2
i

)2 + 3
∑
i 
= j

w2
i∑n

i=1 w2
i

w2
j∑n

i=1 w2
i

⎞
⎠ − 3

=
⎛
⎝(ν(Y1) + 3)

n∑
i=1

p2i + 3
∑
i 
= j

pi p j

⎞
⎠ − 3

=
(

(ν(Y1) + 3)
n∑

i=1

p2i + 3(1 −
n∑

i=1

p2i )

)
− 3.

The last equality is due to the fact that
∑n

i=1 pi = 1. Thus,

ν

(
n∑

i=1

Yi

)
= ν

(
n∑

i=1

1

n
Yi

)
= ν(Y1)

D2(pn)
= ν(Y1)

n
,
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which is strictly decreasing in n and hence the desired result is also obtained in this case as
in part (a). ��
Corollary 2.6 LetX be a convex subset ofL4 and ν1 and ν2 are used to denote excess kurtosis
and squared skewness respectively, i.e.

ν1(·) = E[(· − E[·])4]
(E[(· − E[·])2])2 − 3 and ν2(·) =

(
E[(· − E[·])3]

(E[(· − E[·])2])3/2
)2

.

Then

(a) Any linear combination with positive coefficients of excess kurtosis and squared skew-
ness, i.e.

ν(·) = λ1ν1(·) + λ2ν2(·), where λ1, λ2 ≥ 0,

satisfies properties (i)–(v) from Definition 1, provided that ν(X) > 0 for every X ∈ X .
(b) The following polynomial combinations with positive coefficients of excess kurtosis and

squared skewness (which includes the Jarque–Bera goodness-of-fit test), namely

ν(·) = λ1ν
2
1 (·) + λ2ν2(·), where λ1, λ2 > 0,

satisfy properties (i)–(v) from Definition 1, provided that ν(X) > 0 for every X ∈ X .

Thus, we see that our newly proposed diversification measure can be built by using excess
kurtosis and/or squared skewness and that our definition of portfolio dimensionality is sat-
isfied for large and rich sets of random variables. Moreover, since φZ ,ν is a monotonically
decreasing function, if

φZ ,ν(k + 1) < ν

(
n∑

i=1

wi Xi

)
< φZ ,ν(k), then k < DZ , ν(w) < k + 1,

with DZ , ν(w) taking a non-integer value according to a monotonic interpolation of φZ ,ν . As
a result, one observes that the higher the values for DZ , ν(w), the closer we are to a tail risk
similar to the one given by a standard Gaussian. To see this, consider a large enough k and
DZ , ν(w) ≥ k. Consequently, one obtains due to (4), that the number of independent assets
is increased accordingly,

ν

(
n∑

i=1

wi Xi

)
≤ φZ ,ν(k) = ν

( ∑k
i=1 Zi√
kE[Z2]

)
, (due to leverage invariance)

and thus due to the CLT and property (ii) from Definition 1, one observes the desired result.

Remark 2.7 We focus henceforth on the case of randomvariableswith skewed and leptokurtic
distributions (the latter implies positive excess kurtosis). Such random variables represent the
asset returns in a given asset universe under consideration. This is chosen in agreement with
the relevant literature in quantitative finance and assumes a well-documented phenomenon
of asset returns, namely stylized facts which include negative skewness and excess kurtosis
due to fat tails, see e.g. Cont [25] and references therein. Thus, X represents, henceforth, the
convex hull of a fixed number of such random variables which are used to form a portfolio
under consideration. One notes however thatX cannot always be a subset of randomvariables
with leptokurtic distributions, which implies that excess kurtosis may become negative. For
example, in the theoretical case, where two perfectly negatively correlated assets, say X ∈ X
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and −X ∈ X , are used to form a portfolio, then the convex combination 1/2X + 1/2(−X)

has such property. Similarly, there may be (very unlikely to happen in real-world) situations
where the assets, which form a portfolio under consideration, exhibit very strong negative
correlation, which may result in convex combinations of them having (even marginally)
negative excess kurtosis. In all such cases, if the measure of non-Gaussianity is simply
excess kurtosis (as in our examples below), then one proceeds with the minimization of
excess kurtosis, knowing very well that a negative sign implies tails lighter than those of the
Gaussian distribution (which is desirable from the point of view of asset management) but
no diversification or portfolio dimensionality number can be produced.

2.3 Desirable properties of the diversificationmeasure: Toy example

Despite the fact that there is no agreed upon definition of diversification in the literature,
a number of desirable properties of a diversification methodology have been proposed. In
Choueifaty et al. [22], the notion of polico invariance is introduced. Extending an asset
universe by adding a positive linear combination of assets already belonging to the uni-
verse should not affect the weights to the original assets when applying the diversification
methodology. A special case of polico invariance, denoted duplication invariance, considers
the duplication of one of the assets in the universe. This case naturally arises in applications
when one of the assets is listed on multiple exchanges. Applying the diversification method-
ology should produce the same portfolio irrespective of any asset in the universe being
duplicated or not. In Koumou [49] further desirable properties of diversification measures
are introduced. However, some of the properties presented in Koumou [49] are not consistent
with the requirements that we have on a diversification measure. In Sect. 1, we introduced
the requirement that the portfolio diversification measure should be leverage invariant. This
contrasts one of the desired properties presented in Koumou [49]. Furthermore, in Koumou
[49], the portfolio diversification measure is required to be concave or quasi-concave. As
we have argued, a leverage invariant diversification measure typically leads to a ratio of two
convex functions which in general is neither concave nor quasi-concave.

In the following, a numerical example is used to demonstrate that important desirable
properties are satisfied by the newly introduced portfolio diversificationmeasure. The demon-
stration is based on a toy example with a universe consisting of three assets with the following
covariance matrix

C =
⎡
⎣ 1 ρ 0

ρ 1 0
0 0 1

⎤
⎦ . (5)

As the correlation ρ between asset one and asset two approaches one, these two assets behave
as one asset and hence this corresponds to the case when one of the assets in the universe
is duplicated. For this case, the weight of asset three should approach 1

2 as ρ → 1. When
ρ → −1, this corresponds to the case when either asset one or asset two is a perfect hedge
of the other. In this case, assuming that C is positive definite, the volatility of a portfolio
given by the weight vector w = [0.5, 0.5, 0]� tends to a small value c > 0 as ρ → −1. In
Choueifaty et al. [22], it is demonstrated that risk parity suffers from duplication invariance.
It is well known in the literature that the global minimum variance portfolio tends to be
highly concentrated to assets with low volatility, see e.g. Clarke et al. [24]. Thus, for an asset
universe where the exposure to some assets to a large extent has been hedged away, the global
minimum variance portfolio tends to be highly concentrated to the hedged assets. We denote
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Fig. 1 Weight of asset three for theminimumkurtosis, risk parity andmaximized diversification ratio portfolios
for the cases when: (a) ρ ∈ [0, 1] and (b) ρ ∈ (−1, 0]

this undesirable property of the global minimum variance portfolio the hedging invariance
problem.

Consistency with the duplication invariance and hedging invariance properties for the
introduced diversification framework is illustrated in Fig. 1 for the case when the marginal
distributions of the assets can be assumed to be approximately symmetric. In this case, we
assume that non-Gaussianity is adequately captured by portfolio kurtosis. The consistency
with the desired properties is monitored through the weight of asset three for the cases when
ρ → 1 and ρ → −1. The weight of asset three obtained when minimizing portfolio kurtosis
is compared to the corresponding weights obtained with risk parity and from maximizing
the diversification ratio introduced in Choueifaty and Coignard [21]. Since the volatilities of
the three assets are equal, the portfolio obtained from maximizing the diversification ratio
coincides with the global minimum variance portfolio, see Choueifaty and Coignard [21].
For risk parity and the most diversified portfolio, the weight of asset three can be solved
analytically and is given by

wRP
3 = 2

√
1 + ρ − (1 + ρ)

3 − ρ
, (6)

for the risk parity portfolio, and

wDR
3 = 1 + ρ

3 + ρ
, (7)

for the maximized diversification ratio and the global minimum variance portfolios. Thus,
when ρ → 1, the weight of the third asset approaches

√
2 − 1 for the risk parity portfolio,

whereasw3 → 1
2 for the maximized diversification ratio. From Fig. 1a, one observes that the

minimum kurtosis portfolio and the maximized diversification ratio satisfy the duplication
invariance property, whereas risk parity does not.

When ρ → −1, the volatility of a portfolio with weight vector w = [0.5, 0.5, 0]�
approaches the small value c > 0. All portfolio construction methodologies that are based
on only the covariance matrix will approach this solution when ρ → −1. The question is at
which rate. From Fig. 1b, one observes that wDR

3 approaches zero at a rate which is close to
linear when ρ varies between 0 and –1. Since this corresponds to the behaviour of the global
minimum variance portfolio, which suffers from the hedging invariance problem, this rate is
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too large when ρ is not close to –1. Fig. 1b reveals that the weight of asset three for both the
minimum kurtosis and risk parity portfolios approaches zero at a slower rate compared to
the diversification ratio portfolio when ρ is not close to –1. These portfolios are thus not too
heavily concentrated to the partially hedged exposure represented by asset one and asset two
in our example. We conclude that the minimum kurtosis and risk parity portfolios satisfy the
hedging invariance property. Hence, only the minimum kurtosis portfolio satisfies the two
desired properties when the asset distributions are symmetric.

We finally stress that in this paper we do not attempt to accurately estimate higher order
moments or joint distributions of assets returns. The multivariate distribution of the asset
returns is modelled with a Gaussian copula and marginal distributions which allow for differ-
ing skewness and kurtosis parameters for the individual assets. By modelling the dependence
structure with a Gaussian copula, we avoid the notoriously difficult task of estimating a
nonlinear dependence structure between the assets. The cost of using a model with less
uncertainty in the estimated parameters is that we only take linear dependence between the
assets returns into account in this paper. In order to obtain a robust implementation of the
framework we take the approach of assigning representative tail risk parameters for different
asset groups. Based on the assigned tail risk parameters, the diversification framework then
lets us measure and optimize the portfolio dimensionality for a given asset universe.

3 Deterministic global optimization of ratios of convex functions

There are numerous applications in finance that involve the optimization of ratios, see, e.g.,
Stoyanov et al. [73]. In the previous two sections we argued that formulating an appropriately
defined portfolio diversification measure naturally leads to functions that are ratios of convex
functions. In this section we develop a deterministic algorithm for solving such problems to
global optimality.

Let A ⊆ R
n be a nonempty compact convex set and consider the maximization problem

max
w∈A h(w), where h(w) = f (w)

g(w)
(8)

and f , g : A → R are positive and continuous functions. In Avriel et al. [7] it is shown
that when f is concave and g is convex, then h(w) is a semi-strictly quasi-concave function.
Many theoretical results, as well as algorithms of convex programming, apply to the problem
of maximizing a quasi-concave function over a convex set (see [27, 66, 67]). In particular,
each local maximum is again a global maximum. For the case when f and g are either both
convex or both concave, h(w) is in general neither a quasi-concave nor quasi-convex function
and the function may have multiple local optima that are different from the global optimum.

3.1 Formulation of the portfolio kurtosis minimization problem

Using the notation for higher order portfoliomoments introduced inAppendixA, the portfolio
kurtosis as a function of the portfolio weights can be expressed as

κp(w) = E
(
(w�(r − μ))4

)
(E

((
w�(r − μ))2

))2 = w�M4(w ⊗ w ⊗ w)(
w�M2w

)2 , (9)

where w ∈ R
n+1 is the vector of relative portfolio weights, r ∈ R

n+1 denotes the vector
of asset returns, μ = E(r), and M2 ∈ R

(n+1)×(n+1) and M4 ∈ R
(n+1)×(n+1)3 denote the
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covariance and fourth co-moment matrices of the asset returns, respectively. We assume that
M2 is positive definite and hence that w�M2w > 0 for all non-zero w. Therefore, the ratio
(9) is well defined. By application of Jensen’s inequality we also have that

E

(
(w�(r − μ))4

)
≥ (E

((
w�(r − μ))2

))2
and thus w�M4(w ⊗ w ⊗ w) > 0

for all non-zero w. (10)

The convention for the majority of papers in the fractional programming literature is to
formulate the fractional program as a maximization problem. Since argmaxw f (w)/g(w) =
argminw g(w)/ f (w), for f (w) > 0 and g(w) > 0, we formulate the portfolio kurtosis
optimization problem as the following maximization problem, which we denote by (P)

(P) max
w∈W h(w), where h(w) = f (w)

g(w)
=

(
w�M2w

)2
w�M4(w ⊗ w ⊗ w)

(11)

andW denotes the feasible set for the weights. Since we assume no short selling and a fully
invested portfolio, the feasible set is given byW = {w ∈ R

n+1 | ∑n
i=0 wi = 1, wi ≥ 0, i =

0, . . . , n}. Letting w∗ denote the optimal weights, the minimum kurtosis over the feasible
set is then given by κp(w

∗) = 1
/
h(w∗). SinceM2 is positive definite, the numerator in (11)

is a convex function. In Athayde and Flores [6] it is shown that the fourth moment of the
portfolio return is a convex function and hence (11) is a ratio of two convex functions.

3.2 Branch and Bound algorithm for global minimization of portfolio kurtosis

Global optimization of ratios of convex functions is a very difficult optimization problem and
has attracted attention in the optimization research community. In this section we present a
Branch and Bound (BB) algorithm for global minimization of portfolio kurtosis. The basic
idea of BB is to recursively subdivide the solution space geometrically into smaller and
smaller subsets, until we can either compute the optimal solution over a subset or rule out
that a subset contains the global optimum. A crucial component of the algorithm and key
to its efficiency, is the derivation of tight upper and lower bounds on the objective function
value, both globally and locally for each subset. Examples of papers in the literature which
develop BB algorithms for the special case of ratios of convex quadratic functions are Gotoh
and Konno [39], Benson [13] and Yamamoto and Konno [78]. The first, and to the best of our
knowledge only, paper which develops a BB algorithm for global optimization of a single
ratio of general convex functions is Benson [14]. The generalized problem of optimizing a
sum of ratios of convex functions has also attracted considerable attention in the literature.
In Shen et al. [70] a BB algorithm for global optimization for the sum of ratios of convex
functions over a convex set is developed, while Shen et al. [69] develop a BB algorithm for the
case of optimizing the sum of ratios of convex functions when the feasible set is non-convex.
Comprehensive treatments of BB algorithms for global optimization can be found in Horst
and Tuy [43] and Floudas [32].

We apply the BB algorithm developed by Benson [14] to the problem of portfolio kurtosis
minimization and improve the convergence rate by constructing considerably tighter bounds.
In the following we first give an overview of the BB algorithm before we describe the steps
of the procedure in more detail. As input to the algorithm, one chooses an error tolerance
ρ which determines the maximum allowed relative distance between the output value of
the algorithm and the global optimum. The output of the algorithm is a ρ-globally optimal
solution:
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Definition 5 (ρ-globally optimal solution) A solution wk ∈ W for problem (P) is called ρ-
globally optimal, if h(wk) ≥ (1 − ρ)h(w∗), where ρ ∈ [0, 1) and w∗ is an optimal solution
for (P).

The basic idea of the BB algorithm is rather simple and consists of the following elements.
Branching process Consists of choosing a subset S ⊆ W that is to be subdivided, and then
applying a partitioning method for splitting this subset into two smaller subsets.
Upper bounding process Consists of solving a subproblem to obtain an upper boundUB(S)

for the maximum of h(w) over each subset S ⊆ W created by the branching process.
Moreover, the upper bound for each subset is used to update a global upper bound UB for
the maximum of h(w) over W .
Lower bounding process Consists of calculating a lower bound LB(S) for the maximum of
h(w) over each subset S ⊆ W created by the branching process. Moreover, the lower bound
for each subset is used to update the global lower bound LB for the maximum of h(w) over
W .
Fathoming process Deletes each subset S ⊂ W in the partition which satisfies (1 −
ρ)UB(S) ≤ LB. The algorithm stops when all subsets have been fathomed, i.e., the partition
is empty.

Unlike heuristic methods, BB algorithms terminate with the guarantee that the value of
the best found solution is ρ-globally optimal. BB algorithms are however often slow, and
in many cases they require computational effort that grows exponentially with the problem
size. This is due to the fact that the size of the partition will grow from iteration to iteration,
unless we can fathom subsets. Fathoming subsets, however, depends on the quality of the
lower and, especially, the upper bound for a subset. If the upper bound is loose, then a good
feasible solution found early in the search may be detected as good only much later in the
partitioning process. In other words, the main computational burden of the BB algorithm
typically comes from proving global optimality of a feasible point found at an early stage.
Thus, in order for the BB algorithm to be efficient, it is crucial to carefullymodel the functions
used for producing upper bounds for each subset generated by the branching process, to be
able to fathom them as quickly as possible. Compared to the BB algorithm in Benson [14], we
develop two extensions which provide much tighter upper bounds and, thereby, considerably
speed up the convergence of the algorithm. Next, we will give a more detailed description of
the BB algorithm applied to the problem of minimizing portfolio kurtosis.

3.2.1 Branching process

The branching process splits the feasible set into successively finer partitions. We denote by
Q0 = {W} the initial partition and by Qk = {Si }i∈Ik the partition in iteration k of the BB
algorithm, where Ik is a finite index set, W = ⋃

i∈Ik
Si , and int(Si ) ∩ int(S j ) = ∅, for

i 
= j . Note that, strictly speaking, once we start fathoming subsets, Qk will no longer form
a partition of W . However, for the ease of exposition, we will still call Qk a partition. At
the beginning of step k ≥ 1, the partition Qk−1 consists of subsets not yet deleted by the
algorithm. To determine the subset of Qk−1 to be partitioned, we follow the classical best-
first rule, which selects the subset Sk ∈ Qk−1 with the largest upper bound. The rationale for
this rule is to pick a subset which is likely to contain a good feasible solution, which will,
hopefully, allow for a quick increase in the global lower bound and thereby speed up the
fathoming process. See Locatelli and Shoen [54] for other common rules.
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(a) (b)

Fig. 2 Examples of subdivision of a 2-simplex: radial subdivison (a) and simplicial bisection (b)

First, we observe that our feasible setW is identical to the standard n-simplex. In order to
refine a partitionQk−1, we follow Benson [14] and split the chosen subset Sk into two halves
by simplicial bisection, which is a special case of radial subdivision introduced in Horst [42]:

Definition 6 (Radial subdivision) Let M be an n-simplex with vertex set V(M) =
{v0, v1, . . . , vn}. Choose a point m ∈ M,m /∈ V(M) which is uniquely represented by

m =
n∑

i=0

λiv
i , λi ≥ 0 (i = 0, . . . , n),

n∑
i=0

λi = 1,

and for each i such that λi > 0 form the simplex M(i,m) obtained from M by replacing the
vertex vi by m, i.e., M(i,m) = {v0, . . . , vi−1,m, vi+1, . . . , vn}.

A simplicial bisection is obtained by choosing m as the midpoint of a longest edge of
the simplex M , see Fig. 2 for an example. Horst and Tuy [43] prove that the set of subsets
M(i,m) that can be constructed from an n-simplex M by an arbitrary radial subdivision
forms a partition of M into n-simplices. Hence, our subsets Si are again n-simplices. Let v̂

denote the midpoint of one of the longest edges of Sk and vd , ve the corresponding endpoints
of this edge. In the branching process, we replace Sk by the two n-simplices with vertex
sets Sk1 = M(d, v̂) and Sk1 = M(e, v̂) using simplicial bisection to obtain a refined partition
Qk = (Qk−1 \ {Sk}) ∪ {Sk1 , Sk2 }.

3.2.2 Upper bounding process

Let S ∈ Qk be an n-simplex of the partitionwith vertices {v0, v1, . . . , vn}. Initially, we follow
Benson [14] and overestimate the objective function h(w) = f (w)/g(w) by the ratio of two
affine functions: one that overestimates f and one that underestimates g. We will improve
these bounding functions in Sect. 3.2.5 in order to obtain tighter upper bounds and thereby
increase the speed of convergence. The function g in the denominator is underestimated by
a first order Taylor expansion around the barycenter v̂ = 1/(n + 1)

∑n
i=0 vi of the simplex

S according to

gS(w) = g(v̂) + ∇wg(v̂)(w − v̂)� . (12)

As g is a convex function, gS(w) ≤ g(w), w ∈ R
n+1, and, hence, gS is an underestimator

of g. The gradient of the fourth central moment of the portfolio return is given by (see
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Appendix A)

∇wg(w) = 4M4(w ⊗ w ⊗ w). (13)

In order to ensure that the approximation is positive, let

z(w) = max{α, gS(w)}, where α = min
w∈W g(w) . (14)

With g being convex, the minimization problem on the right-hand side can be solved effi-
ciently.

In order to construct a linear overestimator of the function f in the numerator we need
the following definition given in Horst and Tuy [43]:

Definition 7 (Concave envelope) The concave envelope of a function p taken over a
nonempty subset M of its domain is the function pM that satisfies:

(i) pM is a concave function defined over the convex hull of M,

(i i) pM (x) ≥ p(x), for all x ∈ M, and

(i i i) if q is a concave function defined over the convex hull of M that satisfies q(x) ≥ p(x)

for all x ∈ M, then q(x) ≥ pM (x) for all x in the convex hull of M .

Horst [42] shows that when M is an n-simplex and p is a convex function on M , then pM

is the unique affine function that coincides with p at the vertices of M . Denoting by f S(w)

the concave envelope of f over S, we construct the following upper bound for the maximum
of h over S

U B(S) = max
w∈S

f S(w)

z(w)
. (15)

Since z(w) ≥ 0, w ∈ R
n+1, and f S(w) ≥ f (w) > 0, w ∈ S, UB(S) is equal to the optimal

value of the following problem:

(P1(S)) max
t,w∈S

f S(w)

t

s.t. t ≥ α, (16)

t − gS(w) ≥ 0. (17)

As S ⊆ W is compact and the objective function is continuous, (P1(S)) has an optimal
solution.Moreover, as the ratio of two linear functions is quasi-concave, every local optimum
over the closed convex set is also a global optimum.Thus, the fractional programcan be solved
to global optimality with any local solver. However, as P1(S) has to be solved many times
during the BB algorithm, we follow Benson [14] and reformulate the problem as follows.
Each w ∈ S can be written as

w =
n∑

i=0

λiv
i , where λi ≥ 0, i = 0, 1, . . . , n, and

n∑
i=0

λi = 1, (18)
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(see [43]). As f S(w) is an affine function, we then get f S(w) = ∑n
i=0 λi f (vi ). Substituting

f S(w) and adding the conditions for w gives the equivalent fractional program

(P2(S)) max
t,λ,w

1

t

n∑
i=0

λi f (v
i )

s.t. (16), (17),

w =
n∑

i=0

λiv
i , (19)

n∑
i=0

λi = 1, (20)

λi ≥ 0, i = 0, 1, . . . , n. (21)

To linearize the objective function, we apply the Charnes–Cooper transformation [17],
performing the following change of variables

u = 1

t
, bi = λi

t
, y = w

t
, (22)

where y = [y0, . . . , yn]� and b = [b0, . . . , bn]�, which results in the equivalent problem

(P3’(S)) max
u,b, y

n∑
i=0

bi f (v
i )

s.t. u ≤ 1/α, (23)

u · gS( y/u) ≤ 1, (24)

y =
n∑

i=0

biv
i , (25)

n∑
i=0

bi − u = 0, (26)

bi ≥ 0, i = 0, . . . , n,

u > 0. (27)

Since u · gS( y/u) is an affine function, (P3’(S)) is a linear program, except for the domain
constraint on u. However, Avriel et al. [7] showed that when a solution to (P2(S)) exists, then
the strict inequality can be replaced by u ≥ 0, and we obtain the linear program

(P3(S)) max
u,b, y

n∑
i=0

bi f (v
i )

s.t. (23) − (27),

u ≥ 0. (28)

This formulation can now be solved very efficiently using any linear programming solver.
Finally, the upper bound for Skl , l = 1, 2, is now computed as min{UB(Skl ),UB(Sk)}.

Moreover, for each iteration k ≥ 0, the upper bounding process also computes an upper
bound UBk for the global optimal value h(w∗) of the original problem (P) based on the
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partition Qk :

UBk = max
S∈Qk

U B(S) . (29)

By construction, the upper bound is monotonically decreasing in k, i.e., UBk+1 ≤ UBk ,
k ≥ 0.

3.2.3 Lower bounding process

Denoting by wk the best solution of the problems (P1(S)) encountered up to iteration k, the
lower bound LBk for the global optimal value h(w∗) in iteration k is given by LBk = h(wk).
The bounds are monotonically increasing in k: LBk+1 ≥ LBk , k ≥ 0.

3.2.4 Fathoming process

Based on the lower and upper bounds produced by the algorithm, the fathoming process
deletes all subsets S ∈ Qk−1 fromQk−1 that are guaranteed not to contain the global optimal
solution. At the beginning of each iteration, i.e., all S ∈ Qk−1 are removed for which
(1 − ρ)UB(S) ≤ LBk−1. If this results in Qk−1 being empty, then

h(wk−1) ≥ (1 − ρ)UBk−1 ≥ (1 − ρ) max
w∈W h(w) = (1 − ρ)h(w∗), (30)

which means thatwk is a ρ-globally optimal solution to problem (P). Benson [14] shows that
when the number of iterations for the BB algorithm is infinite, it generates two sequences of
points whose accumulation points are the global optimal solution w∗ for (P), and

lim
k→∞ LBk = lim

k→∞UBk = h(w∗). (31)

This result implies that whenever ρ > 0, the BB algorithm is finite.
The complete BB algorithm is summarized below.

Remark For the case with additional constraints, such as position limits, the feasible set is
no longer given by the standard n-simplex. The extension of the algorithm to a more general
case is however straightforward (see [14], for details).

3.2.5 Improving the upper bound

Preliminary computational tests showed that the BB algorithm spends the vast majority of the
computing time calculating the upper bound UB(S) over the n-simplex S. Moreover, while
it often took only a few iterations to obtain a very good lower bound LBk on the optimal
value h(w∗), the upper bound was improving only very slowly. In order to achieve faster
convergence for theBBalgorithm,we present in the following two extensions of the algorithm
presented in Benson [14] that lead to a much faster reduction of the global upper boundUBk .
In the first, the lower bound of the function g in the denominator is improved by adding
affine functions to the approximation. In the second, the upper bound of the function f in the
numerator is enhanced by using a generalization of the concave envelope. This generalization
requires the introduction of binary variables, which means that the improved upper bound
comes with the cost of having to solve a more difficult combinatorial optimization problem.
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(a) (b)

Fig. 3 Improvement of the lower bound for g when S is an 1-simplex: original lower bound (a) and improved
lower bound for p = 2 (b)

To tighten the lower bound for the function g, we extend the linearization technique in
(14) by adding first order Taylor expansions of g around p additional points R j in S. We
then define

z̃(w) = max(α, gS(w), gR1(w), . . . , gRp (w)), (32)

where gR j (w) = g(R j )+∇wg(R j )(w− R j )
�, j = 1, . . . , p. The idea of the improvement

is illustrated in Fig. 3 for the case when S is a 1-simplex and p = 2.
For the general case of an n-simplex S, the locations of the points {R j }pj=1 are chosen so

that they are evenly distributed in S, see Sect. 3.3 for more details. The resulting problem is
then given as

(P4(S)) max
u,b, y

n∑
i=0

bi f (v
i )

s.t. (23) − (27),

u ≥ 0,

u · gR j ( y/u) ≤ 1, j = 0, . . . , p. (33)

Obviously, the accuracy of the approximation increases with p, at the expense of adding
more linear constraints to the optimization problem.

Next, we turn our attention to improving the accuracy of the approximation of the numer-
ator of the objective function. We start by subdividing the n-simplex S by radial subdivision
according to Definition 6. Let the set of n-simplices created by the radial subdivision be given
by T = {S j } j∈J and the corresponding set of all vertices by V(T ) = {vi }i∈I . The improved
upper bound is then constructed by the combination of the concave envelopes over the n-
simplices in T . The construction is more easily illustrated by the simplest possible example
in one dimension given in Fig. 4b. For this example, the set of n-simplices and corresponding
vertices are after the radial subdivision given by T = {S1, S2} and V(T ) = {v1, v2, v3},
respectively. The generalized concave envelope over S is constructed from the concave
envelopes over S1 and S2.

When calculating the concave envelope, we have to introduce binary variables q j , j ∈ J ,
in order to keep track of which n-simplex in T is active. The function representing the
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(a) (b)

Fig. 4 Improvement of the upper bound for f when S is an 1-simplex: original upper bound (a) and improved
upper bound (b)

generalized concave envelope over the n-simplex S can now be formulated as∑
i∈I

λi f (v
i )

(20), (21),∑
j∈J

q j = 1, (34)

λi ≤
∑

j : vi∈S j
q j , i ∈ I, (35)

q j ∈ {0, 1}, j ∈ J . (36)

Condition (35) ensures that only λi ’s belonging to vertices of the n-simplex that is active, i.e.
for which q j = 1, can be non-zero. Using the improved approximation function, we obtain
the optimization problem

(P5(S)) max
t,λ,q,w

1

t

∑
i∈I

λi f (v
i )

s.t. (16), (17), (19)−(21), (34)−(36).

As before, we transform this problem into a mixed-integer linear program (MILP) via
Charnes–Cooper transformation through the variable transformations in (22). The last set
of constraints is transformed into

bi −
∑

j : vi∈S j
q j u ≤ 0, i ∈ I, (37)

in the new variables. The product of variables is linearized by introducing the continuous
variables z j = q ju, j ∈ J , and adding the following constraints for each j ∈ J :

z j ≤ q j

α
, z j ≤ u, z j ≥ u − (1 − q j )/α, and z j ≥ 0. (38)

If q j = 0, then the first and last constraint ensures that z j = 0, while the third only states
that z j has to be greater than a negative number. If q j = 1, then the first constraint enforces
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z j ≤ 1/α, and the second and third ensure that z j = u. Summing up, we obtain the following
equivalent MILP, which we denote by (P6(S))

(P6(S)) max
u,b,z,q, y

∑
i∈I

bi f (v
i )

s.t. (23)−(27), (34), (36), (37), (38),

u ≥ 0.

This problem can easily be enhanced by adding linear terms to the constraints in order to
obtain a better approximation of the function g in the denominator. The hope is that the
improved upper bound in (P6(S)) will lead to a sufficiently fast decrease of the global upper
boundUBk in order to compensate for the increased computational time induced by solving
an MILP instead of an LP for each instance of the upper bounding process.

3.3 Numerical implementation

In this section we will demonstrate the convergence properties of the BB algorithm when
applied to the problemofminimizing the portfolio kurtosis for an increasing number of assets.
As sample problem we assume that all assets have identical marginal distributions and that
all correlations between different assets are assumed to be equal. This problem instance
represents a non-convex problem with multiple local optima. When the subproblems for the
BB algorithm are given by theMILP (P6(S)), the description in Sect. 3.2 needs to be extended
in order to produce an efficient algorithm.Numerical experiments show that radial subdivision
does not improve the upper bound of f sufficiently to produce an efficient algorithm. In
order to further improve the upper bound of f , the n-simplex S is instead subdivided with
barycentric subdivision. Roughly speaking, the barycentric subdivision of an n-simplex S is
obtained by radial subdivision of all k-faces of dimension 1 ≤ k ≤ n in decreasing order
of dimension. It is also possible with partial barycentric subdivision of S by restricting the
radial subdivision to all k-faces of dimension l ≤ k ≤ n, with l > 1, in decreasing order
of dimension (see [2], for a detailed description of barycentric subdivision). The partial
barycentric subdivision of a 2-simplex with l = 2 corresponds to radial subdivision as
illustrated in Fig. 5 a. The full barycentric subdivision of the 2-simplex is illustrated in Fig. 5
b. Numerical experimentation reveals that full barycentric subdivision is required in order to
produce a sufficiently improved upper bound of f for the MILP formulation. Unfortunately,
this means that (n+1)! binary variables need to be introduced when solving the subproblems
with the MILP formulation. The formulation of the optimization problem (P6(S)) does not
change when subdividing the n-simplex with barycentric subdivision instead of with radial
subdivision. The only thing that changes is the set of n-simplices created by the subdivision
and the corresponding set of vertices.

In the following we investigate the improvements obtained in terms of iteration count and
runtime, when using the enhanced LP formulation and the MILP formulation for solving
the subproblems of the algorithm. The BB algorithm was implemented in MATLAB. For
all LP formulations of the subproblems we use the solver CPLEX in the implementation,
whereas the subproblems arising from the MILP formulation are solved with the built-in
solver intlinprog in MATLAB. For all comparisons we set the parameter ρ to 10−3. When
using the enhanced LP formulation (P4(S)), a choice has to be made regarding how many
extra constraints p are added to the problem. The p points defining the added constraints
are distributed evenly over the subsimplex S for which the subproblem is solved. Letting nc
denote the number of added constraints per asset, one has that p = (n + 1)nc. We choose to
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(a) (b)

Fig. 5 Examples of subdivision of a 2-simplex: radial subdivison (a) and barycentric subdivison (b)

(a) (b)

Fig. 6 a Evolution of the global lower and upper bounds of the portfolio kurtosis for the original (LP1) and
enhanced LP model (LP2) with nc = 2 for the three asset problem. b The fraction of deleted simplices for the
original and enhanced LP model for the three asset problem

distribute the p points evenly between the vertices {vi }ni=0 and the barycenter v̂ of S. Thus,
for nc = 1 the p points are defined by the vertices. For nc ≥ 2, the p points are defined by
the vertices and the (n + 1)(nc − 1) points

j

nc
vi +

(
1 − j

nc

)
v̂, i = 0, . . . , n; j = 1, . . . , nc − 1. (39)

We also experimented with distributing points evenly between the vertices but that did not
bring any noticeable improvement in terms of iteration count. Naturally, adding more con-
straints in order to obtain a tighter lower bound should decrease the iteration count for the BB
algorithm, at the cost of increasing the runtime for each of the subproblems that are solved.
This trade-off is now investigated. In the following, we denote the enhanced LP formulation
(P4(S)) by LP2 and the LP formulation (P3(S)) as used in Benson [14] by LP1.

Figure 6a displays the evolution of the global lower and upper bounds of the portfolio
kurtosis for the iterations of the BB algorithm applied to the three asset problem. Note that
these are the inverses of the global lower and upper bounds calculated by the BB algorithm,
i.e., for κp(w) = g(w)/ f (w). Simulated return data is used to calculate the moment matrices
in the objective function (11). The sample moment matrices M̂2 and M̂4 are calculated from
107 simulated asset returns with NIG-distributed margins and dependence structure given by
the Gaussian copula with a homogeneous correlation matrix. The problem instance is defined
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(a) (b)

Fig. 7 a Evolution of the global lower and upper bounds of the portfolio kurtosis for the original (LP1) and
enhanced LP model (LP2) with nc = 2 for the five asset problem. b The fraction of deleted simplices for the
original and enhanced LP model for the five asset problem

by the homogeneous correlation ρ = −0.2 and marginal kurtosis κm = 6 for all the assets.
Appendix B contains a description of the simulation procedure. Figure 6b shows the fraction
of deleted simplices for the iterations of the algorithm for the three asset problem. Note that
the fraction of deleted simplices decreases if the number of deleted simplices is less than the
number of simplices that are added by the subdivision procedure. From the graphs it is visible
that the enhanced LP formulation LP2 with nc = 2 converges faster to the global optimum in
terms of number of iterations compared to the original LP formulation LP1. As can be seen
in Table 1, the number of iterations decreases with the number of extra constraints p added
to the problem. However, as displayed in Table 2 the decrease in the number of iterations is
not significant enough in order to compensate for the increased runtime associated with the
larger number of constraints. Thus, the enhanced LP formulation with p = 1 has a lower
runtime than the formulations with p > 1. Compared to the original LP formulation LP1,
the runtime of LP2 with nc = 1 is the same for the three asset problem.

Figure 7 a, b display the evolution of the global lower and upper bounds of the portfolio
kurtosis and the fraction of deleted simplices for the iterations of the BB algorithm applied
to the five asset problem. The solid and dotted lines represent the evolution of the bounds
and the fraction of deleted simplices for LP2 with nc = 2 and LP1, respectively. The graphs
reveal that there is a significant decrease in iteration count when using the enhanced LP
formulation LP2 compared to LP1. As for the three asset case, the iteration count for LP2
decreases with the number of added constraints p. However, as can be seen in Table 2 the
decrease in iteration count does not compensate for the added computational cost and hence
LP2 with nc = 1 has the lowest runtime. LP2 with nc = 1 also has a lower runtime than LP1
for the five asset case, 175 seconds compared to 193 seconds.

Wewill now investigate the performance of theMILP formulation against the LP formula-
tion with the lowest runtime for the five asset problem. Figure 8 a, b show the evolution of the
global lower and upper bounds of the portfolio kurtosis and the fraction of deleted simplices
for the two cases. The solid and dotted lines represent the evolution of the bounds and the
fraction of deleted simplices for the MILP formulation and LP2 with nc = 1, respectively.
From Fig. 8, one observes that the MILP formulation improves the global lower bound of the
kurtosis, corresponding to the global upper bound for the BB algorithm, much faster than the
LP formulation up to around iteration count 5000. After that, the global lower bound of the
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Table 1 Number of iterations for the BB algorithm for different portfolio sizes and solution methods for the
subproblems.

Subproblem method LP1 LP2 LP2 LP2 LP2 MILP
nc = 1 nc = 2 nc = 4 nc = 8

3 assets 159 119 96 95 92 47

4 assets 1551 1762 1358 1254 1264 1068

5 assets 48254 35943 33374 30824 29041 28179

6 assets – 620,000 – – – –

The number of iterations for the enhanced LP model, LP2, is given for different numbers (nc) of extra
constraints per asset in the portfolio. In each case, the number of iterations is the median from five runs of the
algorithm. The dashes in the table indicate that for the six asset problem, we have only produced results for
the best performing algorithm in terms of runtime for the five asset problem

Table 2 Runtime for the BB algorithm for different portfolio sizes and solution methods for the subproblems.

Subproblem method LP1 LP2 LP2 LP2 LP2 MILP
nc = 1 nc = 2 nc = 4 nc = 8

3 assets 4 s 4 s 4 s 5 s 5 s 6 s

4 assets 8 s 10 s 10 s 12 s 15 s 61 s

5 assets 193 s 175 s 198 s 260 s 425 s 9,390 s

6 assets – 49,680 s – – – –

The runtime for the enhanced LP model, LP2, is given for different numbers (nc) of extra constraints per asset
in the portfolio. In each case, the runtime is the median from five runs of the algorithm. The dashes in the
table indicate that for the six asset problem, we have only produced results for the best performing algorithm
in terms of runtime for the five asset problem

MILP formulation improves slower than for the LP formulation. The overall iteration count
is lower for the MILP formulation compared to LP2. However, the improvement in iteration
count does not compensate for the increased computational cost associated with solving a
MILP instead of an LP as can be seen in Table 2. The runtime for the MILP formulation can
however likely be reduced by using a state-of-the art solver instead of the built-in solver in
MATLAB.

For the six asset problem with homogeneous correlation ρ = −0.18, the number of
iterations is 620,000 for the best performing solution method for the subproblems, LP2 with
nc = 1. The corresponding runtime for the six asset problem is 49,680 seconds, illustrating
the exponential growth in computational effort when the BB algorithm is applied to the
portfolio kurtosis minimization problem. The BB algorithm can be enhanced by developing
special purpose solvers for the subproblems. Furthermore, the algorithm can be parallelized
in order to further reduce the runtime. Moreover, we could combine the MILP formulation
and LP2, starting with the former to quickly raise the upper bound, and then switch to LP2
to save runtime. It is, however, unlikely that any of these will admit solving problems with
significantly higher number of assets than six.

4 Stochastic global optimization

In Sect. 3.2 we developed a deterministic global optimization algorithm for minimizing the
inverse of the introduced portfolio diversification measures. However, as is well known and
illustrated by the numerical examples in Sect. 3.3, the BB algorithm suffers from the curse of
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(a) (b)

Fig. 8 a Evolution of the global lower and upper bounds of the portfolio kurtosis for the enhanced LP model
with nc = 1 and the MILP model for the five asset problem. b The fraction of deleted simplices for the
enhanced LP model and the MILP model for the five asset problem

dimensionality and converges too slowly for problems where the number of assets exceeds
six. In this section we develop a stochastic optimization algorithm for global optimization of
portfolio kurtosis. The BB algorithm has the desirable property that the objective function
value at the obtained solution is guaranteed to be arbitrarily close to the global minimum.
For the algorithm developed in this section it is not possible to determine if the solution is a
global optimum. However, the algorithm is a special case of stochastic approximation with a
rich and well developed theory for convergence analysis. Since the BB algorithm is limited
to problems of moderate size, the algorithm developed in this section complements the BB
algorithm in the sense that it allows for tackling problems of larger size.

4.1 Stochastic algorithms for global optimization—a very brief overview

There is a huge literature on global optimization algorithms, so called metaheuristic meth-
ods, for which it is not possible to guarantee that the obtained solution is a global optimum.
These methods iteratively search the feasible set for the global optimum and without prior
knowledge there is always the possibility that the optimal point lies in an unexplored region
when the algorithm stops. Important examples of metaheuristic methods are genetic algo-
rithms [41], simulated annealing [48] and tabu search [37]. The interested reader may consult
Gendreau and Potvin [36] for an overview of metaheuristic methods. Even though, for meta-
heuristic methods, it is not possible to guarantee that a global optimal point has been found,
algorithms that are based on stochastic approximation have a solid theoretical foundation
and in many cases non-asymptotic convergence results are available with explicit constants,
see Dalalyan [26], Durmus and Moulines [28] and Durmus and Moulines [29]. This can be
contrasted to many other popular metaheuristic methods where the theory is often incom-
plete or even nonexistent, see Spall [72]. A strong aspect of stochastic approximation is
the rich convergence theory that has been developed over many years. It has been used to
show convergence of many stochastic algorithms such as neural network backpropagation
and simulated annealing. For rigorous examples where stochastic approximationmethods are
applied to problems in finance, see Laurelle and Pages [52] and Sabanis and Zhang [65]. The
latter, and more recent result, offers theoretical guarantees for the discovery of near-optimal
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solutions of a non-convex optimization problem, namely the optimal allocation of weights for
the (unconstrained via a suitable transformation) minimization of CVaR/Expected Shortfall
of a portfolio of assets.

In stochastic approximation one is concerned with finding at least one root θ∗ ∈ �∗ ⊆ R
d

to G(θ) = 0, based on noisy measurements of G(θ). Root finding via stochastic approxima-
tion was introduced in Robbins and Monro [62] and important generalizations were made in
Kiefer and Wolfowitz [47]. Consider the unconstrained minimization problem

min
θ

L(θ), (40)

where L is a smooth function, which has multiple local minima. For the special case when
G(θ) is given by G(θ) = ∇θ L(θ), the stochastic approximation algorithm is given by the
following stochastic gradient descent (SGD) algorithm

θk+1 = θk − ak H(θk, Xk+1), (41)

where {Xk}k∈Z is a sequence of Rm-valued i.i.d. data and H(θk, Xk+1) is an unbiased
estimate of the gradient, i.e.∇θ L(θ) = E(H(θ , Xk+1). In (41), {ak} can either be a decreasing
positive sequence satisfying appropriate conditions or a fixed small positive value ak = λ >

0, for any k ≥ 0.
In many estimation problems, a full set of data is collected and G (or L) is chosen by

conditioning on the data. This conditioning removes the randomness from the problem and
the estimation problem becomes deterministic. In the machine learning literature this is
commonly referred to as the batch gradient descent algorithm, which is given by θk+1 =
θk − ak H̄(θk), where {Xk}Nk=1 is the collected data and

H̄(θ) = 1

N

N∑
k=1

H(θ , Xk). (42)

Since L has multiple local minima, applying SGD to (40) may yield convergence to a local
minimum of L . Under broad conditions, Kushner and Yin [50] show that (41) converges
to one of the local minima of L with probability 1. However, the iterates will often be
trapped at a local optimum and will miss the global one. Nevertheless, SGD, or one of its
various extensions, is commonly used in machine learning for optimization of Deep Neural
Networks, see Goodfellow et al. [38]. When L has a unique minimum, Chau et al. [18]
provide convergence results for the case with dependent data, discontinuous L , and fixed
step size.

The idea behind simulated annealing is that by adding an additional noise term to the
iterations one can avoid getting prematurely trapped in a local minimum of L . In Gelfand
and Mitter [35], the following modified SGD algorithm is analyzed

θk+1 = θk − ak H(θk, Xk+1) + bkεk+1, (43)

where {εk} is a sequence of standard d-dimensional independent Gaussian random variables,
and {ak} and {bk} are decreasing sequences of positive numbers tending to zero. They show
that under suitable assumptions, θk tends to the global minimizer as k → ∞ in probability.
In the machine learning and Bayesian inference literature, the closely related Stochastic Gra-
dient Langevin Dynamics (SGLD) algorithm has attracted significant interest in the research
community in recent years. The SGLD algorithm for global optimization can be formulated
as
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θk+1 = θk − ak H(θk, Xk+1) + √
2ak/βεk+1, (44)

where {εk} is a sequence of standard d-dimensional independent Gaussian variables and
β > 0 is a temperature parameter. The batch version of this algorithm, Gradient Langevin
Dynamics (GLD), is correspondingly given by

θk+1 = θk − ak H̄(θk) + √
2ak/βεk+1. (45)

Assuming that the gradient H is Lipschitz continuous and under further assumptions, Ragin-
sky et al. [61] provide a non-asymptotic analysis of SGLD and GLD applied to non-convex
problems for the case when the step size ak is a positive constant. The analysis provides
non-asymptotic guarantees for SGLD and GLD to find an approximate minimizer. The rate
of convergence is further improved for both SGLD and GLD in the recent papers by Xu et
al. [77] and in Chau et al. [19] even in the presence of dependent data streams.

4.2 A Gradient Langevin Dynamics algorithm for minimization of kurtosis

Motivated by the enormous progress in the aforementioned optimization algorithms, we
develop a GLD algorithm for global minimization of portfolio kurtosis. Since portfolio kur-
tosis is the ratio of two convex functions, the batch gradient is not simply given by the
average as in (42). Given a sample of observed return data for a given asset universe, the
sample covariance matrix and sample fourth co-moment matrix can be estimated. The batch
version of the portfolio kurtosis is then given by

h̄(w) = f̄ (w)

ḡ(w)
= w�M̂4(w ⊗ w ⊗ w)

(w�M̂2w)2
, (46)

where M̂2 and M̂4 denote the sample covariance and fourth co-momentmatrices, respectively.
Given the complicated form of the approximate bias for sample kurtosis, see Bao [9], global
minimization of portfolio kurtosis is not easily adapted to the algorithms in Sect. 4.1 which
utilize a stochastic unbiased estimate of the gradient. For this reason we only develop a GLD
algorithm for the global minimization problem.

The algorithms in Sect. 4.1 are formulated for unconstrained optimization problems and
hence need to be adapted to constrained minimization over the standard n-simplex. The GLD
algorithm for the constrained problem is given by the following projected iterations

wk+1 = 
W
(
wk − λ∇w h̄(wk) + √

2λ/βεk+1

)
, (47)

where
W denotes the Euclidean projection onto the feasible set, λ > 0 is the fixed step size
and w ∈ R

n+1. Euclidean projection of a point onto the standard n-simplex is a quadratic
program which can be solved very efficiently. See Chen and Ye [20] for a fast and simple
algorithm for computing the projection onto the standard n-simplex. The gradient of the
batch version of portfolio kurtosis is given by

∇w h̄(w) = ∇w f̄ (w)

ḡ(w)
− f̄ (w)∇w ḡ(w)

(ḡ(w))2
, (48)

where the explicit form of the gradient ∇w f̄ (w) is given in Appendix A and

∇w ḡ(w) = 4
(
w�M̂2w

)
M̂2w. (49)
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Most convergence results for SGLD and GLD are only applicable for algorithms without
projection. A natural way to avoid the projection step in each iteration would be to extend the
objective function with a convex function outside of the feasible set. Naturally, the extended
objective function needs to be continuous on the boundary of the feasible set and have
a continuous gradient on the boundary. However, in Tawarmalani and Sahinidis [74] it is
shown that a sufficient condition for the existence of a convex extension of a function outside
of a convex feasible set, is the convexity of the function. Even if the requirement of convexity
of the function to be extended is relaxed such that convexity is only required close to the
boundary of the feasible set, this does not hold for portfolio kurtosis. It can easily be shown
that portfolio kurtosis in general is a non-convex function on the boundary of the feasible
set. Hence, it is not possible to find a convex extension of portfolio kurtosis outside of the
feasible set W .

When the objective function is convex, Bubeck et al. [16] provide convergence results for
the projected SGLD and GLD algorithms. In the case of a non-convex objective function, no
convergence results for projected SGLDandGLDcurrently exist in the literature to the best of
our knowledge, apart fromSabanis andZhang [65]where the projection is achieved implicitly,
via a transformation, under the assumptions of Lipschitz continuity and dissipativity for the
gradient of the objective function. These conditions also hold true in our kurtosisminimization
problem, see (53) and (57), which provide the theoretical justification for the choice of the
proposed projectedGLDalgorithmas our global optimization approach in higher dimensions.
Nevertheless, it is acknowledged here that if the feasible region is made of further constraints,
no such guarantees exist. It should however bementioned that the analysis of SGLD andGLD
algorithms is currently a very active research area

In order for the iterations (47) to converge, the gradient ∇w h̄(w) needs to be Lipschitz
continuous on the domain given by the feasible set W . The Hessian of h is given by

∇2
w h̄(w) = 1

(ḡ(w))3

(
(ḡ(w))2 ∇2

w f̄ (w) − ḡ(w)
(
∇w f̄ (w) (∇w ḡ(w))� + ∇w ḡ(w)

(∇w f̄ (w)
)�)

+ ḡ(w) f̄ (w)∇2
w ḡ(w) + 2 f̄ (w)∇w ḡ(w) (∇w ḡ(w))�

)
, (50)

where ∇w f̄ (w) and ∇2
w f̄ (w) are given in Appendix A, ∇w ḡ(w) is given in (49) and

∇2
w ḡ(w) = 12

(
w�M̂2w

)
M̂2. (51)

In (50), each component of the numerator is a polynomial of degree 10 and the denominator
is a polynomial of degree 12. Since it is assumed that M̂2 is positive definite, the minimum
c of ḡ(w) is strictly positive over W , and one has that |ḡ(w)| ≥ c > 0 for w ∈ W . As each
component of∇2

w h̄(w) is a continuous function its value is bounded on a closed compact set,
and hence

‖∇2
w h̄(w)‖2 ≤ K , for all w ∈ W, (52)

which, using the mean value theorem, implies

‖∇w h̄(u) − ∇w h̄(v)‖2 ≤ K‖u − v‖2, for all u, v ∈ W, (53)

where the matrix norm in (52) is defined as the Hilbert–Schmidt norm. Thus, the gradient
of the portfolio kurtosis is Lipschitz continuous over the feasible set. In both Raginsky et
al. [61] and Xu et al. [77] it is required that the objective function is dissipative in order for
the convergence results to hold. The objective function h̄ is dissipative on W if there exists
constants m > 0 and b ≥ 0 such that
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w�∇w h̄(w) ≥ m‖w‖22 − b, ∀w ∈ W. (54)

Since the gradient of h̄(w) is a continuous function it is bounded over W:

‖∇w h̄(w)‖2 ≤ K2, ∀w ∈ W. (55)

Over the n-simplex W , the Cauchy–Schwartz inequality implies

|w�∇w h̄(w)| ≤ ‖w‖2‖∇w h̄(w)‖2 ≤ ‖∇w h̄(w)‖2 ≤ K2, (56)

and hence w�∇w h̄(w) ≥ −K2. Furthermore, a(‖w‖22 − 1) ≤ 0, for a > 0, implying

w�∇w h̄(w) ≥ a(‖w‖22 − 1) − K2 = a‖w‖22 − (K2 + a) = a‖w‖22 − b, (57)

and hence h̄(w) is dissipative overW . This means that portfolio kurtosis satisfies the assump-
tions underlying the convergence results in the non-convex case for GLD and SGLD without
projection. Even though we cannot rely on formal convergence results from the literature for
GLD with projection, we will in the next section apply the projected GLD algorithm to some
example problems with multiple local minima.

4.3 Numerical illustration

In this section we apply the projected GLD algorithm to an artificial problem of kurtosis
minimization when all assets are assumed to have identical marginal distributions and where
all correlations between different assets are assumed to be negative and identical. Moreover,
it assumed that the weights are positive and sum to one. This problem provides a test bed
for testing if the projected GLD algorithm finds an optimal point which is close to the global
optimum. The problem has several local optima which, for the non-zero weights, represent
equally weighted portfolios with exposure to all or a subset of the assets. To see that this must
be the case, consider two assets with non-zero weight at a local optimum. Since the assets are
linearly dependent and have the same marginal kurtosis, the optimization will allocate equal
weight to both assets when they are non-zero. Hence, all locally optimal portfolios assign
equal weight to all weights that are non-zero at the respective local optimum.

The sample covariance matrix M̂2 and the sample fourth co-moment matrix M̂4 are calcu-
lated from107 simulated asset returnswithNIG-distributedmargins anddependence structure
given by the Gaussian copula with a homogeneous correlation matrix. The simulation pro-
cedure is described in Appendix B. Portfolio kurtosis for equally weighted portfolios for the
cases with homogeneous correlation matrices with correlation ρ = −0.2 and ρ = −0.05,
respectively, and marginal kurtosis κm = 6, are displayed in Fig. 9. Note that for the
described experimental setup, assuming no estimation error, the portfolio kurtosis for an
equally weighted portfolio with n assets is equal to the portfolio kurtosis for an n + 1 asset
portfolio with equal weight in n assets and zero weight in the remaining asset. To see this,
consider the definition of portfolio kurtosis

κp(w) = E
(
w�r

)4
(
E
(
w�r

)2)2 . (58)

From the definition it is apparent that setting one of the weights to zero and the remaining
weights to 1/n for the kurtosis in the n+1 asset case is identical to the kurtosis for the equally
weighted portfolio in the n asset case. Inspecting the graph in Fig. 9 a, one observes that
the global optima for the five asset case are located at points with equal weights in four of
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(a) (b)

Fig. 9 Portfolio kurtosis for equally weighted portfolios as a function of the number of assets. The asset
distributions are generated from a Gaussian copula with homogeneous correlation matrix and NIG-distributed
margins with kurtosis κm = 6. (a) Homogeneous correlation ρ = −0.2 (b) Homogeneous correlation ρ =
−0.05

the assets and zero weight in the remaining asset. Thus, assuming no estimation error, there
are five global optima for the five asset problem. With 107 simulated sets of asset returns,
the estimation error is small but nevertheless not zero and hence one of the points represents
the unique global optimum with simulated data. Figure 9 b displays the portfolio kurtosis
for equally weighted portfolios with up to 15 assets for the case when the homogeneous
correlation is −0.05. Even though not distinguishable from the graph, the portfolio kurtosis
for the equally weighted portfolio with 14 assets is slightly lower than the equally weighted
portfolio with 15 assets, for every 14 asset sub-portfolio. Thus, for the 15 asset problem the
global optimum for the kurtosis minimization problem is given by assigning equal weight to
14 of the assets and zero weight to the remaining asset.

The projectedGLDalgorithm is applied to the problemofminimizing portfolio kurtosis for
the experimental setup described above, with five and 15 assets, respectively.We implement a
multistart version of the algorithm, where the iterations (47) are started from points w0 ∈ W
uniformly sampled over the feasible set. In order to generate starting points that are evenly
distributed over the n-simplex defining the feasible set, the method described in Shaw [68]
is used. For each generated path of the projected GLD iterations, the point with the smallest
recorded objective function value is stored. The output from the algorithm w̃ is the point with
the smallest overall recorded objective function value. Finally, the optimal solution is taken
to be

wGLD = argmin{κp(w̃), κp(w
Loc)}, (59)

where wLoc denotes the solution from a local solver started at w̃. The complete multistart
projected GLD algorithm is summarized below. The fixed step size λ is chosen to be 0.01
(based on numerical experimentation) for both the five and 15 asset problems. The tem-
perature parameter β is chosen large enough so that the iterations from the projected GLD
algorithm can jump between different local optima. Based on initial experimentation, the
following formula for the temperature was chosen

β = 2λ(n + 1)2

c2
, (60)
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(a) (b)

Fig. 10 The distribution of the final iterate for the weight of asset 1 in the 15 asset case: the full distribution
(a) and the zoomed in distribution (b)

where n + 1 is the number of assets and c was chosen to be 0.06 for the five asset case and
0.1 for the 15 asset case. For the implementation, the number of paths nsim was 105 and
the number of iterations for each path niter was 104, implying that 109 points in the search
space were visited by the algorithm. Given the multistart implementation, the algorithm is
very easy to parallelize. The algorithm was parallelized and implemented on a multi-core
processor with 24 cores. For the five asset case, the multistart projected GLD algorithm finds
a solution with equal weight in four assets and zero weight in one asset. By running the BB
algorithm on the same problem it was confirmed that the GLD algorithm finds the global
optimum. The runtime for the parallelized algorithm with 24 cores was 2,476 seconds for
the five asset case and 8,322 seconds with 15 assets.

Multistart projected GLD algorithm

Input: λ, β, nsim , niter , M̂2, M̂4.
for i = 1, 2, . . . , nsim do
Generate w0 ∈ R

n+1 uniformly onW;
for k = 0, 1, . . . , niter do
Generate εk+1 ∼ N (0, I);
wk+1 = 
W

(
wk − λ∇w h̄(wk ) + √

2λ/βεk+1
)
;

end
ws
i = argmin{κp(w0), κp(w1), . . . , κp(wniter )};

end
Output: w̃ = argmin{κp(ws

0), κp(w
s
1), . . . , κp(w

s
nsim )};

For the 15 asset case, the output from the GLD algorithm is a portfolio with equal weights
in 14 of the assets and zero weight in one asset. As argued above, this represents a global
optimum for the 15 asset problem. As a comparison, a local solver was started from the
generated starting points w0 for each of the nsim outer simulations of the GLD algorithm.
The built-in interior point solver inMATLABwas used as local solver. For all of the generated
starting points, the output from the local solver is the equally weighted portfolio with non-
zero weights in all of the 15 assets. Thus, the multistart projected GLD algorithm jumps
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(a) (b)

Fig. 11 One of the paths produced by the projected GLD algorithm for the weight of: asset 1 (a) asset 15 (b)

between the local optima and is able to locate the global optimum for the 15 asset problem,
whereas a multistart algorithm which uses a local solver finds a local optimum in all cases.
The distribution of the final iterate from the GLD algorithm for one of the assets is illustrated
in Fig. 10. Figure 10 a displays the full distribution where many of the final iterates are
concentrated around zero, whereas Fig. 10 b shows the distribution zoomed in around the
non-zero weights. The ability of the GLD algorithm to produce iterates that jump between
different local optima is illustrated by the graphs in Fig. 11. In general it is not possible to
verify if the output from the GLD algorithm is a global optimum, but the experiments indicate
that the algorithm is a useful tool for locating the global optimum for problems for which the
number of assets is out of reach for the BB algorithm.

5 Diversification of a typical multi-asset universe–U.S. investor

In this section we apply the introduced novel portfolio diversification framework to an asset
universe which is representative of the constituents of a typical U.S. institutional investor
portfolio. The asset universe is multi-asset in nature and consists of exposures to U.S. and
international equities in developed and emerging markets as well as exposures to property,
corporate bonds across both investment grade and high yield, government bonds in developed
and emerging markets and also inflation protected securities. For the analysis, each of the
12 asset classes is represented by a suitable index which accurately captures the respective
asset class characteristics. The chosen indices are listed in Table 3, which also includes a
short description of each index. The asset universe is divided into three broader categories:
equities including REITS (EQ), higher yielding credit including emergingmarkets debt (HY)
and government and investment grade bonds (BD). The categorisation can be justified by the
correlation structure as well as common practices in the industry. It is likely that the relative
weights of these three categories are in practise decided by strategic decisions, constraints
and risk appetite. It is therefore not relevant or realistic to compare portfolio construction
methodologies that can allocate freely across these categories. In particular, we believe that
empirical studies which allow large overweights in bonds (such as a naïve application of risk
parity) are unlikely to be useful for practitioners when making forward-looking decisions
given the unprecedented bull-run over the last 30 years in bonds and the historically low level
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Fig. 12 Heat map of the approximately block diagonal correlation matrix for the 12 indices as of the start of
the backtesting period in February 2005. The three blocks represent the equity (EQ), high yield (HY) and bond
(BD) portfolios, respectively. Positive and negative correlations are indicated in red and blue, respectively,
whereas the magnitudes of the correlations are indicated by the intensity of the colour

of yields available at this point in time. We therefore chose a hierarchical approach, which
assumes fixed weights across the three categories in line with the median asset allocation of
large U.S. institutional investors (55% in equities, 20% in higher yielding credit and 25% in
bonds). The weights within each category are determined by minimizing portfolio kurtosis
and through various other portfolio construction methodologies for comparison.

Due to the large estimation errors associated with estimates of higher order moments, each
index is assigned a representative kurtosis parameter. The parameter values, given in Table 3,
were determined from a combination of estimation from historical data and consistency with
estimates reported in the literature, see e.g. Xiong and Idzorek [76]. Historical data reveals, in
many cases strong, positive correlations between the indiceswithin the equity, higher yielding
credit and bond sub-portfolios, whereas the correlations between indices belonging to differ-
ent sub-portfolios are comparatively small and time varying. The heat map of the correlation
matrix for the asset universe as of February 2005 in Fig. 12 illustrates the approximate block
diagonal structure. In the heat map, a red colour represents a positive correlation, whereas
a negative correlation is given in blue. The intensity of the colour indicates the magnitude
of the positive and negative correlations. From the heat map it is evident that the intra-block
correlations are strongly positive, whereas the inter-block correlations are much weaker with
both positive and negative values.

The portfolio diversification framework developed in this paper was applied to the multi-
asset universe in an out-of-sample analysis. Historical returns expressed in U.S. dollar terms
for the 12 indices over the period from September 2001 to September 2020, obtained from
Bloomberg and Thomson Reuters DataStream, were used as input to the analysis. We are
considering a realistic realworldmulti-asset allocation problemwith semi-annual rebalancing
of the portfolio. At each rebalancing date the covariance matrix was estimated from the
previous 180 observations of weekly returns using an EWMA estimator with a half-life
of one year. Since the first 180 weeks of the return history were used for estimating the
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covariance matrix for the first rebalancing date in February 2005, there are 32 semi-annual
rebalancing dates over the backtesting period.

In Sect. 2.2 it was shown that when the measure of non-Gaussianity ν is given by excess
kurtosis, portfolio dimensionality is defined as

dZ ,ν(w) = ν(Z)

ν
(
w�r

) , (61)

where r is the return vector, w is the corresponding weight vector and Z represents the
reference asset. For all problem instances encountered over the backtesting period, the min-
imum portfolio excess kurtosis is always positive. Thus, in this case maximizing portfolio
dimensionality is equivalent to minimizing portfolio kurtosis. In the remainder of this sec-
tion we will therefore denote the minimum kurtosis portfolio as the optimised dimensionality
portfolio. As explained in the beginning of this section, the relative weights across the three
sub-portfolioswere held constant for each rebalancing date and hence the followingminimum
kurtosis problem was solved for each sub-portfolio and rebalancing date

min
w∈W

w�M4(w ⊗ w ⊗ w)(
w�M2w

)2 , (62)

where the feasible set is givenbyW = {
w ∈ R

ns+1 | ∑ns
i=0 wi = 1, wi ≥ 0, i = 0, . . . , ns

}
,

and ns +1 is the number of assets in sub-portfolio s. As input to the optimization, the moment
matrix M4 was estimated by simulating 107 realisations of the asset returns whose multi-
variate distribution was modeled by a Gaussian copula and NIG-distributed margins, see
Appendix B. Even though the estimated covariance matrix is an input to the portfolio con-
struction at each rebalancing date, in order to be consistent, also the moment matrixM2 was
estimated from the simulated returns. We chose to model the dependence structure with a
Gaussian copula as it allows practitioners to base the model on readily available model data,
since existing portfolio diversification models are based on estimated covariance matrices.
The model can hence be seen as the simplest possible enhancement to existing portfolio
diversification models, where the only further model input that is needed are the marginals
for the assets. The minimum kurtosis problem was solved for each sub-portfolio and each
rebalancing date over the backtesting period. At each rebalancing date the total portfolio was
then constructed by allocating 55% of the capital to the equity sub-portfolio, 20% to the high
yield sub-portfolio and 25% to the bond sub-portfolio,

w�
OD =

[
0.55w�

EQ, 0.2w�
HY , 0.25w�

BD

]
, (63)

where wOD , wEQ , wHY and wBD denote the weight vectors for the optimised dimension-
ality portfolio and the equity-, high yield- and bond sub-portfolios, respectively. Obviously,
given that the weights across the sub-portfolios are fixed, the total optimised dimensionality
portfolio is likely not optimal for the full 12 asset universe.

As exemplified by the numerical example in Sect. 3.3, the computational time to solve
the six asset problem with the BB algorithm is around 14 hours. Since the minimum kurtosis
problems were solved for all 32 rebalancing dates, instead of solving the six asset problem
with the BB algorithm an alternative strategy was used. The strategy exploits an empirical
observation of the minimum kurtosis problem: in the case of non-negative correlations and
positiveweights that sum to one, there is just one globalminimum, no other localminima, and
the global minimum can always be found by local optimiser. For such problem instances,
extensive empirical runs have failed to generate even a single counter example where the
solution from a local solver is different from the solution returned by the BB algorithm. Since
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the correlation matrices for each sub-portfolio and rebalancing date only contain positive
values, the minimum kurtosis problem instances all have this empirically observed property.
This observation was also verified for the problem instances at hand by solving a reduced
versionof theminimumkurtosis problemwhere oneof the assets from the equity sub-portfolio
was removed, resulting in a five asset problem. In a first step, the reduced minimum kurtosis
problem was solved with a local solver for each sub-portfolio and rebalancing date, using the
same seed for the random number generator when generating the scenarios for calculation
of the moment matrices. In the next step, the same sequence of minimum kurtosis problems
was solved using the BB algorithm and the same seed for the random number generation.
This allowed us to confirm that the local solver found the global optimum for all rebalancing
dates and all sub-portfolios. This is a strong indication that the local solver finds the global
optimum also for the full problem for all problem instances. When solving the minimum
kurtosis problems we therefore used the built-in Matlab interior point solver for the six asset
problem.

In the analysis, the optimised dimensionality portfolio is compared to a portfolio which
is representative of the median U.S. institutional investor, as well as the portfolios obtained
from applying four commonly used portfolio construction methodologies to the multi-asset
universe: risk parity, diversification ratio, minimumvariance and equal weights. The portfolio
construction methodologies are applied to the three sub-portfolios separately, constraining
the weights to be non-negative and summing to one. The portfolio weights for the median
U.S. investor are based on internal estimates from Aberdeen Standard Investments. Natu-
rally, the allocation changes over time but the weights are a good representation of the typical
U.S. institutional investor portfolio. As for the optimised dimensionality portfolio, the total
portfolio weights for each methodology are finally determined by assigning 55% of the cap-
ital to the equity sub-portfolio, 20% to the high yield sub-portfolio and 25% to the bond
sub-portfolio. In Bai et al. [8] it is shown that the risk parity portfolio subject to non-negative
weights summing to one can be found by solving a convex optimization problem. The risk
parity weights for the sub-portfolios are thus determined as the solution to a convex opti-
mization problem which uses the estimated covariance matrix at each rebalancing date as
input. As shown in Choueifaty et al. [22], also the problem of maximising the diversification
ratio

wT σ√
w�M2w

, (64)

where σ is the vector of asset volatilities, when theweights are constrained to be non-negative
and summing to one, is a convex optimisation problem. Since the problem of minimizing
portfolio variance w�M2w for a fully invested long-only portfolio is a quadratic program,
the portfolios used for comparison with the optimised dimensionality portfolio were either
determined by a convex optimisation problem using the estimated covariance matrix as
input, or were using fixed weights for all rebalancing dates. The fixed weights of the U.S.
institutional portfolio and the equally weighted portfolio are displayed in Table 4.

We now analyse the portfolios obtained from applying the minimum kurtosis as well as
the described alternative methodologies to the multi-asset universe for the described out-
of-sample time series study. We have chosen a realistic setup with semi-annual rebalancing
and fixed weights between the sub-portfolios, reflecting a portfolio allocation process of a
typical large U.S. institutional investor. The average weights over time for the six portfolio
construction methodologies are given in Table 4 and illustrated in Fig. 13. From the table,
one observes that the risk parity portfolio has the most evenly distributed weights out of
the dynamic portfolios, whereas the minimum variance methodology produces the most
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Table 4 Average weights for the six portfolios obtained from the out-of-sample analysis over the backtesting
period from 16 February 2005 to 16 September 2020.

Asset 1 [%] 2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%] 8 [%] 9 [%] 10 [%] 11 [%] 12 [%]

σmean 20.7 15.2 17.4 17.8 20.4 21.1 3.3 6.5 6.8 3.4 9.0 4.1

wOD 15.1 2.8 7.3 12.1 7.8 9.9 11.8 6.7 1.5 18.0 7.0 0.0

w I nst 16.5 22.0 5.5 5.5 2.8 2.8 5.0 10.0 5.0 15.0 5.0 5.0

wRP 8.5 10.6 9.7 10.5 8.0 7.7 9.9 5.6 4.5 10.8 4.3 9.9

wDR 15.7 2.7 6.6 12.1 7.9 9.9 12.2 6.8 1.0 1.5 7.1 16.4

wMV 1.2 33.3 5.6 15.0 0.0 0.0 17.4 2.6 0.0 19.3 0.0 5.7

wEW 9.2 9.2 9.2 9.2 9.2 9.2 6.7 6.7 6.7 8.3 8.3 8.3

The average weight vectors for the optimised dimensionality, institutional, risk parity, diversification ratio,
minimum variance and equally weighted portfolios are denoted wOD , w I nst , wRP , wDR , wMV and wEW ,
respectively. The table also includes, for each asset, the average of the annualized volatilities estimated at each
rebalancing date. The vector of averaged volatilities is denoted σmean in the table

1 2 3 4 5 6 7 8 9 10 11 12
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Fig. 13 Average weights for the six portfolios obtained from the out-of-sample analysis over the backtesting
period from 16 February 2005 to 16 September 2020

concentrated portfolio. The average weights of the optimised dimensionality portfolio and
the diversification ratio portfolio are very similar for the equity and high yield sub-portfolios,
whereas the weights differ substantially for the bond portfolio. The weights for these two
portfolios are more unevenly distributed than for the risk parity but much less concentrated
than the minimum variance portfolio.

Out of the dynamic portfolios, the risk parity has the most stable weights over time,
whereas the minimum variance portfolio has the highest turnover. The optimised dimension-
ality portfolio and the diversification ratio portfolio lie in between the risk parity andminimum
variance portfolios in terms of weight stability over time, with the optimised dimensionality
portfolio showing the lowest turnover of the two.

The realized performances of the six portfolios over the backtesting period from 16 Febru-
ary 2005 to 16 September 2020 are shown in Fig. 14. The sample period incorporates the
periods of the Global Financial Crisis of 2007–2008, the subsequent European debt crisis
and the recent sharp decline in asset prices caused by the economic impact of the Corona
virus. From the graph it can be observed that the performances of the six portfolios are
very similar. Since we are considering a realistic multi-asset portfolio allocation example,
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Fig. 14 Realized performance of the six portfolios obtained from the out-of-sample analysis over the backtest-
ing period from 16 February 2005 to 16 September 2020. The grey shaded areas represent the time intervals
for the bear market scenarios defined in Table 5

where the weights across sub-portfolios are held constant, we are not expecting dramatically
different behaviours across portfolios which is confirmed in the graph. In addition to the
portfolio performances, the graph also displays the time intervals for seven historical bear
market scenarios as indicated by the grey shaded areas. The definitions of the bear market
scenarios are given in Table 5 together with a description of each scenario. As can be seen
from the graph in Fig. 14, the most dramatic drop in portfolio value for all of the portfolios
was caused by the recent market decline due to the Corona virus, which caused sharp falls
in asset prices and liquidity to evaporate.

In this paper we have argued strongly that measures of diversification should be related
to the tail properties of portfolio returns and thus introduced the notion of dimensionality.
In practise, tail risk is perceived different across investor types depending on institutional
mandate, regulatory restrictions or simply risk appetite. We therefore compare portfolio
construction techniques not by Sharpe ratio as is commonly done, but across a variety of
commonly used measures of tail risk; statistical measures, such as skewness and kurtosis
in addition to measures used more in practise, such as maximum drawdown and Expected
Shortfall at different confidence levels scaled by the volatility. Instead of using Expected
Shortfall directly as a tail risk measure, we consider Expected Shortfall divided by the port-
folio volatility

ESα(w)√
w�M2w

, (65)

for three different confidence levels α. The ratio in (65) satisfies our requirement of being a
leverage invariant tail risk measure, since Expected Shortfall and portfolio volatility are both
homogeneous functions of degree one. For a chosen time interval, the maximum drawdown
(MDD) of a portfolio is defined as the maximum observed loss from a peak to a through,
before a new peak is attained. The drawdown (DD) of a portfolio with value W (t) at time
t ≥ 0 is defined as

DD(t) = W (t) − Wpeak(t)

Wpeak(t)
, where Wpeak(t) = max

τ∈[0,t] W (τ ). (66)
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Table 5 Definitions and descriptions of the bear market scenarios

Scenario Start date End date Description

EM selloff 2006-05-01 2006-06-08 Emerging market crisis with sharp losses in
equity and FX markets

Bank meltdown 2008-09-12 2008-10-15 Great financial crisis of 2008 triggered by a
house price crisis in the U.S.

Euro crisis 2011-07-22 2011-08-23 Sovereign debt crisis in the Eurozone with
fears of defaults and break-up of the currency
union

QE jitters 2013-05-22 2013-06-24 Thementioning of an eventual tapering of QE
in the U.S. by Fed president Bernanke causes
markets to sell off aggressively

China devaluation 2015-08-10 2015-08-25 Surprise devaluation of the Chinese Renminbi
causes steep market falls and a commodity
price collapse

U.S. arrest 2015-12-31 2016-02-11 Expectations of rate hikes in the U.S. are
rapidly scaled back as the macro data dete-
riorates

Corona virus 2020-02-19 2020-03-25 Covid-19 pandemic causesmarkets to fall and
liquidity to evaporate

The MDD over the time interval [0, T ] is then formally defined as

MDD[0,T ] = min
t∈[0,T ] DD(t). (67)

The realized tail risk measures, together with the realized mean return, volatility and
Sharpe ratio, of the six portfolios over the backtesting period are given in Table 6. For each
measure, the value of the best performing portfolio is displayed in bold font. Even though the
portfolio weights of most of the dynamic construction methodologies differ substantially, the
realized volatility of the aggregated portfolios are of approximately the same magnitude for
all of the six portfolios, which can be attributed to the fixed weights across the sub-portfolios.
Since the realized mean return of the portfolios are of the same magnitude, also the Sharpe
ratio is very similar across methodologies. As we have argued, the diversification proper-
ties of the portfolio construction methodologies should be evaluated through realisations of
commonly used tail risk measures over the sample period.

In a realistic setting, where rebalancing cannot happen very often (we assume semi-annual
rebalancing, as is often the practise) and using fixedweights for the different sub-portfolios, it
is unlikely to observe dramatically different behaviour across portfolios and it is also not to be
expected that one technique would dominate others on all measures of tail risk. We therefore
rank portfolio construction methodologies for each measure of tail risk as demonstrated in
Table 7. From the table we conclude that our proposed portfolio construction methodology
through dimensionality achieved the best tail properties on average. The table also reveals that
the optimised dimensionality portfolio has the fourth highest out-of-sample kurtosis. This can
be explained by two main factors. First, the optimised dimensionality portfolio is found by
minimizing portfolio kurtosis, given the chosen kurtosis parameters for the individual assets
in the portfolio. The realized values of kurtosis for the individual assets over the backtesting
period were in many cases far from the chosen parameters. Second, even if the portfolio
kurtosis for the optimised dimensionality portfolio is lower for the sub-portfolios, the fact
thatwe use fixedweights between the sub-portfolios can create a sub-optimal overall portfolio
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Table 6 Out-of-sample realized mean return, volatility, Sharpe ratio and six measures of tail risk for the six
portfolios over the backtesting period from 16 February 2005 to 16 September 2020.

Optimised Risk Diversification Minimum Equally U.S.
dimensionality parity ratio variance weighted institutional

Mean return 7.00% 6.95% 6.82% 6.92% 7.22% 7.33%

Volatility 10.07% 10.02% 10.15% 9.81% 10.20% 9.70%

Cash rate 1.70% 1.70% 1.70% 1.70% 1.70% 1.70%

Sharpe ratio 0.53 0.52 0.50 0.53 0.54 0.58

Skewness −0.87 −0.85 −0.86 −0.60 −0.90 −0.83

Kurtosis 17.14 16.95 16.79 20.47 17.06 17.41

ES0.90/σ 1.78 1.79 1.78 1.78 1.78 1.79

ES0.95/σ 2.43 2.45 2.44 2.47 2.44 2.45

ES0.99/σ 4.69 4.75 4.70 4.75 4.75 4.80

Maximum drawdown −38.96% −38.80% −39.53% −32.62% −40.01% −39.74%

The realized value of the best performing portfolio for each measure is shown in bold font. Even though it
doesn’t show in the table due to rounding, the optimised dimensionality portfolio obtained the lowest realized
value of ES0.90/σ

Table 7 Tail risk rankings of the six portfolios for each of the six tail risk measures

Optimised Risk Diversification Minimum Equally U.S.
dimensionality parity ratio variance weighted institutional

Skewness 2 4 3 6 1 5

Kurtosis 3 5 6 1 4 2

ES0.90/σ 6 2 4 5 3 1

ES0.95/σ 6 2 5 1 4 3

ES0.99/σ 6 2 5 4 3 1

Maximum drawdown 4 5 3 6 1 2

Average ranking 4.50 3.33 4.33 3.83 2.67 2.33

The portfolios are ranked from 1 to 6 for each tail risk measure, where 6 corresponds to the best value and 1
to the worst value. The best value for each tail risk measure and for the aggregate is shown in bold font

in terms of kurtosis. The small difference in average tail risk ranking between the optimised
dimensionality and the diversification ratio portfolios can be attributed to the fact that the two
methodologies produce very similar weights for the equity- and high yield sub-portfolios.
If more precise estimates of tail properties are known and used as input, the results of the
optimised dimensionality portfolio can be refined.

In Table 8 we complement the analysis by investigating the performance of the portfolio
construction methodologies over the bear market scenarios defined in Table 5. As can be
observed in the table, the minimum variance portfolio realized losses of the smallest mag-
nitude for all but one of the bear market scenarios. This is an indication that with perfect
foresight, one should concentrate the allocation to the assets with the lowest volatility during
periods of extreme market stress. However, in practise it is of course not possible to perfectly
forecast the timing of these periods. As demonstrated through the realized tail risk measures,
the best overall tail risk properties over the full backtesting period, which includes several
periods of extreme market stress, is obtained via the optimised dimensionality methodology.
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Table 8 Returns for the six portfolios over the bear market scenarios with start and end dates as defined in
Table 5

%Scenario %Optimised %Risk %Diversification %Minimum %Equally %U.S.
dimensionality parity ratio variance weighted institutional

EM selloff −4.45 −4.24 −4.51 −2.61 −4.39 −4.56

Bank meltdown −19.83 −19.61 −20.36 −15.78 −20.61 −20.59

Euro crisis −8.42 −7.89 −8.58 −6.42 −8.12 −7.76

QE jitters −6.77 −6.62 −7.08 −5.37 −6.82 −7.07

China devaluation −4.82 −4.86 −4.94 −3.97 −5.00 −5.23

U.S. arrest −6.77 −6.49 −6.88 −4.52 −6.77 −5.92

Corona virus −18.33 −17.10 −18.24 −16.89 −17.68 −16.36

The return of the best performing portfolio in each scenario is shown in bold font

(a) (b)

Fig. 15 a Dimensionality of the six aggregated 55-20-25 portfolios over the backtesting period from 16
February 2005 to 16 September 2020. b Dimensionality of the six equity portfolios over the same period

The dimensionalities of the aggregated portfolio, as well as of the three sub-portfolios,
were measured for all of the portfolio construction methodologies for each rebalancing
date over the backtesting period. The excess kurtosis ν(Z) of the reference asset in the
portfolio dimensionality expression (61) was chosen to be representative of the respective
sub-portfolio. Hence, the excess kurtosis for the reference asset when measuring portfolio
dimensionality for the equity-, high yield- and bond portfolios were chosen to be 3, 9, and
1, respectively. For the aggregated portfolio we chose an excess kurtosis of 3 for the ref-
erence asset, allowing us to interpret the dimensionalities of the aggregated portfolios as
the equivalent number of independent equity exposures. In Figs. 15 and 16, the measured
dimensionalities of the aggregated, as well as the three sub-portfolios, are displayed for all
six portfolio construction methodologies. From the graphs in Figs. 15b and 16a, one can
observe that, for the equity- and high yield sub-portfolios, the dimensionalities of the opti-
mised dimensionality and the diversification ratio portfolios are very close, and higher than
for the other portfolios, for all dates over the backtesting period. For the bond sub-portfolio,
the optimised dimensionality portfolio dominates the other portfolios over the full sample
period in terms of measured dimensionality.

Since the weights across sub-portfolios are fixed, the dimensionality obtained with the
optimised dimensionality methodology is not guaranteed to be optimal for the aggregate
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(a) (b)

Fig. 16 a Dimensionality of the six high yield portfolios over the backtesting period from 16 February 2005
to 16 September 2020. b Dimensionality of the six bond portfolios over the same period

portfolio. This can be observed in Fig. 15a, where the dimensionality of the diversification
ratio portfolio dominates all other portfolios for some dates at the beginning of the backtest-
ing period. The graph in Fig. 15a reveals that the dimensionalities of five of the aggregate
portfolios are very close during bear market periods when correlations between asset classes
increase, indicating that opportunities for diversification decrease in such circumstances.

To conclude, we have, using a realistic setup with fixed weights across sub-portfolios and
semi-annual rebalancing, demonstrated the usefulness of our proposed methodology based
on dimensionality. Compared to four commonly used portfolio construction methodologies
and the U.S. institutional median portfolio, the optimised dimensionality portfolio showed
the best overall tail risk properties over the sample period. Finally we observe that an easily
interpretable statistic, such as portfolio dimensionality, has the additional advantage of being
readily explainable and being a relevant statistic in itself. As a final remark, we mention that
it can be very beneficial to extend the investment universe if dimensionality optimization or
tail risk mitigation is the objective. The investment universe could be extended with strategies
that are not driven by traditional risk premia, but utilise structural or behavioral effects in the
markets. Examples of such strategies are momentum and low beta strategies which show low
correlations to traditional asset classes, see e.g. Jegadeesh and Titman [45], Asness et al. [5],
and Frazzini and Pedersen [34].

6 Conclusions

In this paper we have introduced a portfolio diversification framework based on a novel mea-
sure called portfolio dimensionality. This measure is directly related to the tail risk of the
portfolio and it is leverage invariant, which means that it can typically be expressed as the
ratio of convex functions. In order to solve the global optimization problem that arises when
minimizing portfolio kurtosis, two complementary global optimization algorithms have been
formulated, one deterministic BB algorithm and one stochastic GLD algorithm. Solving the
problem with the BB algorithm, one can guarantee that the global optimum has been found.
However, it suffers from the curse of dimensionality which limits the size of the problem
when theBBalgorithm is used for the optimization.A complementary stochastic optimization
algorithm for the global optimization problem has therefore been formulated. As illustrated
in Sect. 4.3, the multistart projected GLD algorithm can find the global optimum for cases
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when a multistart local solver algorithm does not. The projected GLD algorithm therefore
complements the BB algorithm and allows for solving problems in higher dimensions, albeit
without the guarantee that the global optimum will be found. An alternative solution method
could be to run the BB algorithm for a fixed number of iterations when solving larger prob-
lems. Empirically we observed that the vast majority of the solution time for the BB algorithm
is spent on proving optimality for a point found early on. This is a heuristic method that may
be used instead of the projected GLD algorithm when solving larger problems. Furthermore,
we observed empirically that for problem instances where all correlations are positive, a local
solver finds the global optimum as verified by the BB algorithm.

Our introduced framework extends the diversification frameworks in the literature that
are based on only the covariance matrix. Through numerical experiments we have illustrated
that our framework possess desirable properties as introduced in the portfolio diversification
literature. This can be contrasted to commonly used diversification frameworks such as risk
parity and the most diversified portfolio. In order to avoid the problem of obtaining robust
estimates of asymmetric tail dependencies between asset returns (see [33]), we have in this
paper chosen to model the dependence structure with a Gaussian copula. It is possible to
extend the framework to also taking dynamic volatilities and correlations aswell as non-linear
dependence into account. The model can be extended by using a dynamic GARCH model
with skewed and leptokurtic innovations for the marginal distributions, as well as a dynamic
conditional correlation model for the copula correlations, see Engle [30]. Furthermore, in
order to capture the asymmetric tail dependence observed in the financial markets, a skewed
t copula can be used as in Christoffersen et al. [23]. Alternatively, a non-linear dependence
structure can be modelled with regime shifts as in Ang and Bekaert [3].
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A Useful notation for higher order portfolio moments

Given the weight vector w ∈ R
n×1 of relative portfolio weights and the random vector

r ∈ R
n×1 containing the returns of the assets in the portfolio, the third and fourth central

moments of the portfolio return rp are given by

μ3 = E((rp − μp)
3) = E((w�(r − μ))3) = w�M3(w ⊗ w), and (68)

μ4 = E((rp − μp)
4) = E((w�(r − μ))4) = w�M4(w ⊗ w ⊗ w), (69)

whereM3 andM4 denote the third and fourth co-moment matrices, respectively, ⊗ denotes
theKronecker product,μp = E(rp) andμ = E(r). In reality, the third and fourth co-moments
of the asset returns are three and four dimensional tensors with dimensions n × n × n and
n×n×n×n, respectively. In order to make these tensors mathematically tractable we follow
Athayde and Flores [6] and Jondeau and Rockinger [46], among others, and convert these
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tensors into two-dimensional matrices. The n × n2 third co-moment matrix M3 in (68) is
defined as

M3 = E

(
(r − μ)(r − μ)� ⊗ (r − μ)�

)
= {si jk}, (70)

where

si jk = E
(
(ri − μi )(r j − μ j )(rk − μk)

)
, i, j, k = 1, . . . , n. (71)

The third co-moment matrix can be written in the following block matrix form

M3 = [
S1 jk S2 jk . . . Snjk

]
, (72)

where the n × n matrices Si jk are given by

Si jk =

⎡
⎢⎢⎢⎣
si11 si12 . . . si1n
si21 si22 . . . si2n
...

...
...

...

sin1 sin2 . . . sinn

⎤
⎥⎥⎥⎦ , i = 1, . . . n. (73)

Similarly, the n × n3 fourth co-moment matrix M4 in (69) is defined as

M4 = E

(
(r − μ)(r − μ)� ⊗ (r − μ)� ⊗ (r − μ)�

)
= {ki jkl},

where

ki jkl = E
(
(ri − μi )(r j − μ j )(rk − μk)(rl − μl)

)
, i, j, k, l = 1, . . . , n, (74)

and the block matrix form is given by

M4 = [K11kl K12kl . . . K1nkl | K21kl . . . K2nkl | . . . | Kn1kl . . . Knnkl ] , (75)

where the n × n matrices Ki jkl are given by

Ki jkl =

⎡
⎢⎢⎢⎣
ki j11 ki j12 . . . ki j1n
ki j21 ki j22 . . . ki j2n

...
...

...
...

ki jn1 ki jn2 . . . ki jnn

⎤
⎥⎥⎥⎦ , i, j = 1, . . . n. (76)

The dimension of each block in (75) is given by

[Ki1kl Ki2kl . . . Kinkl ] ∈ R
n×n2 , i = 1, . . . , n, (77)

and hence M4 ∈ R
n×n3 . As is apparent from Eqs. (71) and (74), the matrices M3 and

M4 contain certain symmetries, which means that not all elements need to be explicitly
computed. The number of unique elements in M3 is n(n + 1)(n + 2)/6 and M4 contains
n(n + 1)(n + 2)(n + 3)/24 unique elements (see e.g. [46]). The number of unique elements
in M3 and M4, respectively, for different portfolio sizes are summarized in Table 9. As is
apparent from the table the number of unique elements grows dramatically with portfolio
size. This leads to large estimation errors when attempting to estimate the co-moments from
historical return data. In the literature this curse of dimensionality is typically handled by
assuming that the asset returns are generated by a factor model through which the number
of parameters to be estimated is considerably reduced. Examples from the literature are
Martinelli and Ziemann [56], who use a single factor model, and Boudt et al. [15], who use
a multi-factor model.
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Table 9 Number of unique elements in M3 andM4 for different portfolio sizes

Portfolio size 2 3 4 10 50 100

Number of unique elements inM3 4 10 20 220 22,100 171,700

Number of unique elements inM4 5 15 35 715 292,825 4,421,275

The third and fourth central moments of the portfolio return are homogeneous functions of
degree three and four, respectively. Their gradients can be found by applying Euler’s theorem
for positively homogeneous functions

w�∇wμ3 = 3μ3 = w�3M3(w ⊗ w), and (78)

w�∇wμ4 = 4μ4 = w�4M4(w ⊗ w ⊗ w), (79)

and hence

∇wμ3 = 3M3(w ⊗ w), and (80)

∇wμ4 = 4M4(w ⊗ w ⊗ w), (81)

where each component of the gradients are homogeneous functions of degree two and three,
respectively. Letting fi denote the i th component of ∇wμ3 and applying Euler’s theorem for
homogeneous functions yields

∇w fiw
� = 2 fi . (82)

Letting J denote the Jacobian, the Hessian of μ3 is given by

∇2
wμ3 = (J (∇wμ3))

� =
[

∂∇wμ3

∂w1

∂∇wμ3

∂w2
. . .

∂∇wμ3

∂wn

]�
= [∇w f1 ∇w f2 . . . ∇w fn] .

(83)

Since the Hessian is symmetric one obtains

∇2
wμ3w =

⎡
⎢⎢⎢⎣

(∇w f1)�
(∇w f2)�

...

(∇w fn)�

⎤
⎥⎥⎥⎦w = 2

⎡
⎢⎢⎢⎣

f1
f2
...

fn

⎤
⎥⎥⎥⎦ = 2∇wμ3, (84)

and thus

∇2
wμ3 = 6M3(w ⊗ In), (85)

where In denotes the n × n identity matrix. Similarly, the Hessian of μ4 is given by

∇2
wμ4 = 12M4(w ⊗ w ⊗ In). (86)

B Generating the return distribution

In this section we describe ameta-Gaussian distribution (see [57]) defined as the combination
of the Gaussian copula and arbitrary distributions for the margins. The meta-Gaussian distri-
bution is in this paper used to generate sample returns from a multivariate distribution with a
desired linear dependence structure and marginal distributions with arbitrary skewness and
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kurtosis parameters. The Normal Inverse Gaussian (NIG) distribution is used for generating
marginal distributions with possibly different skewness and kurtosis parameters.

The NIG distribution

The NIG distribution is a special case of the Generalized Hyperbolic distribution introduced
by Barndorff–Nielsen [11]. It was introduced by Barndorff–Nielsen [12] and is commonly
used in financial applications to model skewed and leptokurtic distributions. The univariate
probability density function (PDF) of the NIG distribution can be expressed as

fX (x) =
δα exp

(
δ
√

α2 − β2
)
K1

(
α
√

δ2 + (x − μ)2
)

π
√

δ2 + (x − μ)2
, (87)

where δ > 0, 0 ≤ |β| < α, and K1 is the modified Bessel function of the third kind of
order 1, see Abramowitz and Stegun [1]. The parameters μ and δ determine the location
and scale, respectively, while α and β control the shape of the density. In particular, β = 0
corresponds to a symmetric distribution. The mean, variance, skewness and kurtosis of the
NIG distribution are given by

E(X) = μ + δβ√
α2 − β2

, Var(X) = δα2

(α2 − β2)3/2
, γ = 3

β

α

1

δ1/2(α2 − β2)1/4
, and

κ = 3 + 3

(
1 + 4

(
β

α

)2
)

1

δ(α2 − β2)1/2
. (88)

From the condition0 ≤ |β| < α, it follows that the skewness-kurtosis boundγ 2 < 3(κ−3)/5,
must hold for the NIG distribution.

The Gaussian copula

Sklar’s Theorem [71] shows that all multivariate cumulative distribution functions (CDFs)
contain copulas and that copulas may be used together with univariate CDFs in order to
construct multivariate CDFs. A formulation of Sklar’s theorem, taken from McNeil et al.
[57], is given below.

Theorem B.1 (Sklar 1959) Let F be a joint CDF with marginal CDFs F1, . . . , Fd. Then there
exists a copula C : [0, 1]d → [0, 1] such that, for all x1, . . . , xd ∈ (−∞,∞),

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (89)

If the margins are continuous, then C is unique. Conversely, if C is a copula and F1, . . . , Fd
are univariate CDFs, then the function F defined in (89) is a joint CDF with margins
F1, . . . , Fd.

Thus, modelling the multivariate return distribution with copulas allows for separating the
modelling of the dependence structure and the marginal distributions. In particular, it allows
for modelling of the marginal asset return distributions with differing skewness and kurtosis.
In this paper, the Gaussian copula is used for modelling of the dependence structure between
the asset returns. Let ΦR denote the joint CDF of the d-dimensional normally distributed
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X ∼ Nd(0,R), where R ∈ R
d×d denotes the correlation matrix. The Gaussian copula is

then given by

CGa
R (u1, . . . , ud) = ΦR

(
Φ−1(u1), . . . , Φ

−1(ud)
)
, (90)

were Φ denotes the standard univariate Gaussian CDF.

Adjusting the input correlation matrix

When generating simulated returns from the meta-Gaussian distribution, one needs to take
into account that the realized correlation matrix of the generated returns depends on the
copula as well as the marginal return distributions. From Hoeffding’s covariance identity
[40], the covariance between two random variables X and Y can be expressed as

Cov(X , Y ) =
∞∫

−∞

∞∫
−∞

(
FX ,Y (x, y) − FX (x)FY (y)

)
dxdy, (91)

where FX ,Y (·, ·) denotes the joint CDF and FX (·), FY (·) denote the two marginal CDFs.
Using Sklar’s theorem, Eq. (91) can be expressed as

Cov(X , Y ) =
∞∫

−∞

∞∫
−∞

(C(FX (x), FY (y)) − FX (x)FY (y)) dxdy, (92)

where C for the meta-Gaussian distribution is given by the Gaussian copula. Let CGa
ρin

denote
the two-dimensional Gaussian copula with linear correlation parameter ρin. The correlation
between the two variables X and Y as a function of the correlation parameter ρin is then given
by

ρout(ρin) =

∞∫
−∞

∞∫
−∞

(
CGa

ρin
(FX (x), FY (y)) − FX (x)FY (y)

)
dxdy

√
Var(X)Var(Y)

. (93)

For the generation of samples with the desired realized linear correlations between returns,
the input correlation matrix for the Gaussian copula is used by inverting (93). Its entries are
determined by numerical integration as, in general, no analytic solution for the inverse exists.

Generating returns from the meta-Gaussian distribution

The procedure for generating returns from the meta-Gaussian distribution is given below.

(1) Given the marginal distributions and the Gaussian copula, find the input correlation
matrix Rin by numerical inversion of Eq. (93).

(2) Generate Z ∈ Nd (0,Rin).
(3) Calculate U = [Φ(Z1), . . . , Φ(Zd)]�. The CDF of the random vector U is given by

CGa
Rin

.

(4) Use quantile transformation to obtain X =
[
F−1
1 (U1), . . . , F

−1
d (Ud)

]�
by numerical

inversion of the marginal CDFs. The random vector X has marginal CDFs F1, . . . , Fd
and multivariate CDF CGa

Rin
(F1(x1), . . . , Fd(xd)).
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