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Abstract
In this paper, we establish a connection between the local maximizers (global maximizers)
of a Motzkin-Straus quadratic program and a specific type of regular multipartite cliques.
Our work extends a remarkable connection between the maximum cliques and the global
maximizers of theMotzkin-Straus quadratic program. This connection and its extensions can
be successfully employed in optimization to provide heuristics for the maximal cliques in
graphs. We provide two counterexamples to the results from previous work about the global
and local maximizers of the Motzkin-Straus quadratic program. We then amend the previous
theorems by introducing a new structure. We also answer two questions raised by Pelillo and
Jagota about the maxima of the Motzkin-Straus quadratic program.
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1 Introduction

A simple undirected graph G consists of a vertex set V (G) = {1, 2, 3, . . . , n} and an edge
set E(G) ⊆ (V (G)

2

)
. In this paper, we use [n] to represent the set {1, 2, 3, . . . , n}. An edge

{a1, a2} in G will be simply denoted by a1a2. Throughout the paper, we assume that G =
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(V , E) contains no isolated vertices. For any non-empty set S ⊆ [n], we let xS denote the
characteristic vector of S (defined as an n-dimensional column vector satisfying x Si = 1/|S|
whenever i ∈ S and x Si = 0 otherwise, where x Si stands for the i th component of xS and
|S| stands for the cardinality of S). A subset of vertices C ⊆ V (G) is called a clique of a
graph G if every pair of vertices in C is adjacent in G. A clique is said to be maximum if it
has maximum cardinality. The order of a maximum clique in a graph G is called the clique
number of G, denoted by ω(G). A clique C is said to be maximal if it is not contained in
any strictly larger clique in G, that is, if there does not exist a clique D such that C ⊂ D. A
maximal clique C is said to be strictly maximal if there do not exist vertices i ∈ C and j /∈ C
such that C ∪{ j}\{i} is a clique, or equivalently, if, for all j ∈ V \C, j is adjacent to at most
|C |−2 vertices fromC . For a subsetC ⊆ V , we use G[C] to represent the subgraph induced
by the vertex setC . In this paper, we consider the classicalMaximumClique Problem (MCP).
The MCP asks to find a clique C ⊆ V (G) such that |C | is maximum.

Given a graph G, the Motzkin-Straus formulation of the MCP is a quadratic program
(QP) formed from the adjacency matrix of the graph G over the standard simplex. For a
graph G = ([n], E(G)) and a vector x = (x1, . . . , xn)T ∈ Rn , define the polynomial form
L(G, x) : Rn → R as

L(G, x) := 1

2
xTAx,

where A = (ai j )i, j∈[n] is the adjacency matrix for G defined by

ai j =
{

1, i j ∈ E(G),

0, i j /∈ E(G),
∀i, j ∈ [n].

Let Δn := {x = (x1, x2, . . . , xn)T : ∑n
i=1 xi = 1, xi ≥ 0 for i ∈ [n]} be the n-

dimensional standard simplex. The Motzkin-Straus formulation of the MCP is a quadratic
program (QP) over the standard simplex as follows.

maximize L(G, x),
subject to x ∈ Δn .

(1)

A vector x∗ ∈ Δn is said to be a global maximizer of (1), if f (x∗) ≥ f (x) for all x ∈ Δn

and f (x∗) is said to be a global maximum value of (1). A vector x∗ ∈ Δn is said to be a local
maximizer of (1), if there exists an ε > 0 such that f (x∗) ≥ f (x) for all x ∈ Δn satisfying
||x − x∗|| < ε and f (x∗) is said to be a local maximum value of (1). A vector x∗ ∈ Δn is
said to be a strict local maximizer of (1), if there exists an ε > 0 such that f (x∗) > f (x)
for all x ∈ Δn satisfying ||x− x∗|| < ε and f (x∗) is said to be a strict local maximum value
of (1). In particular, the global maximum value of (1), denoted by λ(G), is often called the
Lagrangian1 of G in extremal graph theory.

It is well-known that the Lagrangian has applications in both combinatorics and opti-
mization. Motzkin and Straus’ result says that the Lagrangian of a graph corresponds to its
clique number (the precise statement is given in Theorem 1). This result provides a solution
to the optimization problem for a class of homogeneous quadratic bilinear functions over
the standard simplex of a Euclidean space. The Motzkin-Straus result and its extensions
were successfully employed in studying the MCP [3–5, 7]. It has also been generalized to

1 While the Lagrangian is typically used as a function, in extremal graph theory, the Lagrangian for a graph
is the maximum value of a polynomial function over the standard simplex. This definition was first used by
Motzkin and Straus in the classical paper: Maxima for graphs and a new proof of a theorem of Turán.
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vertex-weighted graphs [7] and edge-weighted graphs with applications in computer vision
and pattern recognition, especially in graph matching and related problems [3–5, 7, 13–17,
19, 23].

In this paper, we explore the relationship between the local (global) maximizers and the
maximal (maximum) cliques of graphs. The contributions of this work are mainly in three
aspects.

First, we study the connection between the global maximizers of the Motzkin-Straus QP
and the MCP. In [12], Motzkin and Straus established a remarkable connection between the
clique number and the Lagrangian of a graph. In [18], Pelillo and Jagota further studied the
connection between the local maximizers of the Motzkin-Straus QP and the maximal cliques
in the graph. Pardalos and Phillips [14] and Pelillo and Jagota [18] both showed that not all
the global maximizers of the Motzkin-Straus QP correspond to maximum cliques. In [18],
Pelillo and Jagota found that if a global maximizer is a characteristic vector of a subset S of
vertices, then S is a maximum clique ([18], Proposition 2). However, in our paper we find a
counterexample that proves that this claim does not always hold. Instead, we prove that if a
characteristic vector of a subset C is a global maximizer of the Motzkin-Straus QP, then C
is a Turán graph with the partition that all parts have the same cardinality.

Secondly, we consider the local maximizers of the Motzkin-Straus QP and the maximal
cliques in the graph. In [18], Pelillo and Jagota studied the correspondence between strictly
maximal cliques and strict local maximizers of the Motzkin-Straus QP. They showed that
C is a strictly maximal clique of G if and only if xC is a strict local maximizer of the
Motzkin-Straus QP. They concluded their paper by asking whether the “strictly" condition
can be removed.Wefind a counterexample in Sect. 2(see Example 2) and this counterexample
shows that the “strictly” condition cannot be removed. We also show that a result from [7],
which states that “if C is a maximal clique in G, then its characteristic vector is a local
maximizer of the Motzkin-Straus QP" ([7], Corollary 2), is not correct. Because Corollary 2
in [7] is not correct, we amend it using several new concepts including the strongly maximal
clique. We prove that the characteristic vector of a subset M is a local maximizer of the
Motzkin-Straus QP if and only if M is a regular multipartite clique of G satisfying specific
conditions (see Theorem 5 in Sect. 2).

We also answer another question raised by [18]. In Corollary 8 of their paper, the authors
provided a powerful condition under which every convex combination of the characteristic
vectors of the maximum cliques is a global maximizer of the Motzkin-Straus QP. Then, they
asked if the result also holds for maximal cliques and local maximizers. We show that these
broader results hold for strongly maximal cliques, that is, in Theorem 6, we find that every
convex combination of the characteristic vectors of the strongly maximal cliques is a local
maximizer of the Motzkin-Straus QP.

The rest of the paper is organized as follows: In Sect. 2, we introduce notations and
definitions, give two counterexamples that show that Proposition 2 in [18] and Corollary 2
in [7] do not always hold, and state our main results, Theorems 3, 5 and 6. We prove the
theorems in Sect. 3. In Sect. 4, we provide final remarks about our results.

2 Preliminary andMain Results

In [12], Motzkin and Straus established a remarkable connection between the clique number
and the Lagrangian of a graph.
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Theorem 1 (Motzkin and Straus [12], Theorem 1) If G is a graph with clique number ω

then λ(G) = 1
2

(
1 − 1

ω

)
.

UsingTheorem1,Motzkin andStraus gave a newproof of the following celebratedTurán’s
theorem [25].

Theorem 2 ([25]) A graph with n vertices which contains no complete subgraph of order k
has number of edges no more than

e(n, k) = m2
(
k − 1

2

)
+ m(k − 2)r +

(
r

2

)

where n = (k−1)m+r , 0 ≤ r < k−1. This maximum is attained only for a graph in which
the vertices are divided into k−1 classes of which r contain m+1 vertices and the remainder
contains m vertices with two vertices connected if and only if they belong to different classes.
Note that the extremal graph is called Turán graph and is denoted by T (n, k − 1). 2

Pardalos and Phillips [14] and Pelillo and Jagota [18] both showed that not all global
maximizers of (1) correspond to maximum cliques. In [18], Pelillo and Jagota explored the
connection between the local (global)maximizers of (1) and themaximal (maximum) cliques.
They proved the following proposition.

Proposition 1 ([18], Proposition 2) Let G = (V , E) be a graph and let C be a subset of V .
Then C is a maximum clique of G if and only if xC is a global maximizer of (1).

Proposition 1 implies that if a global maximizer is a characteristic vector of a subset C of
V , then C is indeed a maximum clique of G. However, Proposition 1 does not always hold.
In fact, the following counterexample shows that xC is a global maximizer of (1) doesn’t
mean C is a maximum clique of G.

Example 1 Let G = (V , E) be the graph with vertex set V = {1, 2, 3, 4} and edge set
E = {13, 14, 23, 24}. Let C = V . Clearly, the clique number of G is 2. So by Theorem 1,
λ(G) = 1

2 (1− 1
2 ) = 1

4 . Thus the global maximum value of L(G, x) on Δ4 is 1
4 . On the other

hand, L(G, xC ) = 4 × 1
4 × 1

4 = 1
4 . So x

C is a global maximizer of (1). However, C is not a
clique of G.

In this paper, we explore the correspondence between the local (global) maximizers of (1)
and the maximal (maximum) cliques of G. First, we consider the global maximum value of
(1). We need the following definition.

Definition 1 A vertex set M is called a regular multipartite clique of graph G if G[M] (the
subgraph induced by M) is a complete multipartite subgraph of G with each part having the
same order.

Definition 1 implies that, if a vertex set M is a regular multipartite clique of graph G, then
G[M] is a Turán subgraph of G with each part having the same order. Note that if each part
in the partition of a regular multipartite clique consists of a single vertex, Definition 1 is the

2 In the more standard terminology (and that adopted here), the (n, k)-Turán graph, denoted T (n, k), is the
extremal graph on n graph vertices that contains no (k + 1)-clique for 1 ≤ k ≤ n (Diestel 1997 [6], p. 149;
Bollobás 1998, p. 108 [2], and Gross and Yellen 2006, p. 476 [8]). Unfortunately, some authors, including
Skiena (1990, pp. 143-144 [24]), Aigner (1995) [1], and Pemmaraju and Skiena (2003, pp. 247-248 [20]), use
the convention that the (n, k)-Turán graph contains no k-clique (instead of (k + 1)-clique), meaning that the
T (n, k)-Turán graph of these authors is the (n, k − 1)-Turán graph as defined above.
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same as the clique definition. Also note that a regular multipartite clique is defined by two
parameters: the number of parts in the partition and the number of vertices in each part of
the partition. Given a regular multipartite clique M with l parts in the partition, G[M] has
l(l−1)

2
|M|2
l2

edges and

L(G, xM ) = l(l − 1)

2

|M |2
l2

1

|M |2 = 1

2

(
1 − 1

l

)
. (2)

Note L(G, xM ) is only related to the parameter l. So, when we discuss whether xM is the
local (global) maximizer of (1), we only need the information of the number of the parts in
the partition of a regular multipartite clique. This leads to Definition 2.

Definition 2 Let G = (V , E) be a graph with clique number ω. A regular multipartite clique
M of G is called a maximum regular multipartite clique of G if G[M] is a complete ω-partite
subgraph of G.

We have the following theorem.

Theorem 3 Let G = (V , E) be a graph and let M be a subset of V . Then M is a maximum
regular multipartite clique of G if and only if xM is a global maximizer of (1).

Next, we consider the local maximizers of (1). In [18], Pelillo and Jagota provided a
correspondence between the strictly maximal cliques and strict local maximizers of (1).

Theorem 4 ([18], Theorem 5) Let G = (V , E) be a graph and let C be a subset of V . Then
C is a strictly maximal clique of G if and only if xC is a strict local maximizer of (1).

In [7], Gibbons et al. proved the following result which characterizes local optimality of the
Motzkin-Straus QP.

Lemma 1 ([7], Theorem 2) Let x ∈ Δn. Then x is a local maximizer of (1) if and only if
there exists an integer l such that, with

τ := 1 − 1

l
, S := {u|xu > 0}, T := {u|xu = 0, (Ax)u = τ },

we have

(1) (Ax)u ≤ τ for u ∈ [n], where (Ax)u denotes the uth component of Ax.
(2) (Ax)u = τ, ∀u ∈ S.
(3) There exist partitions of S and T ,

S = S1
⋃

· · ·
⋃

Sl , T = T1
⋃

· · ·
⋃

Tl

such that

(a) Si �= ∅, ∀i ∈ [l].
(b) Si

⋃
Ti is independent for every i .

(c) If i �= j, u ∈ Si
⋃

Ti and v ∈ S j then vertex u is adjacent to vertex v.

Remark 1 Lemma 1 implies that, if x is a local (global) maximizer of (1), then the graph
induced by the support set of x, (i.e., σ(x) = {i |xi > 0}) is a complete l-partite subgraph of
G for some integer l. In this paper, we assume that G = (V , E) contains no isolated vertices.
So l ≥ 2.
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Fig. 1 {v1, v2} is a maximal
clique but not a strongly maximal
clique of the above graph.
M = {v1, v2} is a regular
multipartite clique of the graph
not satisfying Property (P)

Fig. 2 The graph above has a regular multipartite clique M ′ = {v1, v2, v3, v4} satisfying Property (P) with
partitions {v1, v3} and {v2, v4}

Then they obtained the following proposition as a corollary of Lemma 1.

Proposition 2 ([7], Corollary 2)LetC be amaximal clique in G. Then xC is a localmaximizer
of (1).

We now provide a counterexample to Proposition 2.

Example 2 Let G = (V , E) be the graph in Fig.1 Let C = {v1, v2}. Clearly, C is a maximal
clique of G. And

L(G, xC ) = 1

2
× 1

2
= 1

4
.

Let ε be any positive number small enough and y = ( 12 − 2ε, 1
2 , ε, ε). Clearly, y is also a

feasible solution of (1). And

L(G, y) − L(G, xC ) =
[(

1

2
− 2ε

)
× 1

2
+ 2 × 1

2
× ε + ε2

]
− 1

4

= ε2 > 0.

So xC is not a local maximizer of (1).

In fact, though Lemma 1 is correct, it may not be used to deduce Proposition 2. The reason
is that the characteristic vector of a maximal clique doesn’t always satisfy the conditions in
Lemma 1. In Example 2, C = {v1, v2} is a maximal clique of G, but xC doesn’t satisfy the
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conditions in Lemma 1. Here is the reason: since xC = { 12 , 1
2 , 0, 0}, then clearly we have S

in Lemma 1 is {v1, v2}. Because (Ax)1 = · · · = (Ax)4 = 1
2 , then we have T = {v3, v4} by

Lemma 1. Note that S = {v1, v2} is a clique. To satisfy Lemma 1(3)(a) and (b), S must be
divided into S1 = {v1} and S2 = {v2}. If we divide T into T1 = {v3, v4} and T2 = φ, then
S1

⋃
T1 is not an independent set since v3 and v4 are adjacent to each other. If T2 is not an

empty set, then S2
⋃

T2 is not an independent set because both v3 and v4 are adjacent to v2.
Thus the condition of Lemma 1(3)(b) does not hold.

Remark 2 One of the open questions Pelillo and Jagota asked in the paper (Section 4 [18]) is
whether “strictly" can be removed in Theorem 4. The counterexample (Example 2) shows,
thatC is a maximal clique of G does not imply xC is a local maximizer of (1). Thus “strictly"
cannot be removed in Theorem 4.

Remark 3 We note that another counterexample to Proposition 2 was reported in a recent
paper [9]. Hence, there is no any necessarily relationship between the local maxima of (1)
and the maximal cliques in G.

In Example 2, the reason that the condition of Lemma 1 does not hold is that, there exist
|C | − 1 vertices of the maximal clique C contained in a clique with order larger than |C |. To
amend Proposition 2, we may exclude such a case and introduce the definition of strongly
maximal cliques as follows.

Definition 3 A maximal clique C is called a strongly maximal clique if any |C | − 1 vertices
of C are not contained in a clique with order larger than |C |.
In Fig. 1, C = {v1, v2} is maximal clique of the graph with order 2. However it is not a
strongly maximal clique of the graph since v2 is contained in the clique {v2, v3, v4} with
order 3. Clearly, the following chains of inclusions hold:

{strictly maximal cliques} ⊆ {strongly maximal cliques}
⊆ {maximal cliques}

and

{maximum cliques} ⊆ {strongly maximal cliques}

We also need the following definition.

Definition 4 A regular multipartite clique M with l (l ≥ 2) parts in the partition satisfies
Property (P) if M satisfies the following conditions:

(a) Each vertex in V (G) \ M is adjacent to at most l−1
l |M | vertices of M .

(b) Each vertex in V (G) \ M is not adjacent to l−1
l |M | vertices from l different parts in the

partition of M .
(c) Any pair adjacent vertices in V (G) \ M are not adjacent to l−1

l |M | vertices in the same
l − 1 parts in the partition of M .

Note that if each part in the partition of a regular multipartite clique consists of a single
vertex, Definition 4 is the same as the strongly maximal clique definition. We illustrate
Definition 4 by the examples in Fig. 1 and Fig. 2, respectively. In Fig. 1, let M = {v1, v2},
we verify that M is not a multipartite clique satisfying Property (P). To illustrate that M does
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not satisfy Definition 4, we divide M into two parts: Q1 = {v1}, Q2 = {v2}. Then M is a
regular multipartite clique with two parts. Note that l = 2 and |M | = 2, l−1

l |M | = 1, also,
both v3 and v4 are adjacent to v2 in G[M] and v3 and v4 are adjacent in Fig. 1, thus M does
not meet the condition (c) in Definition 4. In Fig. 2, let M ′ be the vertex set {v1, v2, v3, v4}.
We divide M ′ into two parts: P1 = {v1, v3} and P2 = {v2, v4}. Then we see that M ′ is a
regular multipartite clique with l = 2 and l−1

l |M ′| = 2. Notice that u is adjacent to two
vertices in P2 and and v is adjacent to two vertices in P2, respectively, and both u and v are
not adjacent in the graph, thus M ′ is a multipartite clique satisfying Property (P).

The next result states that a connection exists between the local maximizers of (1) and the
regular multipartite cliques of G satisfying Property (P).

Theorem 5 Let M be a subset of V in graph G. Then, xM is a local maximizer of (1) if and
only if M is a regular multipartite clique of G satisfying Property (P).

Theorem 5 implies Corollary 1 which amends Proposition 2.

Corollary 1 Let C be a strongly maximal clique of graph G. Then xC is a local maximizer of
(1).

Theorem 6 answers another question posed by Pelillo and Jagota (Section 4 in [18]).

Theorem 6 Let C1, . . . ,Ck be strongly maximal cliques of G, α1 > 0, . . . , αk > 0, where
α1 + · · · + αk = 1, and y = α1xC1 + · · · + αkxCk .

i) Assume that |C1| = · · · = |Ck | = l and |Ci\C j | = |C j\Ci | = mi j ,where1 ≤ i < j ≤ k
and l ≥ 2. Then y is a local maximizer of (1) if and only if the number of edges crossing
Ci \ C j and C j \ Ci is exactly mi j (m ji − 1), where 1 ≤ i < j ≤ k.

ii) Assume that there exist Ci and C j satisfying |Ci | �= |C j |, where 1 ≤ i, j ≤ k. Then y is
not a local maximizer of (1).

3 Proofs of Theorems 3, 5 and 6

In this section, we prove our main results.
We know that if a vector x is a local (global) maximizer of (1), then it satisfies the first

order Karush-Kuhn-Tucker (KKT) [11] necessary conditions. Stated below are the first order
KKT necessary conditions for (1).

Let x be a local (global) maximizer of (1). Note that the partial derivative ∂L(G,x)
∂xi

= (Ax)i
for any i ∈ [n]. So there should exist some real constant τ such that for all j ∈ [n],

(Ax) j

{= τ, x j > 0,
≤ τ, x j = 0.

(3)

We need the following lemma.

Lemma 2 Let M be a subset of V (G) in graph G. If xM is a local (global) maximizer of (1)
then M is a regular multipartite clique of G.

Proof Assume that xM is a local maximizer of (1). By the definition of xM , we have that
M = σ(xM ). So by Remark 1, there exists some integer l such that G[M] is a complete
l-partite graph. Assume the partition of M is

M = M1

⋃
· · ·

⋃
Ml .
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For any i, j ∈ [l], take u ∈ Mi and v ∈ Mj then (AxM )u = (AxM )v by (3), where
A is the adjacency matrix of G. Since G[M] is a complete l-partite graph, then (AxM )u =
1−∑

w∈Mi
xMw = 1−∑

w∈Mi
1

|M| = 1− |Mi ||M| .Similarly, (AxM )v = 1− |Mj |
|M| .So |Mi | = |Mj |

and M is a regular multipartite clique of G. 
�

3.1 Proof of Theorem 3

Proof of Theorem 3 Assume that the clique number ofG isω. (⇒)If M is a maximum regular
multipartite clique of G, then the number of edges in G[M] is ω−1

2ω |M |2 and L(G, xM ) =
ω−1
2ω |M |2 1

|M|2 = 1
2

(
1 − 1

ω

)
. On the other side, by Theorem 1, λ(G) = 1

2

(
1 − 1

ω

)
. This

implies xM is a global maximizer of (1).

(⇐) Conversely, assume that xM is a global maximizer of (1). By Lemma 2, M is a regular
multipartite cliquewith l parts for some integer l. So L(G, xM ) = l−1

2l |M |2 1
|M|2 = 1

2

(
1 − 1

l

)
.

Recall that λ(G) = 1
2

(
1 − 1

ω

)
and xM is a global maximizer of (1), thus we have l = ω. So

M is a maximum regular multipartite clique of G. 
�

3.2 Proof of Theorem 5

Proof of Theorem 5 (⇐) Let M be a regular multipartite clique with the partition M1, . . . , Ml

satisfying Property (P). In the following, we verify that xM satisfies the three conditions of
Lemma 1. Thus xM is a local maximizer of (1).

First, let S = M . We have S = σ(xM ). In addition, if u ∈ M then (AxM )u =
l−1
l |M | 1

|M| = 1 − 1
l := τ since u is adjacent to the vertices in exactly l − 1 parts of

M .
Second, let T be the set of vertices in V (G) \ M that are adjacent to exactly l−1

l |M |
vertices of M . Then for any u ∈ T , xMu = 0 and (AxM )u = 1 − 1

l .
For any vertex u /∈ T

⋃
S, (AxM )u < 1 − 1

l since u is adjacent to fewer than l−1
l |M |

vertices of M . Thus, xM satisfies the conditions in Lemma 1(1) and Lemma 1(2).
Third, let Si = Mi for i ∈ [l]. Then S = S1

⋃ · · · ⋃ Sl and Si
⋂

S j = φ for i �= j , thus
{S1 · · · Sl} is a partition of S. Let Ti be the set of vertices in T that are not adjacent to the
vertices in Si for i ∈ [l]. Clearly, T ⊇ T1

⋃ · · · ⋃ Tl . On the other side, if v ∈ T then v

is adjacent to l−1
l |M | vertices of M . So v is adjacent to all the vertices in some l − 1 parts

of S1, . . . , Sl but not adjacent to any vertices in Si for some i by Definition 4(b). Therefore
v ∈ Ti and T ⊆ T1

⋃ · · · ⋃ Tl . So T = T1
⋃ · · · ⋃ Tl . Since any vertex in Ti is adjacent

to all the vertices in S1, . . . , Si−1, Si+1, . . . , Sl but not adjacent to the vertices in Si , and
any vertex in S j is adjacent to all the vertices in S1, . . . , S j−1, S j+1, . . . , Sl but not adjacent
to the vertices in S j by Definition 4(b), then Ti

⋂
Tj = φ for i �= j . So {T1, . . . , Tl} is a

partition of T . In addition, we have
(a) Clearly, Si is not empty for i ∈ [l]. Thus, the condition (3)(a) in Lemma 1 holds.
(b) If both u, v ∈ Si , then u, v are not adjacent to each other, since u, v are in the same

part of a l-partite graph. If u ∈ Si and v ∈ Ti then u, v are not adjacent to each other since Ti
is the set of vertices in T that are not adjacent to the vertices in Si . Assume that u, v are in Ti .
Note that u, v are adjacent to l−1

l |M | vertices of M , respectively. By Definition 4(b), u, v are
adjacent to all the vertices in some l − 1 parts in the partition of M , respectively. Since both
u and v are not adjacent to the vertices in Si , then both u and v are adjacent to the vertices

123



998 Journal of Global Optimization (2022) 84:989–1003

in S1, . . . , Si−1, Si+1, . . . , Sl . So u, v are not adjacent to each other by Definition 4(c).
Therefore, Si

⋃
Ti is an independent set for every i . Thus, the condition (3)(b) in Lemma 1

holds.
(c) Let i �= j, u ∈ Si

⋃
Ti and v ∈ S j . If u ∈ Si and v ∈ S j , then u, v are adjacent since

u, v are in different parts of a complete l-partite graph G[M]. If u ∈ Ti and v ∈ S j , then u, v

are adjacent by the definition of Si and Tj for i �= j . Therefore, if i �= j, u ∈ Si
⋃

Ti , v ∈
S j , then vertex u is adjacent to vertex v. Thus, the condition (3)(c) in Lemma 1 holds.

Hence by Lemma 1, xM is a local maximizer of (1).
(⇒) Conversely, assume that xM is a local maximizer of (1). We know that M is a regular

multipartite clique of G by Lemma 2. We only need to show that M is regular multipartite
clique of G satisfying Property (P). Assume that G[M] is a complete l-partite graph and M
consists of l parts M1, . . . , Ml in the partition,where l ≥ 2. We will verify that M satisfies
Definition 4, that is we only need to show that M satisfies:

(a) Each vertex in V (G) \ M is adjacent to at most l−1
l |M | vertices of M .

(b) Each vertex in V (G) \ M is not adjacent to l−1
l |M | vertices from l different parts in

the partition of M .
(c) Any two adjacent vertices in V (G)\M are not adjacent to l−1

l |M | vertices in the same
l − 1 parts in the partition of M .

According to the cases (a), (b), and (c), we divide the proof into three claims as follows.

Claim 1 Each vertex in V (G) \ M is adjacent to at most l−1
l |M | vertices of M.

Proof By contradiction, there exists a vertex u ∈ V \ M adjacent to at least l−1
l |M | + 1

vertices in M . Then

(AxM )u ≥
(
l − 1

l
|M | + 1

)
1

|M | = 1 − 1

l
+ 1

|M | , (4)

and, for every vertex v ∈ M ,

(AxM )v = l − 1

l
|M | 1

|M | = 1 − 1

l
. (5)

Both (4) and (5) altogether violate the first order KKT necessary condition (3). This contra-
dicts to the fact that xM is a local maximizer of (1). 
�
Claim 2 Any vertex in V (G) \ M is not adjacent to l−1

l |M | vertices from l different parts in
the partition of M.

Proof If |M1| = · · · = |Ml | = 1, this claim clearly holds. So we assume that |M1| =
· · · = |Ml | ≥ 2. Assume that there exists a vertex u adjacent to l−1

l |M | vertices from l

different parts in the partition of M . By Claim 1, u is adjacent to at most l−1
l |M | vertices of

M . Thus there must be at least two vertices, v and w, and these two vertices belong to two
different parts Mi and Mj such that u is not adjacent to either v or w. Let ε be any positive
number that is small enough and ei ∈ Rn be the unit vector with the i th entry equals 1. Let
y = xM + 2εeu − εev − εew . Clearly, y is a feasible solution of (1). By means of the Taylor
expansion of L , we have that

L(G, y) − L(G, xM ) = 2ε
∂L(G, xM )

∂xMu
− ε

∂L(G, xM )

∂xMv

− ε
∂L(G, xM )

∂xMw
− ε2

∂2L(G, xM )

∂xMu ∂xMv
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− ε2
∂2L(G, xM )

∂xMu ∂xMw
+ ε2

∂2L(G, xM )

∂xMv ∂xMw
. (6)

Note that xM is a local maximizer of (1) and xMu = xMv = xMw = 1
M > 0. So ∂L(G,xM )

∂xMu
=

∂L(G,xM )

∂xMv
= ∂L(G,xM )

∂xMw
by the KKT condition. And ∂2L(G,xM )

∂xMu ∂xMv
= ∂2L(G,xM )

∂xMu ∂xMw
= 0 since u is not

adjacent to v andw, and ∂2L(G,xM )

∂xMv ∂xMw
= 1 since v is adjacent tow. So L(G, y)−L(G, xM ) = ε2.

This contradicts to the fact that xM is a local maximizer of (1). 
�
Claim 3 Any of two adjacent vertices in V (G) \ M are not adjacent to l−1

l |M | vertices in
the same l − 1 parts in the partition of M.

Proof Assume that there are two adjacent vertices u, v in V (G) \ M adjacent to l−1
l |M |

vertices in the same l−1 parts in the partition ofM . ByClaim 1, u and v are adjacent to atmost
l−1
l |M | vertices of M , respectively. Thus there must exist a vertexw ∈ M adjacent to neither

u nor v. Let ε be any positive number that is small enough. Let y = xM + εeu + εev − 2εew.
Clearly, y is a feasible solution of (1). In a similar way to (6), we have

L(G, y) − L(G, xM ) = ε
∂L(G, xM )

∂xMu
+ ε

∂L(G, xM )

∂xMv
− 2ε

∂L(G, xM )

∂xMw

+ ε2
∂2L(G, xM )

∂xMu ∂xMv
− ε2

∂2L(G, xM )

∂xMu ∂xMw
− ε2

∂2L(G, xM )

∂xMv ∂xMw
= ε2 > 0. (7)

This contradicts to the fact that xM is a local maximizer of (1). 
�
Claims 1-3 complete the proof of Theorem 5. 
�

3.3 Proof of Theorem 6

We first prove Lemmas 3 and 4, which are then used to prove Theorem 6.

Lemma 3 i) Let C and D be two maximal cliques of G and l = max(|C |, |D|), then
G[C ⋃

D] is a l-partite graph.
ii) Let C and D be two maximal cliques of G. Assume that |C | = |D| = l and |C\D| =

|D\C | = m. Then G[C ⋃
D] is a complete l-partite graph if and only if the number of

edges crossing C \ D and D \ C is exactly m(m − 1).
iii) If |C | �= |D| then G[C ⋃

D] is not a complete multipartite graph even if both C and D
are strongly maximal cliques of G.

Proof i) Let H1 = C \ D and H2 = D \ C . Then, the complement graph of G[H1
⋃

H2],
denoted by G[H1

⋃
H2], is a bipartite graph with vertex partition H1 and H2 since both H1

and H2 are cliques of G. Without loss of generality, assume that m = |H1| ≤ |H2|. We
claim that H1 is a minimum vertex cover of G[H1

⋃
H2]. Clearly H1 is a vertex cover of

G[H1
⋃

H2] since G[H1
⋃

H2] is a bipartite graph with vertex partition H1 and H2. If H1 is
not a minimum cover ofG[H1

⋃
H2], then there is a vertex v in H1 not adjacent to any vertex

of H2 in G[H1
⋃

H2]. So v is adjacent to every vertex of D in G. This contradicts to the fact
that D is a maximal clique of G. Thus H1 is a minimum vertex cover of G[H1

⋃
H2] and

there is a matching with m edges in G[H1
⋃

H2] that saturates H1 by König’s theorem [21].
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Assume that H1 = C \ D = {u1, . . . , um}. We list these m matching edges in G[H1
⋃

H2]
as u1v1, . . . , umvm , where v1, v2, . . . , vm ∈ H2. Then G[C ⋃

D] is a l-partite graph with
vertex partition V1 = {u1, v1}, . . . , Vm = {um, vm}, Vm+1 = {vm+1}, . . . , Vl = {vl}, where
vm+1 ∈ D, . . . , vl ∈ D and some of them perhaps also belong to C .

ii) Assume that |C | = |D| = l. Let C \ D = {u1, . . . , um} and D \C = {v1, . . . , vm}. In
i), we have proved that G[C ⋃

D] is a l-partite graph. Without loss of generality, assume that
the partition ofG[C ⋃

D] is V1 = {u1, v1}, . . . , Vm = {um, vm}, Vm+1 = {vm+1}, . . . , Vl =
{vl}, where vm+1 ∈ D

⋂
C, . . . , vl ∈ D

⋂
C . So ui is not adjacent to vi for i ∈ [m] and the

number of the edges crossing C \ D and D \ C is at most m × m − m = m(m − 1).
If the number of edges crossing C \ D and D \ C is exactly m(m − 1), then ui must be

adjacent to every vertex of D inG except vi for i ∈ [m]. SoG[C ⋃
D] is a complete l-partite

graph. Conversely, if G[C ⋃
D] is a complete l-partite graph, then ui must be adjacent to

every vertex of D in G except vi for i ∈ [m]. Thus the number of edges crossing C \ D and
D \ C is exactly m(m − 1).

iii) Assume thatC and D are strongly maximal cliques of G such that |C | �= |D|. Without
loss of generality, assume that |C | < |D| = l. If G[C ⋃

D] is a complete multipartite graph,
thenG[C ⋃

D]must be a complete l-partite graph since each vertex in Dmust be in different
parts in the partition. So C is contained in a larger clique with order l since the vertices in C
are in different parts of the complete l-partite graph. This contradicts to the fact that C is a
strongly maximal clique of G.

This completes the proof of Lemma 3. 
�
Lemma 4 i) Let C1, . . . ,Ck be strongly maximal cliques of G satisfying |C1| = · · · =

|Ck | = l and |Ci\C j | = |C j\Ci | = mi j , where 1 ≤ i < j ≤ k. Then G[C1
⋃ · · · ⋃Ck]

is a complete l-partite graph if and only if the number of edges crossing Ci \ C j and
C j \ Ci is exactly mi j (m ji − 1), where 1 ≤ i < j ≤ k.

ii) Let C1, . . . ,Ck be strongly maximal cliques of G. If there exist Ci and C j such that
|Ci | �= |C j |, where 1 ≤ i, j ≤ k, then G[C1

⋃ · · · ⋃Ck] is not a complete multipartite
graph.

Proof i) (⇒) If G[C1
⋃ · · · ⋃Ck] is a complete l-partite graph, then G[Ci

⋃
C j ] is a com-

plete l-partite graph for 1 ≤ i < j ≤ k. This implies that the number of edges crossing
Ci \ C j and C j \ Ci is exactly mi j (m ji − 1) for 1 ≤ i < j ≤ k by Lemma 3 ii).

(⇐)Assume that the number of edges crossingCi \C j andC j \Ci is exactlymi j (m ji −1)
for 1 ≤ i < j ≤ k. We prove that G[C1

⋃ · · · ⋃Ck] is a complete l-partite graph by
mathematical induction on k. By Lemma 3 ii), this result holds for k = 2.

Our inductive assumption is: if the number of edges crossingCi \C j andC j \Ci is exactly
mi j (m ji − 1) for 1 ≤ i < j ≤ k, then G[C1

⋃ · · · ⋃Ck] is a complete l-partite graph.
Nowwe show thatG[C1

⋃ · · · ⋃Ck
⋃

Ck+1] is a l-partite graph.Using induction, assume
that the l-partition of G[C1

⋃ · · · ⋃Ck] consists of vertex sets V1, . . . , Vl . By Lemma 3
ii), G[C1

⋃
Ck+1] is a complete l-partite graph. Thus, we assume that the l-partition

of G[C1
⋃

Ck+1] consists of {v1, w1}, . . . , {vp, wp}, . . . , {vl , wl}, where vp ∈ C1
⋂

Vp ,
wp ∈ Ck+1, and it is possible that vertexwp is the same vertex vp , for p ∈ [l] in the vertex par-
tition. For p ∈ [l], ifwp is adjacent to a vertex u in Vp then {u, v1, . . . , vp−1, wp, vp+1 . . . vl}
is a clique with order l + 1. This contradicts to the fact that C1 is a strongly maxi-
mal clique of G. Hence wp is not adjacent to any vertex in Vp for p ∈ [l]. Therefore,
G[C1

⋃ · · · ⋃Ck+1] is a l-partite graph with partition V1
⋃{w1}, . . . , Vl ⋃{wl}. Next we

show that G[C1
⋃ · · · ⋃Ck+1] is a complete l-partite graph. Otherwise, there must be two

nonadjacent vertices u and v, both of them belong to different parts in the partition of
G[C1

⋃ · · · ⋃Ck+1]. Assume that u ∈ Cs and v ∈ Ct . Then G[Cs
⋃

Ct ] is a complete
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l-partite graph by Lemma 3 ii) and thus u must be adjacent to v. This is a contradiction.
Therefore G[C1

⋃ · · · ⋃Ck
⋃

Ck+1] is also a complete l-partite graph and Lemma 4 i)
holds by the induction principle.

ii) The result holds clearly by Lemma 3 iii). 
�
Now we prove Theorem 6 by verifying the conditions in Lemma 1.

Proof of Theorem 6 i) (⇐) Assume that C1, . . . ,Ck are strongly maximal cliques of G sat-
isfying |C1| = · · · = |Ck | = l and |Ci\C j | = |C j\Ci | = mi j for 1 ≤ i < j ≤ k. Then by
Lemma 4, G[C1

⋃ · · · ⋃Ck] is a complete l-partite graph. Assume that the vertex partition
of G[C1

⋃ · · · ⋃Ck] consists of vertex sets V1, . . . , Vl . Let y = α1xC1 + · · · + αkxCk . If u

belongs to r cliques of C1, . . . ,Ck , that is, u ∈ Ci1
⋂ · · · ⋂Cir , then yu = αi1x

Ci1
u + · · · +

αir x
Cir
u = 1

l (αi1 +· · ·+αir ). And note that each clique of C1, . . . ,Ck has exactly one vertex
in Vi for i ∈ [l]. So

∑

u∈Vi
yu = α1 · 1

l
+ · · · + αk · 1

l
= 1

l
(8)

for i ∈ [l].
Next we verify that y satisfies the conditions in Lemma 1.
Let τ := 1 − 1/l, S = C1

⋃ · · · ⋃Ck , and let T be the set of vertices that belong to
V \ (C1

⋃ · · · ⋃Ck) and are adjacent to all the vertices in some l − 1 parts of V1, . . . , Vl .
Then

(A) For each vertex u ∈ S. Assume that u ∈ Vi for some i . Then u is not adjacent to
the vertices in Vi but adjacent to all the vertices in V1, . . . , Vi−1, Vi+1, . . . , Vl . So (Ay)u =
1 − ∑

u∈Vi
yu = 1 − 1

l by (8).

(B) For each vertex u ∈ T . Since u ∈ T then u is not adjacent to the vertices inVi for some i
but adjacent to all the vertices in V1, . . . , Vi−1, Vi+1, . . . , Vl . So (Ay)u = 1− ∑

u∈Vi
yu = 1− 1

l

by (8).
(C) For each vertex u /∈ S

⋃
T . Clearly, u is adjacent to at most l − 1 vertices in Ci since

Ci is a strongly maximal clique of G for i ∈ [k]. We claim that, for some j , u is adjacent to
at most l − 2 vertices in C j .

Assume that u is adjacent to l − 1 vertices in each Ci for i ∈ [k]. Let the vertices in C1

that are adjacent to u be v1, . . . , vl−1 and v1 ∈ V1, ..., vl−1 ∈ Vl−1. If u is not adjacent to any
vertex in Vl , then u must be adjacent to at most l − 2 vertices in C j for some j . Otherwise, u
must be adjacent to all the vertices in V1, ..., Vl−1 and so u ∈ T . This contradicts to the fact
that u /∈ S

⋃
T . If u is adjacent to some vertex v in Vl , then {u, v, v1, . . . , vl−1} would be a

clique since G[V1 ⋃ · · · ⋃ Vl ] is a complete l-partite graph. This contradicts to the fact that
C1 is a strongly maximal clique of G. So u must be adjacent to at most l − 2 vertices in C j

for some j .
Thus u is adjacent to at most l − 1 vertices in Ci for i ∈ [k] and u is adjacent to at most

l − 2 vertices in C j for some j . This leads to (Ay)u < (l − 1)(α1 · 1
l +· · ·+αk · 1

l ) = 1− 1
l .

Therefore, S satisfies the condition S = σ(y), and T satisfies the condition T = {u|yu =
0, (Ay)u = τ } in Lemma 1. Since (Ay)u = τ for u ∈ S

⋃
T and (Ay)u < τ for u /∈ S

⋃
T ,

thus, the conditions (1) and (2) of Lemma 1 hold.
We now verify the condition (3) in Lemma 1. Let Si = Vi . Then S = S1

⋃ · · · ⋃ Sl and
Si

⋂
S j = φ for i �= j , thus {S1, . . . , Sl} forms a partition of S. Also let Ti be the set of
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vertices in T that are not adjacent to the vertices in Si for i ∈ [l]. Clearly, T ⊇ T1
⋃ · · · ⋃ Tl .

For any u ∈ T , u is adjacent to all the vertices in some l − 1 parts of V1, . . . , Vl but is not
adjacent to all the vertices in Vi for some i . So u ∈ Ti and T ⊆ T1

⋃ · · · ⋃ Tl . Therefore
T = T1

⋃ · · · ⋃ Tl . Since Ti is the set of vertices in T that are not adjacent to the vertices in
Si , then Ti consists of the vertices adjacent to all the vertices in S1, . . . , Si−1, Si+1, . . . , Sl
but not adjacent to the vertices in Si . Similarly, Tj consists of the vertices adjacent all the
vertices in S1, . . . , S j−1, S j+1, . . . , Sl but not adjacent to the vertices in Vj . So Ti

⋂
Tj = φ

for i �= j and {T1, . . . , Tl} is a partition of T . In addition, we have
(a) Clearly, Si �= ∅ for i ∈ [l]. So the condition (3)(a) in Lemma 1 holds.
(b) For i ∈ [l], let u, v ∈ Si

⋃
Ti . If u, v ∈ Si or u ∈ Si and v ∈ Ti , respectively,

then u is not adjacent to v by the definition of Si and Ti . Assume that u, v ∈ Ti for some
i . Note that u, v are adjacent to all the vertices in some l − 1 parts of V1, . . . , Vl in the
l-partition. Since both u and v are not adjacent to the vertices in Si , then both u and v are
adjacent to the vertices in S1, . . . , Si−1, Si+1, . . . , Sl . If u is adjacent to v, then each vertex set
{u, v, v1, . . . , vi−1, vi+1, . . . , vl}, where v1 ∈ C j , . . . , vi−1 ∈ C j , vi+1 ∈ C j , . . . , vl ∈ C j

for j ∈ [k], would be a clique of G with order greater than l. This contradicts to the fact that
C1, . . . ,Ck are strongly maximal cliques of G. So, u and v are not adjacent to each other.
Thus, the condition (3)(b) in Lemma 1 holds.

(c) Assume that i �= j , u ∈ Si
⋃

Ti , v ∈ S j . Then u is adjacent to v by the definition of
Si and Ti . So the condition (3)(c) in Lemma 1 holds.

Thus by Lemma 1, y is a local maximizer of G.
(⇒) Toprove the other part of i) inTheorem6,we assume that the number of edges crossing

Ci\C j and C j\Ci is fewer than mi j (m ji − 1). Then by Lemma 3, G[C1
⋃ · · · ⋃Ck] is a

l-partite graph but not a complete l-partite graph. However, by Remark 1, the support set of
a local maximizer of (1) must induce a complete multipartite graph. Thus, y is not a local
maximizer of (1).

Proof of Theorem 6 ii) Assume that there exists i ∈ [k] and j ∈ [k] satisfying |Ci | �= |C j |
then G[C ⋃

D] is not a complete multipartite graph. Thus y is not a local maximizer of (1)
by Remark 1.

This completes the proof of Theorem 6. 
�

4 Concluding Remarks

In this paper, we establish a connection between the local maximizers (global maximizers)
of a Motzkin-Straus quadratic program and a specific type of regular multipartite cliques.
We find a necessary and sufficient condition for the characteristic vector of a vertex set
to be a local maximizer (global maximizer) of a Motzkin-Straus quadratic program. We
also derive a necessary and sufficient condition under which the convex combination of the
characteristic vectors of strongly maximal cliques is a local maximizer (global maximizer)
of a Motzkin-Straus quadratic program.
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