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Abstract
Wepresent a technique for producing valid dual bounds for nonconvex quadratic optimization
problems. The approach leverages an elegant piecewise linear approximation for univari-
ate quadratic functions due to Yarotsky (Neural Netw 94:103–114, 2017), formulating this
(simple) approximation using mixed-integer programming (MIP). Notably, the number of
constraints, binary variables, and auxiliary continuous variables used in this formulation
grows logarithmically in the approximation error. Combining this with a diagonal perturba-
tion technique to convert a nonseparable quadratic function into a separable one, we present
a mixed-integer convex quadratic relaxation for nonconvex quadratic optimization problems.
We study the strength (or sharpness) of our formulation and the tightness of its approxima-
tion. Further, we show that our formulation represents feasible points via a Gray code. We
close with computational results on problems with quadratic objectives and/or constraints,
showing that our proposed method (i) across the board outperforms existing MIP relaxations
from the literature, and (ii) on hard instances produces better bounds than exact solvers within
a fixed time budget.
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1 Introduction

We are interested in methods to solve optimization problems with quadratic objectives and/or
constraints. Consider the following generic problem with a quadratic objective:

min
x∈X h(x) := x ′Qx + c · x, (1)

where X ⊆ R
n is some nonempty feasible region described by side constraints. When the

quadratic objective matrix Q is not positive semidefinite, this is a difficult nonconvex opti-
mization problem. We will focus on techniques to (approximately) reformulate nonconvex
quadratic functions like the objective of (1).

Quadratic optimization problems naturally arise in a number of important applications
across science and engineering (see [30, 45] and references therein). In the presence of non-
convexity, such problems are in general very difficult to solve from both a practical and
theoretical perspective [44]. As a result, there has been a steady stream of research devel-
oping new algorithmic techniques to solve quadratic optimization problems, and variants
thereof (see [12] for a survey).

Our approach to approximately solving problems of the form (1) will be to reformulate
the objective of (1) using mixed-integer programming (MIP). Given some diagonal matrix
D, we can equivalently write (1) as

min
x∈X hD(x, y) := x ′(Q + D)x + c · x − Dy (2a)

s.t. yi = x2i i ∈ �n�, (2b)

where �n� := {1, . . . , n}. If D is chosen such that Q+D is positive semidefinite, the quadratic
objective will be convex, meaning that all the nonconvexity of this problem has been isolated
in the univariate quadratic equations yi = x2i . This technique is sometimes called “diagonal
perturbation” [22].

In this work, we present a compact, tight MIP formulation for the graph of a univariate
quadratic term: {(x, y)|l ≤ x ≤ u, y = x2}. We derive our formulation by adapting an
elegant result of Yarotsky [57], who shows that there exists a simple neural network function
that approximates y = x2 exponentially well (in terms of the size of the network) over the
unit interval. The resulting neural network can be interpreted as a function FL : R → R

that is built compositionally from a number of simple piecewise linear functions. There is a
long and rich strain of research onMIP formulations for piecewise linear functions that serve
as approximations for more complex nonlinear functions [18, 19, 36, 39, 40, 43, 51], with
recent work focusing particularly on modeling neural networks [3, 4, 11, 48–50].

We show that this approximation for univariate quadratic terms leads to a relaxation for
optimization problems with quadratic objectives and/or constraints, meaning that it provides
valid dual bounds for the true quadratic problem.Wewill show that our proposed formulation
is sharp, meaning that its LP relaxation projects to the convex hull of all feasible points.
Further, we show that the formulation is in fact hereditarily sharp, meaning that this sharpness
property holds throughout the branch and bound tree. The key to reaching this result is
connecting thebinary reformulation to the reflectedGray code, awell-studiedbinary sequence
in electrical engineering.
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1.1 Literature review

Our approach hews most closely to that of Dong and Luo [23] and Saxena et al. [47]. The
diagonal perturbation approachwe follow have been applied throughout the years in a number
of settings; for example, nonconvex quadratic optimization (with orwithout integer variables)
[8, 9, 25, 31, 55], more general nonlinear [28, 29] optimization with binary variables, and
general nonlinear optimization [1, 2, 5].

A string of recent work on optimization methods for nonconvex quadratic problems has
focused on methods for relaxing bilinear terms using piecewise McCormick envelopes [13–
16, 41, 42]. These piecewise envelopes can be formulated using mixed-integer programming
in multiple ways, typically resulting in either a linear- or logarithmic-sized MIP formulation.
Moreover, this piecewise relaxation can be refined dynamically to produce a tighter relaxation
in a region of interest without resulting in an unduly large MIP formulation [13, 42]. In a
similar vein, a paper of Galli and Letchford [32] presents a binarization heuristic for “box
QP” problems, leveraging a structural result of Hansen et al. [35], and compares classical
convexification techniques [26, 33, 34] within the heuristic.

An interesting recent paper of Xia et al. [56] reformulates optimization problems with
quadratic objectives and linear constraints into MIPs via the KKT conditions. The approach
outperforms commercial solvers on certain classes of instances; however, it does not seem
to perform favorably on boxQP problems, and in general requires the careful computation of
“big-M” coefficients which may lead to loose LP relaxations.

1.2 Outline

In Sect. 2 we describe our MIP approximation for y = x2. In Sect. 3 we prove some
properties of Gray codes that will be useful for proving the results in Sect. 4. In Sect. 4,
we show that our formulation is strong (i.e. sharp), and establish the connection between
our MIP approximation and the reflected Gray code. In Sect. 5, we show how to derive
some facets of the full convex hull of our MIP approximation, with connections to the parity
polytope. In Sect. 6, we present a relaxation version of our MIP approximation, derive the
total area of the relaxation, and compare against the relaxation of Dong and Luo [23]. Finally,
in Sect. 7, we numerically compare our relaxation with other competing methods, including
other relaxations such as CDA [23] and NMDT [14], as well as state-of-the-art solvers with
quadratic support like Gurobi, CPLEX, and BARON.

2 A piecewise-linear approximation for univariate quadratic terms

In this section, we present our mixed-integer programming relaxation for (1). We start by
describing the construction of Yarotsky, which is a piecewise linear neural network approx-
imation for the univariate quadratic function F(x) = x2. We then formulate the graph of
this piecewise-linear function using mixed-integer programming, and use it to build a tight
under-approximation for the quadratic optimization problem (1).

For ease of notation, for any integers i ≤ j , we define �i, j� := {i, i + 1, . . . , j}, and for
integers i ≥ 1 we define �i� := {1, 2, . . . , i}.
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Fig. 1 Left: The intermediary sawtooth functions Gi = 22i (Fi−1 − Fi ). Right: The approximation for
F(x) = x2 of Yarotsky by functions Fi [57, Fig. 2]

2.1 The construction of Yarotsky

For fixed L ∈ N, we wish to model the function FL(x), defined as the piecewise linear
interpolant to y = x2 on the interval [0, 1] at 2L + 1 uniformly spaced breakpoints:

FL(x) = 2i−1
N (x − i

N ) + i2

N2 if x ∈ [ i−1
N , i

N ] for some i ∈ �2L�. (3)

Define the sawtooth functions Gi : [0, 1] → [0, 1] as Gi = 2i (Fi−1 − Fi ). Yarotsky [57]
shows that Gi can be defined recursively as

G0(x) = x, (4a)

Gi (x) =
{
2Gi−1(x) Gi−1(x) < 1/2

2(1 − Gi−1(x)) Gi−1(x) ≥ 1/2
i ∈ �L�, (4b)

and, furthermore, that

FL(x) = x −
L∑

i=1

2−2i Gi (x). (5)

Yarotsky further shows that F(x) approximates x2 to a pointwise error of |x2 − FL(x)| ≤
2−2L−2 [57, Proposition 2].1 We include an illustration of GL and FL for different values
of L in Fig. 1b. Crucially, we will later make use of the fact that FL(x) ≥ F(x) for each
0 ≤ x ≤ 1, i.e. FL is an overestimator for F .

2.2 AMIP formulation for FL

We now turn our attention to constructing a mixed-integer programming formulation for FL .
As (5) tells us that FL depends linearly on the sawtooth functions Gi , we turn our attention
to formulating the piecewise-linear equations (4) using MIP.

For the remainder of the section we will use gi as decision variables in our optimization
formulation corresponding to the output of the i th sawtooth function Gi . Therefore, g0 = x ,

1 Furthermore, Yarotsky [57] observes that it is straightforward to represent each of the sawtooth functions as
a composition of the standard ReLU activation function σ(x) = max{0, x}. For example, G1(x) = 2σ(x) −
4σ(x − 1

2 ) + 2σ(x − 1). In this way, FL can be written as a neural network with a very particular choice of
architecture and weight values.
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and for each of the other sawtooth functions Gi for i ∈ �L�, we introduce a binary decision
variable αi . Given some input x , these binary variables serve to indicate which piece of the
sawtooth the input lies on:

αi = 0 �⇒ (gi = 2gi−1) ∧ (0 ≤ gi−1 ≤ 1/2) (6a)

αi = 1 �⇒ (gi = 2(1 − gi−1)) ∧ (1/2 ≤ gi−1 ≤ 1) (6b)

Define the set Si := {(gi−1, gi , αi ) ∈ [0, 1] × [0, 1] × {0, 1}|(6)} for each i ∈ �L�. It is not
difficult to see that a convex hull formulation for Si is given by

2(αi − gi−1) ≤ gi ≤ 2(1 − gi−1), (7a)

2(gi−1 − αi ) ≤ gi ≤ 2gi−1, (7b)

(gi−1, gi , αi ) ∈ [0, 1] × [0, 1] × {0, 1}. (7c)

Chaining these formulations together for each i , we construct a MIP formulation for GL :=
{(x, y) ∈ [0, 1]×[0, 1]|y = FL(x)}, the graph of the neural network approximation function
FL .

Proposition 1 Fix some L ∈ N. A MIP formulation for (x, y) ∈ GL is

g0 = x
(gi−1, gi , αi ) ∈ Si i ∈ �L�

y = x − ∑L
i=1 2

−2i gi .
(8)

We emphasize that this formulation is extremely compact: it requires only O(L) binary
variables, auxiliary continuous variables, and constraints. As noted in Sect. 2.1, FL approx-
imates F to within O(2−L ) pointwise, which implies that the size of our formulation scales
logarithmically in the desired accuracy.

It is a straightforward extension of Proposition 1 to considermore general interval domains
x ∈ [l, u] on the inputs. In particular, introducing two auxiliary variables x̃, ỹ ∈ [0, 1], we
formulate ỹ = F(x̃) = x̃2 using (8), and then map them to the (x, y) variables via the linear
transformation

x = l + (u − l)x̃, y = l2 + 2l(u − l)x̃ + (u − l)2 ỹ.

2.3 Tying it all together

We are now prepared to construct our mixed-integer programming approximation for (1). For
the objective of (1), compute a nonnegative diagonal matrix D such that Q + D is positive
semidefinite.2 Then, for a given L , the approximation for (1) is:

min
x∈X ,y

hD(x, y) ≡ x ′(Q + D)x + c · x − Dy (9a)

s.t. (xi , yi ) ∈ GL i ∈ �n�. (9b)

Using the formulation (8) for the constraint (9b), this yields a mixed-integer convex quadratic
reformulation of the problem (ignoring the potential structure of X ). This formulation requires
at most nL binary variables andO(nL) auxiliary continuous variables and linear constraints.
Furthermore, recall that we may set L = O(log(1/ε)) to attain an approximation of accuracy
ε for the equations (2b).

2 This can be accomplished in a number of ways: for example, by computing the minimum eigenvalue of D,
or by solving a semidefinite programming problem [23].
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Fig. 2 Building the reflected Gray code. The reflected Gray code with L + 1 bits is build from the reflected
Gray code on L bits by appending 0s in front of it, then reflecting the Gray code sequence, and then appending
1s in front of it

Consider any x̂ ∈ X , along with any ŷ such that (x̂, ŷ) satisfies (9b). Since FL overesti-
mates F , for each i ∈ �n� we have x̂2i ≤ ŷi . Therefore, hD(x̂, ŷ) ≤ h(x̂). Since there always
will exist such a ŷ for any x̂ ∈ X , (9) offers a valid dual bound on the optimal cost of (1).

Note that this approach can readily be adapted to handle quadratic constraints. In particular,
this transformation will offer a relaxation of the quadratically constrained problem. Note that
the error bound derived above is with respect to the quadratic constraint that is being relaxed.
It may not translate into an error bound on the objective value of the optimization problem,
a known phenomena in the global optimization literature [20].

3 Gray codes and binary representation

In this section, we introduce the reflected Gray code, and prove some of its useful properties.
For the remainder of this work, we will work with two notions of expressing integers as

vectors in {0, 1}∗. First, we consider the standard binarization with L bits. That is, for an
integer i ∈ �0, 2L − 1� we define β i ∈ {0, 1}L such that

i =
L∑
j=1

2L− jβ i
j . (10)

Next, we define the reflected Gray code sequence, which is a sequence of binary representa-
tions of integers that is extremely well-studied in electrical engineering and engineering [46].
Notably, each adjacent pair in the sequence differs in exactly one bit. As presented in [27]
and references therein, the L-bit reflected Gray code αi ∈ {0, 1}L representing the integer i
can be described by the recursion

αi
1 = β i

1 (11)

αi
j := β i

j ⊕ β i
j−1 for all j = 2, . . . , L, (12)

where we use⊕ to denote addition modulo 2. By inverting the relation, we obtain the formula

β i
j = αi

1 ⊕ αi
2 ⊕ · · · ⊕ αi

j for j = 1, . . . , L. (13)

In this way, flipping any α j bit implies that we flip all less significant bits βk for k ≥ j . See
Fig. 2 for an illustration of how to build the reflected Gray code, which we will henceforth
refer to as ‘the Gray code’.
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One key property of any Gray code is that successive integer representations differ by
only 1 bit, i.e.,

‖αi − αi+1‖1 = 1. (14)

That is, only one bit changes between adjacent binary vectors in the sequence. We show a
similar property holds if we restrict the set of integers we work with by fixing some of the
bits in the Gray code vector. To help prove this property, we note the following well-known
property of the reflected Gray code in this work.

Lemma 1 For each i ∈ �0, 2L − 1�, let α̃i be the L-bit Gray code for i , and let α j be the
L + 1-bit Gray code for some i ∈ �0, 2L+1 − 1�.

1. If j ∈ �0, 2L − 1�, then α j = [0, α̃ j ].
2. If j ∈ �2L , 2L+1 − 1�, then α j = [1, α̃i ], where i = 2L+1 − j − 1.

Proof First, for each i ∈ �0, 2L−1�, let β̃
i
be the corresponding L-bit binarization. Similarly,

for each j ∈ �0, 2L+1 − 1�, and let β j be the corresponding L + 1-bit binarization. Then,

by (11) have that α
j
1 = β

j
1 = 0 and β i = [0, β̃ i ]. Applying (11) recursively, this yields

αi = [0, α̃i ], as desired.
Now, let i ∈ �2L , 2L+1 − 1�, and let ĩ = 2L+1 − i − 1. Since ĩ ∈ �0, 2L − 1� we have as

before that α ĩ = [0, α̃ ĩ ]. We wish to show that αi = [1, α̃ ĩ ]. Now note that

ĩ = 2L+1 − i − 1 = 2L+1 −
L+1∑
j=1

2L+1− jβ j − 1

= 2L+1 − 1 −
L+1∑
j=1

2L+1− j +
L+1∑
j=1

2L+1− j (1 − β j )

=
L+1∑
j=1

2L+1− j (1 − β j )

That is, in the binarization for ĩ , we have β ĩ = β i ⊕ [1, . . . , 1], so that every bit has been

flipped. Observing (13), we see that this can be induced by enforcing α ĩ
1 = 1 − αi

1, with

all other α ĩ
j = αi

j : flipping the first α-bit induces a flip in all β-bits. Thus, we obtain that

αi = [1, α̃ ĩ ], as desired. ��
Lemma 2 Let J ⊆ �L� and α ∈ {0, 1}J . Let X = {x ∈ �0, 2L − 1� : αx

J = ᾱ}. We will

write X as X = {x1, . . . , xt }, ordered such that x j < x j+1. Let I = �L� \ J . Then α
x j
I is a

reflected Gray code for the indices j over X. That is, for any j ∈ 1, . . . , t , we have

‖α I
x j − α I

x j+1‖1 = 1. (15)

Furthermore, if |I | ≥ 1, there exists a γ ∈ {0, 1}|I | such that, for all j ∈ �0, t�, we have

α
x j
I ⊕ γ = α

j
�L−|I |+1,L�

. (16)

That is, the modified Gray code after fixing some bits is the original reflected Gray code on
|I | bits, with some bits flipped.
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Proof We will prove this by induction on L . To enable the use of Lemma 1, we will also
prove that, if |I | ≥ 1, then for all j ∈ �0, t�, i = t − j , we have

x j = 2L − xi − 1. (17)

Base case: L = 1
For L = 1, the possibilities are trivial, as there is only one bit. If we do not fix the bit, then

we have α j = [ j] for each j ∈ {0, 1}; this sequence of two vectors is trivially a Gray code
sequence. This yields the original reflected Gray code for L = 1, and so γ = [0]. Finally,
we have t = 1, and x j = j , yielding, for i = 1− j , x j = 1− xi = 21 − xi − 1, as required.

On the other hand, if we do fix the bit, then there are no pairs of consecutive bits, and (15)
holds by default. In this case, we have |I | = 0, so that the other results do not apply.

Inductive step:
Let L = k, and suppose the desired properties hold for L = k − 1. Let J , α be a choice

of fixed bits for L = k. First, note that if |J | = L , then all bits are fixed and the (15) holds
by default, while the others do not apply, as |I | = 0.

Next, suppose I = {1}, so that the newly added bit is the first unfixed bit. Then we have
t = 1, and αx j = [ j, ᾱ], with α

x j
I = [ j]. Thus, defining γ = [0], we have that (15) and (16)

hold trivially. Finally, by Lemma 1 and the uniqueness of the L-bit Gray code for j , we have
that x0 = 2L − x1 − 1 and x1 = 2L − x0 − 1, as required.

Otherwise, suppose |J | ≤ L − 1, with I �= {1}. Then there are three cases: 1 /∈ J , or
1 ∈ J and either ᾱ1 = 1 or ᾱ1 = 0. Regardless of this choice, the corresponding choices
J̃ and α̃ for L = k − 1 can be attained by defining J̃ = J \ {1}, and defining Ĩ and α̃

accordingly. Consider the corresponding sequence X̃ for L = k − 1. Then, by the inductive
hypothesis, the desired results hold for X̃ , and as | Ĩ | ≥ 1, we can define a corresponding
vector γ̃ ∈ {0, 1}| Ĩ | so that (16) holds.

Case 1: 1 ∈ J with ᾱ1 = 0. In this case, define J̃ = J \ {1} and α̃ = ᾱ�2,L�, and define

X̃ and γ̃ accordingly, noting that |X | = |X̃ | = t = 2k−|J |−1 − 1. Let j ∈ �t�. Then we have

by Lemma 1 that αx j = [0, α̃ x̃ j ], so that α I
x j = α̃

x̃ j
I . Thus, (15 to (17) hold by the induction

hypothesis, with γ = γ̃ .
Case 2: 1 ∈ J with α1 = 1. In this case, define J̃ = J \ {1} and α̃ = ᾱ�2,L�, and define X̃

accordingly, noting that |X | = |X̃ | = t . Let j ∈ �t�. Then, since t − j = 2k−|J |−1 − j − 1,

we have by Lemma 1 that αx j = [1, α̃ x̃t− j ], so that α I
x j = α̃

x̃t− j
I . That is, the sequence of

α
x j
I ’s the sequence of α̃

x̃ j
I ’s, but in reversed order. Thus, (15 and (17) hold by the induction

hypothesis, as reversing the order of a sequence has no impact on results for consecutive or
centrally reflected terms. Furthermore, by Lemma 1 and the induction hypothesis, we have
that reversing the order of the sequence corresponds with flipping only the first bit α

x j
1 , so

that we can define γ = γ̃ ⊕ [1, 0, . . . , 0] to obtain (16).
Case 3: 1 /∈ J , so that the first bit is unfixed. In this case, define J̃ = J and α̃ = ᾱ,

and define X̃ accordingly. Then t̃ = |X̃ | = 2k−|J |−1. Let j ∈ �0, t� and let i = t − j =
2k−|J | − j −1, so that j = 2k−|J | − i −1 Then, by Lemma 1, we can construct X as follows:

1. If j ∈ �0, 2k−|J |−1 − 1�, then αx j = [0, α̃ x̃ j ]
2. If j ∈ �2k−|J |−1, 2k−|J | − 1�, then αx j = [1, α̃ x̃i ].

This yields (17) immediately. Further, define γ = [0, γ̃ ]. Then for j ∈ �0, 2k−|J |−1 − 1�,
we have

α
x j
I ⊕ γ = [0, α̃ x̃ j

I ] ⊕ [0, γ̃ ] = [0, α̃ x̃ j
I ⊕ γ̃ ] = [0,α j

�L−|I |+2,L�
] = α

j
�L−|I |+1,L�

,
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yielding (16). For j ∈ �2k−|J |−1, 2k−|J |−1 − 1�, defining i = t − j = 2k−|J | − j − 1 ∈
�t̃ + 1, t�, we have by Lemma 1 that

α
x j
I ⊕ γ = [1, α̃ x̃i

I ] ⊕ [0, γ̃ ] = [1, α̃ x̃i
I ⊕ γ̃ ] = [1,αi

�L−|I |+2,L�] = α
j
�L−|I |+1,L�

,

again yielding (16).
Now, (15) trivially holds for all j �= 2k−|J |−1 − 1 as in cases 1 and 2, since the first

bits of αx j and αx j+1 match, and exactly one other bit differs by the induction hypothesis.
Otherwise, if j = 2k−|J |−1 − 1, then i = 2k−|J | − (2k−|J |−1 − 1) − 1 = 2k−| j | = j + 1,
and thus x j and x j+1 differ by exactly the first bit α1 as indicated above. Thus, (15) holds.
From these cases, (15 to (17) hold by induction. ��

Next we show one more property of the code that occurs when extending the Gray code
by 1 bit.

Proposition 2 For an integer i ∈ �0, 1, . . . , 2L −1�, let αi and β i be the L-bit Gray code and
binary representations of i . Let α̃2i and α̃2i+1 be the (L + 1)-bit Gray codes of the integers
2i and 2i + 1.

Then

α̃2i =
[
αi
1, . . . , α

i
L , β i

L

]
and α̃2i+1 =

[
αi
1, . . . , α

i
L , 1 − β i

L

]
.

Proof First, note that

β̃
2i = [β1, . . . , βL , 0] and β̃

2i+1 = [β1, . . . , βL , 1] .

Then

α̃2i
L+1 = β̃2i

L+1 ⊕ β̃2i
L = 0 ⊕ β i

L = β i
L and α̃2i+1

L+1 = β̃2i
L+1 ⊕ β̃2i

L = 1 ⊕ β i
L = 1 − β i

L .(18)

Furthermore, β̃2i
j = β2i+1

j = β i for all j = 1, . . . , L , by definition, we have that α̃2i
j =

α̃2i+1
j = αi

j for all j = 1, . . . , L . ��

4 Formulation strength

The strength of a MIP formulation is a commonly used metric to assess its potential compu-
tational performance. We will work with the three following notions of strength.

Definition 1 Consider a set U ⊆ R
n . For a formulation P IP = {(u, v, z) ∈ PLP : z ∈

{0, 1}L }, where PLP ⊆ R
n+d+L is a polyhedron and proju(P

IP) = U , we say the the formu-
lation PLP is

– sharp if proju(P
LP) = conv(U ).

– hereditarily sharp if, for all I ⊆ �L� and z̄ ∈ {0, 1}|I |, we have
proju(P

LP|z I=z̄) = conv({u ∈ U : (u, v, z) ∈ PLP}|z I=z̄).

– ideal if projz(ext(P
LP)) ⊆ Z

L .

These definitions closely follow those in [37], exceptwedefine hereditary sharpness explicitly
in terms of the current branch, andwe consider only binary variables instead of general integer
variables.
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Fig. 3 Left: The piecewise linear approximation QIP in red and the linear relaxation QLP in yellow filled
in. The formulation is sharp because QLP is the convex hull of QIP. The vectors α ∈ {0, 1}3 below are the
corresponding binary α variables for any x value on that interval ( i8 , i+1

8 ). Right: The branch QIP|α3=1 in
red and the linear relaxation QLP|α3=1 in yellow. This demonstrates hereditary sharpness since it holds that
QLP|α3=1 is the convex hull of QIP|α3=1

In this section, we explore the strength of our MIP formulation (8). We also draw an
interesting connection between how our formulation represents feasible points through a
Gray code: in essence, feasible points are represented in the formulation by their L most
significant digits in a binary expansion.

For our particular problem, define

PLP := {(x, y,α, g) ∈ [0, 1] × R
+ × [0, 1]L × [0, 1]L+1 : (8)}

P IP := {(x, y,α, g) ∈ [0, 1] × R
+ × {0, 1}L × [0, 1]L+1 : (8)} (19)

and

QLP := projx,y(P
LP)

QIP := projx,y(P
IP).

(20)

First, we show that QIP is, unfortunately, not ideal.

Example 1 The formulation P IP approximating y = x2 is not ideal.

Proof Consider L = 2, x = 0.25, α = [ 12 , 1], g = [ 12 , 1], and y = 0.25 − 2−2( 12 ) −
2−4(0.25) = 11

64 . This point is chosen to maximize g2 along a facet g2 ≤ 2 · (2x − α1) of
the convex hull. It is an extreme point because it is incident with six facets: g2 ≤ 1, α2 ≤ 1,
g2 ≤ 2g1, g1 ≤ 2x , α1 − x ≤ g2, and y = x − 2−2g1 + 2−4g2. Thus, PLP has a fractional
extreme point, and so is not ideal. ��
Next, we will show that QIP is sharp. To assist deriving this result, we define the generic
sawtooth function G : R → R as

gi = G(gi−1) :=
{
2gi−1 gi−1 < 1

2 ,

2(1 − gi−1) gi−1 ≥ 1
2 .

(21)

Theorem 1 The formulation P IP is sharp for QIP.
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Proof For sharpness, wewish to show that QLP = conv(QIP). Clearly QLP ⊇ conv(QIP) from
validity of our formulation; therefore, we focus on showing that QLP ⊆ conv(QIP). We start
by fixing some x̄ ∈ [0, 1]. The result then follows if we can show that the “slice” of QLP at x̄ ,
QLP|x=x̄ := {y|(x̄, y) ∈ QLP}, is contained in projx (conv(QIP)). Since QLP|x=x̄ ⊂ [0, 1] and
is convex, it suffices to show that both its maximum value and minimum value are contained
in conv(QIP).

First, let y∗ = max{y ∈ QLP|x=x̄ }. From QLP, we know that y = x − ∑L
i=1 2

−2i gi ≤ x
since gi ≥ 0 for all i . Hence, y∗ ≤ x̄ . Next, we observe that, as (0, 0), (1, 1) ∈ QIP, convexity
in turn implies that (x̄, x̄) ∈ conv(QIP) ⊆ QLP. Therefore, y∗ = x̄ by maximality, and so
(x̄, y∗) ∈ conv(QIP).

Next, let y∗ = min{y ∈ QLP|x=x̄ }. From definition, it follows that there is some g∗ and α∗
such that (x̄, y∗, g∗,α∗) ∈ PLP. Define G as in (21). If g∗

i = G(g∗
i−1) for each i ∈ �L�, then

we immediately conclude that there exists some α̃ ∈ {0, 1}L such that (x̄, y∗, g∗, α̃) ∈ P I .
This, in turn, implies that (x̂, y∗) ∈ QIP.

Otherwise, take i ∈ �L� as the largest index such that g∗
i > G(g∗

i−1). Then, recursively

define g̃ such that g̃ j =
{
g∗
j j < i

G(g̃ j−1) j ≥ i
for each j ∈ {0, . . . , L}. Further, take ỹ =

x̄ − ∑L
i=1 2

−2i g̃i , with α̃i = gi−1 for all i , inducing only lower bounds of 0 on all g j . Then
(ỹ, x̄, g̃, α̃) ∈ QLP. We now show that ỹ < y∗, contradicting the minimality of y∗.

Let ε = g̃i − g∗
i . Note that G : R → R is Lipschitz continuous with Lipschitz constant

2. That is, for any g, g′ ∈ [0, 1], we have that |G(g) − G(g′)| ≤ 2|g − g′|. Hence, since
|g∗

i − g̃i | ≤ ε we conclude inductively that |g∗
i+k − g̃i+k | ≤ 2kε for each k ∈ �L − i�. Thus,

we have

y∗ − ỹ =
L∑
j=i

2−2 j (g̃ j − g∗
j )

≥ 2−2i (g̃i − g∗
i ) +

L∑
j=i+1

2−2 j |g∗
j − g̃ j |

≥ 2−2iε − ∑L
j=i+1 2

−2 j2 j−iε

= 2−2iε(1 − 2i
L∑

j=i+1

2− j )

= 2−2iε(1 − 2i (2−i − 2−L))

= ε(2−i−l) > 0.

Therefore, ỹ < y∗, contradicting the minimality of y∗. From this, we conclude that no such
i exists, completing the proof. ��

Wenow show the correspondence between our formulation and the Gray code. It is helpful
to note that, in P IP, we have gi = G(gi−1), where G is as defined in (21).

Theorem 2 (TheMIP formulation followsaGray code)Take (x, g,α) ∈ projx,g,α(P IP|gL∈(0,1))

for some fixed value gL ∈ (0, 1). Fix some j ∈ �0, L − 1�, and define i j := ⌊
2L− j g j

⌋
. Then

[α j+1, . . . , αL ] is the L − j -bit Gray code αi j for i j , and g j ∈ (
i j

2L− j ,
i j+1
2L− j ).
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Proof First, we note that, for each j ≤ L + 1, we have

g j =
{

1
2 g j+1 α j+1 = 0,

1 − 1
2 g j+1 α j+1 = 1.

We will proceed by induction in a manner similar to the proof for Lemma 2.

Base Case: j = L − 1
In this case, if αL = 0, then gL−1 = 1

2 gL ∈ (0, 1
2 ), and so iL−1 = �2gL−1� = 0,

whose 1-bit Gray code is [0] = [αL ], as desired. On the other hand, if αL = 1, then
gL−1 = 1− 1

2 gL ∈ ( 12 , 1), and so iL−1 = �2gL−1� = 1, whose 1-bit Gray code is [1] = [αL ],
as desired.

Inductive step: Let j ∈ �0, L − 2� and suppose the statement holds j + 1.

If α j+1 = 0, then g j = 1
2 g j+1 ∈

(
i j+1

2L− j ,
i j+1+1
2L− j

)
and 2L− j g j ∈ (i j+1, i j+1 + 1). In

this case, we have i j = ⌊
2L− j g j

⌋ = i j+1 ∈ �0, 2L− j−1 − 1�. Thus, by Lemma 1, we

have that the L − j-bit Gray code for i j is given by αi j = [0 α̃i j+1 ], where α̃i j is the
(L − j − 1)-bit Gray code for i j , which is [α j+2 . . . αL ] by the induction hypothesis. This
yields αi j = [0 α j+2 . . . αL ] = [α j+1 . . . αL ] as desired. Further, observing the bounds we

derived for g j , we have g j ∈ (
i j

2L− j ,
i j+1
2L− j ).

On the other hand, if α j+1 = 1, then g j = 1 − 1
2 g j+1 ∈ (1 − i j+1+1

2L− j , 1 − i j+1

2L− j ) and

2L− j g j ∈ (2L− j − i j+1 − 1, 2L− j − i j+1). Thus, we have that i j = 2L− j − i j+1 − 1 ∈
�2L− j−1, 2L− j − 1�. Thus, by Lemma 1, computing ĩ j = 2L− j − 1 − i j = i j+1, we have

that the (L − j)-bit Gray code for i j is αi j = [1 α̃ ĩ j ], where α̃ ĩ j is the (L − j − 1)-bit
Gray code for ĩ j , which by the induction hypothesis is given as [α j+2 . . . αL ]. This yields
αi j = [1 α j+2 . . . αL ] = [α j+1 . . . αL ] as desired. Further, observing the bounds we derived
for g j , we have g j ∈ (

i j
2L− j ,

i j+1
2L− j ).

Thus, with these cases, the result holds by induction. ��

Note that, if gL ∈ {0, 1} (so that x ∈ 2−L
Z∩ (0, 1)), the same Gray codes from Theorem

2 can be used as when gL ∈ (0, 1). The primary difference is that there two choices for this
Gray code when x ∈ 2−L

Z ∩ (0, 1). This dichotomy stems from the fact that we will obtain
g j = 1

2 from some j , introducing ambiguity in the choice of α j .

4.1 Hereditary sharpness

In this section, we prove hereditary sharpness of the formulation P IP.
Let L be a nonnegative integer, and define the sets P IP, PLP, QIP, and QLP as before.

Suppose we fix some subset of the binary variables to α I = ᾱ I ∈ {0, 1}|I | for some set
I ⊆ L . Furthermore, define P IP

ᾱ I
:= P IP|α I=ᾱ I := {(x, y, g,α) ∈ P IP|αi = ᾱi for i ∈ I },

and similarly for QLP, QIP, and PLP. We then wish to show QLP
ᾱ I

= conv(QIP
ᾱ I

). We will
use this notation for the remainder of this section. An example demonstrating the hereditary
sharpness of the formulation is shown in Fig. 3

To study this relationship in more detail, we in particular wish to study PLP
ᾱ I
. Let

(x, y, g,α) ∈ PLP
ᾱ I
. For each i ∈ I , then gi−1 relates to gi via the linear function

gi = 2gi−1(1 − ᾱi ) + 2(1 − gi−1)ᾱi . (22)
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Alternatively, for each i ∈ �L�\I , the relationship can be written as

2|gi−1 − αi | ≤ gi ≤ min{2gi−1, 2(1 − gi−1)}.
In this form, simply setting each αi = gi−1 yields the least restrictive possible lower-bound
of 0 on gi in terms of gi−1. Thus, making this choice, we find that projx,y,g(P

LP
ᾱ I

) can be
expressed via the constraints

y = g0 − ∑L
i=1 2

−2i gi
g0 = x
gi ≤ 2gi−1 i ∈ �L�, i /∈ I
gi ≤ 2(1 − gi−1) i ∈ �L�, i /∈ I
gi = 2gi−1(1 − ᾱi ) + 2(1 − gi−1)ᾱi i ∈ I
gi ∈ [0, 1] i ∈ �L�

(23)

while, after combining the linear constraints with the new constraints (22) fixing variables
αi for i ∈ I , P IP

ᾱ I
can be written as

y = g0 − ∑L
i=1 2

−2i gi
g0 = x

2(gi−1 − αi ) ≤ gi ≤ 2gi−1 i ∈ �L�, i /∈ I
2(αi − gi−1) ≤ gi ≤ 2(1 − gi−1) i ∈ �L�, i /∈ I

gi = 2gi−1(1 − ᾱi ) + 2(1 − gi−1)ᾱi i ∈ I
gi ∈ [0, 1] i ∈ �L�

αi ∈ {0, 1} i ∈ �L�, i /∈ I

(24)

For convenience, for all i ∈ I , define

Gi (gi−1, αi ) := 2gi−1(1 − αi ) + 2(1 − gi−1)αi . (25)

For i ∈ �L�, define the shorthand Gi (gi−1) := Gi (gi−1, ᾱi ) if i ∈ I and Gi = G otherwise.
Then by the construction of P IP

ᾱ I
, we have that g ∈ projg(P

IP
ᾱ I

) if and only if for all i ∈ �L�,
we have gi = Gi (gi−1) and gi ∈ [0, 1].

For all i ∈ �0, L�, the below proposition explores how to compute the feasible region for
gi , projgi (P

LP
ᾱ I

) =: [ai , bi ], while establishing that projgi (P
LP
ᾱ I

) = conv(projgi (P
IP
ᾱ I

)).

Lemma 3 (Bounds in Projection) For all i ∈ �0, L� and I ⊆ �L�, we have projgi (P
LP
ᾱ I

) =
conv(projgi (P

IP
ᾱ I

)) =: [ai , bi ] �= ∅. Furthermore, [aL , bL ] = [0, 1], and [ai−1, bi−1] can be
computed from [ai , bi ] as

[ai−1, bi−1] =

⎧⎪⎨
⎪⎩

[ 12ai , 1
2bi ] if i ∈ I and ᾱi = 0,

[1 − 1
2bi , 1 − 1

2ai ] if i ∈ I and ᾱi = 1,

[ 12ai , 1 − 1
2ai ] if i /∈ I .

(26)

Note that in the last case ai ≤ 1
2 and bi ≥ 1

2 .

Proof We proceed by induction.

Base Case: i = L
In this case, Theorem 2 establishes that, even if Î = �L� with some corresponding α̂ Î ∈

{0, 1}L , we have [0, 1] = projgi (P
IP
α̂ Î

), yielding

[0, 1] = projgL (P
IP
α̂ Î

) ⊆ conv(projgL (P
IP
α̂ Î

))

⊆ conv(projgL (P
IP
ᾱ I

)) ⊆ projgL (P
LP
ᾱ I

) ⊆ [0, 1],
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and so conv(projgL (P
IP
ᾱ I

)) = projgL (P
LP
ᾱ I

) = [0, 1], as required.
Inductive step:

Let i ∈ �L�, and suppose that conv(projgi (P
IP
ᾱ I

)) = projgi (P
LP
ᾱ I

) = [ai , bi ]. Then, observ-
ing (23) and (24), we find that there are three cases.

Case 1: If i ∈ I and ᾱi = 0, then in both PLP
ᾱ I

and P IP
ᾱ I
, we have gi−1 = 1

2 gi , yielding

conv(projgi−1
(P IP

ᾱ I
)) ⊆ projgi−1

(PLP
ᾱ I

) = [ 12ai , 1
2bi ].

Furthermore,ai , bi ∈ projgi (P
IP
ᾱ I

)yields 1
2ai ,

1
2bi ∈ projgi−1

(P IP
ᾱ I

). This implies [ 12ai , 1
2bi ] ⊆

conv(projgi−1
(P IP

ᾱ I
)), yielding

conv(projgi−1
(P IP

ᾱ I
)) = projgi−1

(PLP
ᾱ I

) = [1 − 1
2ai , 1

1
2bi ]

Note that [ai , bi ] �= ∅ ⇒ [ 12ai , 1
2bi ] �= ∅, and that [ai , bi ] ⊆ [0, 1] ⇒ [ 12ai , 1

2bi ] ⊆ [0, 1].
Case 2: If i ∈ I and ᾱi = 1, then in both PLP

ᾱ I
and P IP

ᾱ I
, we have gi = 1 − 1

2 gi , yielding

conv(projgi−1
(P IP

ᾱ I
)) ⊆ projgi−1

(PLP
ᾱ I

) = [1 − 1
2bi , 1 − 1

2ai ].
Furthermore, ai , bi ∈ projgi (P

IP
ᾱ I

) yields 1 − 1
2bi , 1 − 1

2ai ∈ projgi−1
(P IP

ᾱ I
). This implies

[1 − 1
2bi , 1 − 1

2ai ] ⊆ conv(projgi−1
(P IP

ᾱ I
)), yielding

conv(projgi−1
(P IP

ᾱ I
)) = projgi−1

(PLP
ᾱ I

) = [1 − 1
2bi , 1 − 1

2ai ].
Note that [ai , bi ] �= ∅ ⇒ [1− 1

2bi , 1− 1
2ai ] �= ∅, and [ai , bi ] ⊆ [0, 1] ⇒ [1− 1

2bi , 1− 1
2ai ] ⊆

[0, 1].
Case 3: If i /∈ I , then P IP

ᾱ I
and PLP

ᾱ I
model different relations between gi and gi−1.

In PLP
ᾱ I
, we have

gi ≤ 2gi−1

gi ≤ 2(1 − gi−1),

which can be written as

gi−1 ≥ 1
2 gi ≥ 1

2ai
gi−1 ≤ 1 − 1

2 gi ≤ 1 − 1
2ai .

Further, as ai ∈ projgi (P
LP
ᾱ I

), we have that

projgi−1
(PLP

ᾱ I
) = [ 12ai , 1 − 1

2ai ]),
where ai ∈ [0, 1] implies 1

2ai ∈ [0, 1
2 ], so that [ 12ai , 1 − 1

2ai ] �= ∅. Thus,
conv(projgi−1

(P IP
ᾱ I

)) ⊆ projgi−1
(PLP

ᾱ I
) = [ 12ai , 1 − 1

2ai ].
To show [ 12ai , 1 − 1

2ai ] ⊆ conv(projgi−1
(P IP

ᾱ I
), we have only to show that the endpoints

are in projgi−1
(P IP

ᾱ I
). To this end, let gi = ai . In P IP

ᾱ I
, we can choose either αi = 0 or αi = 1. If

αi = 0, we have that gi−1 = 1
2 gi = 1

2ai , while if αi = 1, we have gi−1 = 1− 1
2 gi = 1− 1

2ai .
Thus, we have [ 12ai , 1 − 1

2ai ] ⊆ conv(projgi−1
(P IP

ᾱ I
)), yielding

conv(projgi−1
(P IP

ᾱ I
)) = projgi−1

(PLP
ᾱ I

) = [ 12ai , 1 − 1
2ai ] �= ∅,

as desired. ��
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Note that conv(projx (P
IP
ᾱ I

)) = projx (P
LP
ᾱ I

) is a direct corollary of the above lemma. This
fact will be helpful during the proof of hereditary sharpness. Next, to prove hereditary sharp-
ness, we want to show that if we fix some gi to either ai or bi , then for each j > i , we have
that g j has only one feasible solution e j in PLP

ᾱ I
, where e j ∈ {ai , bi }.

Lemma 4 (Single solution at endpoints) For all i ∈ �0, L� and ĝi ∈ {ai , bi }, we have for
all j ≥ i that projg j

(PLP
ᾱ I

|gi=ĝi ) = {e j }, where e j ∈ {a j , b j }.
Proof We will proceed by induction. Let ĝi ∈ {a0, b0}. Fortunately, the base case is trivial,
since we have chosen gi ∈ {ai , bi }.

Thus, for an induction, let j ∈ �i+1, L�, and assume that projg j−1
(PLP

ᾱ I
|gi=ĝi ) = {e j−1} ⊂

{a j−1, b j−1}. Then there are three cases.
Case 1: If j ∈ I and ᾱ j = 0, then we have g j = 2g j−1, so that projg j

(PLP
ᾱ I

|gi=ĝi ) =
{2e j−1} =: {e j }. Now, by Lemma 3, we have that a j = 2a j−1 and b j = 2b j−1, so that
e j−1 ∈ {a j−1, b j−1} ⇒ e j ∈ {a j , b j }.

Case 2: If j ∈ I and ᾱ j = 1, then we have g j = 2(1−g j−1), so that projg j
(PLP

ᾱ I
|g j=ĝ j ) =

{2(1 − e j−1)} =: {e j }. Now, by Lemma 3, we have that a j = 2(1 − b j−1) and b j =
2(1 − a j−1), so that e j−1 ∈ {a j−1, b j−1} ⇒ e j ∈ {a j , b j }.

Case 3: If j /∈ I , then we have by Lemma 3 a j = 2a j−1 = 2(1 − b j−1), with a j ≤ 1
2

and b j ≥ 1
2 . Further, we have in PLP

ᾱ I
that

g j ≤ 2g j−1 = 2e j−1,

g j ≤ 2(1 − g j−1) = 2(1 − e j−1).

Now, if e j−1 = a j−1, then 2e j−1 = 2a j−1 ≤ 1, while 2(1 − e j−1) = 2(1 − a j−1) ≥ 1.
Thus, these bounds consolidate to a j ≤ g j ≤ 2a j−1 = a j , which implies g j = a j .

On the other hand, if e j−1 = b j−1, then 2e j−1 = 2b j−1 ≥ 1, while 2(1 − e j−1) =
2(1 − b j−1) ≤ 1. Thus, these bounds consolidate to a j ≤ g j ≤ 2(1 − b j−1) = a j ,
which implies g j = a j . Thus, in this case, we have projg j

(PLP
ᾱ I

|gi=ĝi ) = {a j } =: {e j }. This
completes the proof. ��

Now, computing all ai and bi via Lemma 3, we obtain the following form for
projx,y,g{PLP|I ,ᾱ I }:

y = g0 − ∑L
i=1 2

−2i gi
g0 = x
gi ≤ 2gi−1 i ∈ �L�\I
gi ≤ 2(1 − gi−1) i ∈ �L�\I
gi = 2gi−1(1 − ᾱi ) + 2(1 − gi−1)ᾱi i ∈ I
gi ∈ [ai , bi ] i ∈ �L�.

(27)

Now, note that, for each i ∈ �L�, gi has negative coefficient in first equation of (27). Note
also that this is the only constraint in (27) involving y. Thus, if we are to minimize over y,
then we implicitly maximize gi , and so gi will tend towards its upper bound. Furthermore, it
turns out that, in any y-minimal or y-maximal solution in PLP

ᾱ I
given some fixed value of x ,

each gi can be explicitly computed from gi−1 using only the constraints from (27) directly
connecting gi and gi−1. We refer to this as the greedy solution property described in Lemma
5 below, and it holds due to the rapid decay of coefficients of gi ’s.

For each i ∈ �L� \ I , let bi be as in Lemma 3, and define

ui (gi−1) := min{bi , 2gi−1, 2(1 − gi−1)}. (28)
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Lemma 5 Let ai , bi as in Lemma 3, and let x̂ ∈ [a0, b0]. Define
(y∗, g∗) = argmin{y : (y, g) ∈ projy,g(P

LP
I ,ᾱ I

|x=x̂ )}, (29a)

(y�, g�) = argmax{y : (y, g) ∈ projy,g(P
LP
I ,ᾱ I

|x=x̂ )}. (29b)

Then, for i /∈ I , we have

g∗
i = ui (gi−1)

g�
i = ai .

That is, one of the upper bounds is tight for each gi when maximizing y, while the domain
lower bound is tight for gi when minimizing y.

Proof Let x̂ ∈ [a0, b0]. Then PLP
ᾱ I

|x=x̂ �= ∅ by Lemma 3.
We begin by proving that g∗

i = ui (g∗
i−1) for all i /∈ I . Suppose for a contradiction that,

for some subset j ∈ J ⊆ �L�\ I and ε j > 0, we have g∗
j = u j (g∗

j−1)−ε j . Let i be maximal
in J , so that g∗

j = u j (g∗
j−1) for all j > i . Then we have i /∈ I , since otherwise we have

g∗
i = 2gi−1(1 − ᾱi ) + 2(1 − gi−1) = u j (g∗

j−1) from (27).
Let g̃ j = u j (g j−1) for all j ≥ i . for convenience, define

g̃ = (g∗
0 , . . . g

∗
i−1, g̃i , . . . , g̃L).

To show that this choice is feasible, i.e., g̃ ∈ projg(P
LP
ᾱ I

), we make an inductive observation.
First, note that g̃i−1 = g∗

i−1 ∈ [ai−1, bi−1] by Lemma 3, with g̃�0,i−1� ∈ projg�0,i−1�
(PLP

ᾱ I
).

Furthermore, for any j , g̃�0, j−1� ∈ projg�0, j−1�
(PLP

ᾱ I
) implies that there exists some g j ∈

projg j
(PLP

ᾱ I
|g�0, j−1�= g̃�0, j−1�

) ⊆ [a j , b j ], and g̃ j is the largest such value by construction,

yielding g̃ j ∈ [a j , b j ] and g̃�0, j� ∈ projg�0, j�
(PLP

ᾱ I
).

Now, we have by definition that g̃i − g∗
i = εi . Furthermore, observe that for all j > i ,

u j (g j−1) is Lipschitz continuous with Lipschitz constant 2, yielding

|g̃ j − g∗
j | = |u j (g̃ j−1) − u j (g∗

j−1)| ≤ 2|g̃ j−1 − g∗
j−1|

Applying this recursively yields, for all j > i ,

|g̃ j − g∗
j | ≤ 2 j−iε.

Note that this implies that, for j > i , we have g̃ j − g∗
j ≥ −2 j−iε. Then we have

y∗ − ỹ = 2−2i (g̃i − g∗
i ) + ∑L

j=i+1 2
−2 j (g̃ j − g∗

j )

≥ 2−2iε + ∑L
j=i+1 2

−2 j (−2 j−iε)

= 2−iε
(
2−i − ∑L

j=i+1 2
− j

)
= 2−iε(2−i − (2−i − 2−L))

= 2−(i+L)ε.

(30)

However, this is a contradiction: it implies ỹ < y∗, but y∗ was optimal! Thus, all gi must
take on their upper-bounds given gi−1.

Next, we prove that g�
i = ai for all i /∈ I . The idea behind the proof is identical, with

a notable simplifying difference: there is only one (constant) lower-bound ai on each gi for
i /∈ I . Thus, when enforcing that each g�

j = ai for j > i , j /∈ I with gi = ai + ε, the shift
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from g�
i to g̃i effects no change in g j , j > i . That is, if i + 1 /∈ I , g̃i+1 − g�

i+1 = 0, yielding
g̃ j − g�

j = 0 for j ≥ i + 1, so that (31) simplifies to

ỹ − y� = 2−2i (g∗
i − g̃i ) = 2−2iε, (31)

implying ỹ > y�, a contradiction. On the other hand, if i + 1 ∈ I , let k = min{ j ∈ L − I :
j ≥ i + 2}. Then, for each j ∈ �i + 1, . . . , k − 1�, we have |g̃i − g�

i | = 2 j−iε. Furthermore,
as k /∈ I , we have g̃k = ak = g�

k , so that g̃k = g�
k for all j > k, yielding

ỹ − y� = 2−2i (g�
i − g̃i ) + ∑k−1

j=i+1 2
−2 j (g̃ j − g∗

j )

≥ 2−2iε + ∑k−1
j=i+1 2

−2 j (−2 j−iε)

= 2−iε
(
2−i − ∑k−1

j=i+1 2
− j

)
= 2−iε(2−i − (2−i − 2−(k−1)))

= 2−(i+k−1), ε

(32)

again implying ỹ > y�, a contradiction. ��
Observation 1 Since each ui , defined in (28), is a continuous piecewise linear function,
Lemma 5 recursively implies that each g∗

i is continuous in x , and is a function of g∗
i−1.

As a corollary to Lemma 4 and Lemma 5, we have that, for the optimal solution to the
minimization problem in Lemma 5, we have that g j = b j < G(g j−1) for exactly one value
of j if x̂ is not feasible in P IP

ᾱ I
.

Corollary 1 For all x̂ ∈ projx (P
LP
ᾱ I

) \ projx (P
IP
ᾱ I

), define (y∗, g∗) as in (29a). Then we have
for exactly one j ∈ �L� \ I that g∗

j = b j < G(g∗
j−1).

Furthermore, let x1, x2 ∈ projx P
IP
ᾱ I

be such that for all λ ∈ (0, 1), we have x̂ :=
λx1 + (1 − λ)x2 /∈ projx P

IP
ᾱ I

= ∅. Then the uniquely determined j discussed above is the

same for all x̂ ∈ (x1, x2) where (x1, x2) denotes the open interval between x1 and x2.

Proof Consider the first j ∈ �L� \ I for which g∗
j = b j . Such a j exists; otherwise,

Lemma 5 would give g∗
i = Gi (gi−1) for all i ∈ �L�, a contradiction on the choice of x̂

since there is a corresponding feasible choice of α∗ ∈ {0, 1}L . Then, by Lemma 4, the
set projg� j+1,L�

(PLP
ᾱ I

|g j=g∗
j
) consists of only a single point, for which each gi ∈ {ai , bi } for

i ≥ j + 1. Furthermore, by Lemma 4, this point is also in projg� j+1,L�
(P IP

ᾱ I
|g j=g∗

j
) so that

g∗
i = Gi (g∗

j−1) for all i ≥ j + 1. Further, if g∗
j = G(g∗

j−1) = b j , then we would obtain
g∗ ∈ projg P IP

x=x̂ , a contradiction on the choice of x̂ . Thus, as g∗
j ≤ G(g∗

j−1) by Lemma 5,
we must have that g∗

j = b j < G(g∗
j−1).

Now, let x1, x2 ∈ projx P
IP
ᾱ I

be such that (x1, x2) ∩ projx P
IP
ᾱ I

= ∅. Suppose that there is
some x̂ ∈ (x1, x2) such that, for all sufficiently small ε > 0, we have that the value j1 in
for x − ε is different from the value j2 for x + ε. In this case, since the g∗

j is continuous
in x and g∗

j−1, we have at x̂ that both g∗
j1

= b j1 = G j1(g
∗
j1−1) and g∗

j2
= b j2 = G j2(g

∗
j2
).

Furthermore, for all other i ∈ �L� \ I , we have by continuity that g∗
i = Gi (g∗

i−1), yielding
g∗
i = Gi (g∗

i−1) for all i . This yields g
∗ ∈ projg P IP

ᾱ I
, a contradiction on the choice of x̂ . ��

With this greedy solution property and the following corollary, we are ready to prove the
hereditary sharpness of P IP as a formulation for QIP. It is helpful to note that, for theminimizer
solutions in Lemma 5, g∗

i < bi implies g∗
i = Gi (gi−1). Furthermore, if g ∈ projg(P

LP
ᾱ I

) and
g∗
i = Gi (gi−1) for all i ∈ �L� \ I , then we have g ∈ projg(P

IP
ᾱ I

).
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Theorem 3 QIP is hereditarily sharp.

Proof Let a0, b0 as in Lemma 3, so [a0, b0] = projx (P
LP
ᾱ I

) = conv(projx (P
IP
ᾱ I

)).
Let x̂ ∈ [a0, b0]. We need to show that QLP

ᾱ I
= conv(QIP

ᾱ I
). Since both sets are compact

convex sets inR2, it suffices to show that QLP
ᾱ I

|x=x̂ = conv(QIP
ᾱ I

)|x=x̂ . In this vein, we define
the upper and lower bounds in y for each set

[yLP
l (x̂), yLP

u (x̂)] =
[
min{y : (x, y) ∈ QLP

ᾱ I
|x=x̂ },max{y : (x, y) ∈ QLP

ᾱ I
|x=x̂ }

]
,

[yIP
l (x̂), yIP

u (x̂)] =[
min{y : (x, y) ∈ conv(QIP

ᾱ I
)|x=x̂ },max{y : (x, y) ∈ conv(QIP

ᾱ I
)|x=x̂ }

]
.

We will show that the upper and lower bounds coincide.
Lower bounds We begin by showing that y IP

l (x) = yLP
l (x). Since x̂ ∈ projx (P

LP
ᾱ I

), we have
two cases. If x̂ ∈ projx (Q

IP
ᾱ I

), then due to sharpness by Theorem 1, we have

min{y : y ∈ QIP
ᾱ I

|x=x̂ } ≥ min{y : y ∈ QLP
ᾱ I

|x=x̂ }
≥ min{y : y ∈ QLP|x=x̂ }
= min{y : y ∈ QIP|x=x̂ }
= min{y : y ∈ QIP

ᾱ I
|x=x̂ },

and so the result holds. In order, the four relations hold by: relaxation; relaxation; sharpness;
and the fact that P IP|x=x̂ consists of a single point for feasible x̂ , so that the restriction does
not change the optimal solution.

Otherwise, x̂ /∈ projx (Q
IP
ᾱ I

). Let

(y∗, g∗) := argmin{y : (y, g) ∈ projy,g(P
LP
ᾱ I

|x=x̂ )}
and let x1 < x̂ and x2 > x̂ be the closest lower and upper bounds to x̂ in projx (Q

IP
ᾱ I

) (such

points exist by Lemma 3). Let (x1, y1, g1,α1), (x2, y2, g2,α2) ∈ P IP
ᾱ I

be chosen such that

α1 ∈ projα P IP
ᾱ I

|x∈(x1−2−L ,x1) and α2 ∈ projα P IP
ᾱ I

|x∈(x2,x2+2−L ). According to Theorem 2,

α1 and α2 are the Gray codes for some integers i j and i j+1. By Lemma 2, we know that
there exists exactly one index k ∈ �L� such that α1

i = α2
i for all i �= k and α1

k = 1 − α2
k .

It follows that g1 and g2 satisfy the equations

gi = Gi (gi−1, α
1
i ) = 2gi−1(1 − α1

i ) + 2(1 − gi−1)α
1
i i ∈ �L� \ k. (33)

Furthermore, by Lemma 5, for the y-minimal solution at all three x-values, we have that all
gi , i ∈ �L� \ I take on ui (gi−1) = min{2gi−1, 2(1 − gi−1), bi }. This function is linear if
i ∈ I ; otherwise, it is the minimum of three functions: two linear, and one constant.

Choose λ ∈ [0, 1] such that x̂ = λx1 + (1 − λ)x2 and define ŷ and ĝ by
(x̂, ŷ, ĝ) = λ(x1, y1, g1) + (1 − λ)(x2, y2, g2). By convexity of PLP

ᾱ I
, the point (x̂, ŷ, ĝ) is

in projx,y,g(P
LP
ᾱ I

). We want to show that (x̂, ŷ, ĝ) = (x̂, y∗, g∗). To do so, by Lemma 5, we
have only to show that all ĝi = ui (ĝi−1).

By convexity, since g1 and g2 satisfy (33), it follows that ĝ satisfies it as well. Hence,
ĝi = Gi (ĝi−1, α

1
i ) for all i �= k. Furthermore, we have by induction that g∗

i = ĝi for all
i ≤ k − 1: (base case) g∗

0 = ĝ0 = x̂ ; (inductive case) for i ≤ k − 1, if g∗
i−1 = ĝi−1, then by

Lemma 5, we have

ĝi ≤ max{gi : (x, y, g,α) ∈ PLP
ᾱ I

|gi−1=ĝi−1} = g∗
i = ui (ĝi−1) ≤ Gi (ĝi−1, α

1
i ) = ĝi ,
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so that ĝi = g∗
i = Gi (ĝi−1, α

1
i ). Similarly, we have ĝk ≤ g∗

k . We will show that ĝk = bk .
To do so, we will first show that g∗

k = bk . If this holds, then since x̂ was arbitrary, and
since g∗

k is continuous in x̂ by Observation 1, we have that g1k = g2k = bk . Since ĝk is a
convex combination of g1k and g2k , this yields ĝk = bk .

To show g∗
k = bk , we first note that, by Corollary 1, there exists some j ∈ �L�\ I such that,

for all x̂ ∈ (x1, x2), we have g∗
j = b j < G(g∗

j−1), with g∗
i < bi for all i < j . Furthermore,

since g∗
i = G(g∗

i−1) for i ∈ �k − 1� \ I , we must have that j ≥ k. To establish that j = k,

we will show that g∗
k = bk when λ = 1

2 , implying that j > k is impossible, since then we
would have g∗

k < bk .
Now, define Ĩ = �L� \ {k}, and define α̃I so that α̃i = α1

i for all i ∈ Ĩ . Define ãi and b̃i
as in Lemma 3 for PLP

α̃ Ĩ
. Let

(ỹ, g̃) := argmin{y : (y, g) ∈ projy,g(P
LP
α̃ Ĩ

|x=x̂ )}.

Then by Lemma 5, we have g̃k = min{b̃k,G(g̃k−1)}. However, g̃k = G(g̃k−1) would yield
g̃ ∈ projg(P

IP
α̃ Ĩ

), a contradiction on the choice of x̂ . Thus, we have g̃k = b̃k . Since x̂ was

arbitrary and since g̃k is continuous in x̂ by Observation 1, this implies that g1k = g2k = b̃k .
Now, this allows us to compute g1k−1 and g2k−1 given α1

i , which will allow us to compute b∗
k

for λ = 1
2 via g∗

k−1 = ĝk−1 and g∗
k = uk(g∗

k−1).

To compute ĝk−1, there are two cases. Either α1 = 0, yielding g1k−1 = 1
2 b̃k and g2k−1 =

1 − 1
2 b̃k , or α1 = 1, yielding g1k−1 = 1

2 (1 − b̃k) and g2k−1 = 1
2 b̃k . In either case, we have

g1k−1 + g2k−1 = 1, and so

g∗
k−1 = ĝk−1 = 1

2 (g
1
k−1 + g2k−1) = 1

2 ,

yielding by Lemma 5 that

g∗
k = min{2g∗

k−1, 2(1 − g∗
k−1), bk} = min{1, 1, bk} = bk,

as required.Thus, since ĝk = bk and ĝi satisfies (33) for all i �= k, it follows that ĝi = ui (ĝi−1)

for all i ∈ �L�. Hence, by Lemma 5, we have g∗ = ĝ.
Upper bounds For the upper bounds, note that (x, y) ∈ QIP implies y = F(x), where F is a
convex function. Furthermore, byLemma4,we have that yIP

l (x) = yIP
u (x) = yLP

u (e0) = yLP
l (x)

for x ∈ {a0, b0} (as the extended-space solutions are unique in PLP
ᾱ I

for x ∈ {a0, b0}). Thus,
by the convexity of F , we have that y IP

u = yLP
u if and only if for all x ∈ [a0, b0], we have for

some λ ∈ [0, 1] that (x, yLP
u (x)) = λ(a0, F(a0)) + (1 − λ)(b0, F(b0)). Alternatively, since

yLPu (x) = F(x) for x ∈ [a0, b0], it suffices to show that yLP
u (a0) = F(a0), yLP

u (b0) = Fb0 ,
and that yLP

u is a linear function of x .
To this end, consider any x ∈ projx (P

LP
ᾱ I

), and consider (y, g) = maxy{(y, g) ∈
projy,g(P

LP
ᾱ I

|x )}. Then by Lemma 5, we have for all i ∈ �L�, i /∈ 1 that gi = ai , which
is a constant, while for all i ∈ I we have that gi = G(gi−1, ᾱi ). Thus, eliminating all g′

i s,
we find that, y∗ is defined as y∗ = x − t(x), where t(x) is some linear function of x , and
thus so is y∗(x), as required. ��

4.2 A connection with existingMIP formulations

Interestingly, Gray codes also naturally appear in the “logarithmic” MIP formulations for
general continuous univariate piecewise linear functions due to Vielma et al. [52, 53]. Con-
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sider applying this existing formulation3 to approximate the univariate quadratic term with
the same 2L + 1 breakpoints as discussed in Sect. 3. The resulting MIP formulation uses L
binary variables, which follow the same interpretation as the neural network formulation as
discussed in Theorem 2. Moreover, it requires O(L) linear constraints (excluding variable
bounds), and is ideal, a stronger property than the sharpness shown in Theorem 3. However,
it comes at the price of an additional 2L +1 auxiliary continuous variables, and so is unlikely
to be practical without a careful handling through, e.g., column generation. Therefore, our
formulation sacrifices strength to reduce this to O(L) auxiliary continuous variables.

5 Convex hull characterization

We explore a facet characterization of the convex hull of our model. Such a characterization
could be used to improve the branch & cut scheme when solving MIPs with our model.

Although (7) offers a convex hull formulation for a single “layer” in our construction, the
composition over multiple layers (L > 1) in (8) will in general fail describe the integer hull.
We characterize additional valid inequalities for the integer hull of (8) that are derived via a
connection with the parity polytope.

We begin by rewriting the relationship between the variables associated with each layer
with the quadratic recurrence relation

gi = (1 − 2αi )(2gi−1 − 1) + 1 i ∈ �L�. (34)

For convenience, let hi := 2gi − 1 and ai := (1 − 2αi ) for each i ∈ �L�. Then after some
simple algebraic manipulation, (34) is equivalent to

hi = 2ai hi−1 + 1 i ∈ �L�.

Expanding the recurrence relation, we have

hL = 2L
(

L∏
i=1

ai

) (
h0 +

L−1∑
i=1

1

2i
∏i

j=1 a j

)
+ 1.

Define bi := ∏i
j=1 a j for each i ∈ �L�. As each a j ∈ {−1,+1}, each bi ∈ {−1,+1} as

well, and so bi = 1/bi . Hence,

hL = 2LbL

(
h0 +

L−1∑
i=1

2−i bi

)
+ 1. (35)

Multiplying both sides of (35) by bL ∈ {−1,+1} yields

hLbL = 2L
(
h0 +

L−1∑
i=1

2−i bi

)
+ bL . (36)

Combining this with the McCormick inequality hL + bL − 1 ≤ hLbL that is valid for the
bilinear left-hand side of (36) (recall hL , bL ∈ [−1,+1]), we derive the following valid

3 In actuality, anyGray code, not just the reflectedGray code studied in this paper, yields a (potentially distinct)
logarithmic formulation for a univariate function. Here, we mean the one constructed with the reflected Gray
code, which is the most common choice regardless.
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inequalities:

hL ≤ 2L
(
h0 +

L−1∑
i=1

2−i bi

)
+ 1, (37a)

hL ≤ −2L
(
h0 +

L−1∑
i=1

2−i bi

)
+ 1. (37b)

which can be readily mapped back to the original space of variables.

Proposition 3 The following inequalities are valid for (8):

gL ≤ 2L−1

⎛
⎝2g0 − 1 +

L−1∑
i=1

2−i
i∏

j=1

(1 − 2α j )

⎞
⎠ + 1 (38a)

gL ≤ −2L−1

⎛
⎝2g0 − 1 +

L−1∑
i=1

2−i
i∏

j=1

(1 − 2α j )

⎞
⎠ + 1 (38b)

If L = 2, then (37a) and (37b) are both linear inequalities in g and α.

Based on computational observations, for L = 2, these are exactly the nontrivial facet-
defining linear inequalities for the integer hull of (8). For L > 2, we can produce a large
class of valid inequalities by bounding the product variables bi . In particular, bounds on these
products can be derived from valid inequalities for the parity polytope.

5.1 Parity inequalities

The parity polytope is the convex hull of Peven
n , the set of all α ∈ {0, 1}n whose components

sum to an even number. It has 2n−1 facets of the form∑
i∈�n�\I

αi +
∑
i∈I

(1 − αi ) ≥ 1 I ⊆ �n� s.t. |I | is odd. (39)

Define βi ∈ {0, 1}, such that bi = (1 − 2βi ). Then

1 = b2j = (1 − 2β j )

j∏
i=1

(1 − 2αi ) = (−1)β j+∑ j
i=1 αi . (40)

Hence, for αi ∈ {0, 1}, the sum β j +∑ j
i=1 αi is even and therefore (β j , α1, . . . , α j ) ∈ Peven

j+1 .
Therefore, we can apply (39) to derive valid inequalities for feasible solutions to (8) of the
form

β j +
∑

i∈� j�\I
αi +

∑
i∈I

(1 − αi ) ≥ 1 I ⊆ � j� s.t. |I | is odd, (41a)

(1 − β j ) +
∑

i∈� j�\I
αi +

∑
i∈I

(1 − αi ) ≥ 1 I ⊆ � j� s.t. |I | is even. (41b)
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After recalling the definition b j = (1 − 2β j ) and rearranging, we are left with

b j ≤ 2

⎛
⎝ ∑

i∈� j�\I
αi +

∑
i∈I

(1 − αi )

⎞
⎠ − 1 I ⊆ � j� s.t. |I | is odd, (42a)

−b j ≤ 2

⎛
⎝ ∑

i∈� j�\I
αi +

∑
i∈I

(1 − αi )

⎞
⎠ − 1 I ⊆ � j� s.t. |I | is even. (42b)

Hence, combining these upper bounds on bi with (37a) and the upper bounds on −bi with
(37b) produces an exponential family of valid inequalities for feasible solutions to (8). We
call these parity inequalities.

Example 2 For L = 4, we compute some of the nontrivial facet-defining inequalities of (8),
written in terms of the original variables:

g4 ≤ 16g0 − 14α1 + 6α2 + 2α3,

g4 ≤ 16g0 − 2α1 − 6α2 + 2α3,

g4 ≤ − 16g0 + 14α1 + 6α2 + 2α3 + 2,
g4 ≤ − 16g0 + 2α1 − 6α2 + 2α3 + 14.

Each of these inequalities is, in fact, a parity inequality, and can be constructed by a suitable
combination of either (37a) with inequalities from (42a), or (37b) with inequalities from
(42b).

For example, the facet g4 ≤ 16g0 − 14α1 + 6α2 + 2α3 is equivalent to

h4 ≤ 16h0 + 15 + 2(−14α1 + 6α2 + 2α3),

which can be produced as a conic combination of the inequality

h4 ≤ 24
(
h0 + 1

2
b1 + 1

4
b2 + 1

8
b3

)
+ 1

from (37a) with the inequalities

b1 ≤ 2
(
(1 − α1)

) − 1,

b2 ≤ 2
(
(1 − α1) + α2

) − 1,

b3 ≤ 2
(
(1 − α1) + α2 + α3)

) − 1

from the family (42a) corresponding to I = {1} for all j = 1, 2, 3, respectively.

5.2 Separation over exponentially many parity inequalities

Since there may be exponentially many parity inequalities, we provide an algorithm to sep-
arate over them. In particular, given a point (g, α) ⊆ [0, 1]L+1 × [0, 1]L , we can determine
if it lies in the intersection of the parity inequalities by computing the inequalities that give
smallest upper bounds for b j for each j ∈ �L�. To do so, for each b j , we need to determine the
set I j ⊆ � j� that minimizes the right-hand side of equation (42a) or (42b). This can be done,
in fact, by optimizing over another parity polytope. That is, set I j := {i ∈ � j� : z∗i = 1},
where

z∗ ∈ argminz∈{0,1} j {
j∑

i=1

ziαi + (1 − zi )(1 − αi )|
j∑

i=1

(1 − zi ) is odd}.
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Linear functions can be optimized over the parity polytope in polynomial time via a linear
size extended formulation [38], or bywriting an integer programwith a single integer variable
[7], or by a simple greedy-like algorithm. An analogous approach can be taken if the sum of
zi should be odd.

6 Area comparisons

The approximation presented above is an over approximation of y = x2. This is sufficient for
providing dual bounds due how the approximation is applied using the diagonal perturbation.
However, our formulation can also be altered slightly to provide an under approximation of
y = x2, and in particular, creates a covering of the curve with a union of polytopes. We
describe two relaxations that are comparable to that of Dong and Luo [23]. We then compare
these models based on the combined area of the covering to see how these methods converge.

We construct our first relaxation, named NN-R1, from the constraints (7) and

y ≤ x −
L∑

i=1

gi
22i

(43a)

y ≥
⎛
⎝x −

j∑
i=1

gi
22i

⎞
⎠ − 1

22 j+2 j ∈ �L − 1� (43b)

y ≥ 2x − 1 (43c)

y ≥ 0 (43d)

We can form a tighter relaxation NN-R2 by starting with NN-R1, then adding the cut (43b)
with j = L:

y ≥
⎛
⎝x −

j∑
i=1

gi
22i

⎞
⎠ − 1

22 j+2 j ∈ �L�. (44)

Tables 2 and 1 compare the volume of our relaxed method with the method of Dong and
Luo [23] on the intervals x ∈ [0, 1] and x ∈ [−2, 1], respectively. As L increases, the volume
of our relaxation consistently shrinks by a factor of 4, which is strictly greater by a fair margin
to the improvement rate observed for the method of Dong and Luo. We can formalize our
rate of improvement in the following proposition.

Proposition 4 The volume of our approximation decreases by a factor of 4 with each sub-
sequent layer (i.e. as L increases). Furthermore, the expected error at points x sampled
uniformly at random from the input interval domain is proportional to the total volume.

Proposition 4 relies on the characterization of NN-R1 as the piecewise McCormick relax-
ation of y = x2 at uniformly-spaced breakpoints. For one piece [x1, x2], this relaxation
consists of the tangent lines, or outer-approximation cuts, at x1 and x2 for the lower bound,
and the secant line between x1 and x2 for the upper bound. We have already established
that the upper bound, the NN approximation, is a piecewise interpolant to x2 at the chosen
breakpoints, yielding the secant line on each interval [x1, x2] between interpolation points,
and thus the upper-bound of the piecewise McCormick approximation. In Lemma 6 below,
we show that the lower bound of the NN-R1 and NN-R2 approximations give the piecewise
McCormick lower bounds for 2L and 2L+1 uniformly-spaced breakpoints, respectively.
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Lemma 6 Define T as the lower-bounding set in (x, y) for the relaxation NN-R2, T =
projx,y{(x, y, g,α) ∈ [0, 1] ×R× [0, 1]L × {0, 1}L : (44, (43c, (43d, and (7)}. Then T can

be constructed via 2L+1 + 1 uniformly-spaced outer-approximation cuts for y ≥ x2 on the
interval [0, 1], based on the tangent lines to x2 at xi = i · 2−(L+1), i = 0, . . . , 2(L+1). That
is, letting px̂ (x) be the tangent line to y = x2 at the point x̂ ,

px̂ (x) = 2x̂(x − x̂) + x̂2 = x̂(2x − x̂), (45)

T is equivalent to
{
(x, y) ∈ [0, 1] × R : y ≥ px̂ (x) ∀i ∈ {0, . . . , L}, x̂ = i · 2−(L+1)

}
.

Proof To begin, we note that, as shown by Yarotsky [57], we have that for each l = 0, . . . , L ,
Fl(x) gives a piecewise-linear interpolant in y = x2 at 2l + 1 uniformly-spaced points on
x ∈ [0, 1]. That is, for each i ∈ {0, 1, . . . , 2l}, we have that Fl(i · 2−l) = (i · 2−l)2.

For x1 < x2, Consider a single linear interpolant to y = x2 on the interval [x1, x2], given
as

h(x) = x22 − x21
x2 − x1

(x − x1) + x21

= (x1 + x2)(x − x1) + x21 .
(46)

Since h(x) − x2 is concave, the deviation h(x) − x2 is maximized when d
dx (h(x) − x2) =

x1 + x2 − 2x = 0, yielding x∗ = x1+x2
2 . At this point, we have

h(x∗) − (x∗)2 = (x1 + x2)

(
x1 + x2

2
− x1

)
+ x21 − (

x1 + x2
2

)2

= 1
2 (x1 + x2)2 − 1

4 (x1 + x2)2 − (x1 + x2)x1 + x21
= 1

4 (x1 + x2)2 − x1x2
= 1

4 x
2
1 + 1

2 x1x2 − x1x2 + 1
4 x

2
2

= 1
4 (x2 − x1)2.

(47)

Thus, we have that (x∗)2 = h(x∗) − 1
4 (x2 − x1)2. Since x2 is a convex function, and since

h − 1
4 (x2 − x1)2 is tangent to x2 at x∗ (as both slopes are x2 − x1), this implies that for all

x ∈ [0, 1], we have (x∗)2 ≥ h(x) − 1
4 (x2 − x1)2.

Now, since Fl(x) is a linear interpolant to y = x2 on each interval [i · 2−l , (i + 1) · 2−l ],
with interval width 2−l , we have that the cuts y ≥ Fl(x)− 1

42
−2l = Fl(x)−2−2l−2 are valid

for y = x2, and furthermore are tangent to x2 at the point x = (i + 1
2 ) · 2−l , the midpoints

of all interpolants. Thus, we obtain outer-approximation cuts at x = (i + 1
2 ) · 2−l for each

i = 0, . . . , 2l − 1.
We obtain T by applying these cuts for l = 0, . . . , L , combined with the outer-

approximation cuts y ≥ 0 (tangent at x = 0) and y ≥ 2x − 1 (tangent at x = 1). We
now show that this yields 2L+1 + 1 uniformly-spaced outer-approximation cuts to y = x2.
This can be easily seen by expressing the outer-approximation points in binary. The points
x = (i + 1

2 ) · 2−l for each i = 0, . . . , 2l − 1 can be characterized as exactly the numbers
in (0, 1) such that the (l + 1)th binary decimal is a 1, and all later binary decimals are zero.
Alternatively, it is the set of points

Pl :=
{
x ∈ [0, 1] : ∃ a ∈ {0, 1}l s.t. x = 2−(l+1) +

l∑
i=1

2−i ai

}
.

We then have that the set of outer-approximation points, x ∈ {0, 1} ∪ ⋃
l∈�0,L� Pl , is the

set of all binary decimals in the interval [0, 1] for which the last 1 occurs no later than the
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L+1st decimal place, which has cardinality 2L+1+1. This forms the set of uniformly-spaced
points i ·2−(L+1), i = 0, . . . , 2L+1. Thus, we have that the set T consists of a set of 2L+1 +1
uniformly-spaced outer-approximation cuts to the function y = x2, as required. ��

With Lemma 6, we establish that the NN-R1 relaxation is equivalent to the piecewise
McCormick relaxation of y = x2 on the uniformly-spaced breakpoints xi = 2−L i , i ∈
�0, 2L�. We now establish the area of any given piece of the relaxation.

Lemma 7 The area of the McCormick Relaxation of y = x2 on the interval [x1, x2] is
1
4 (x2 − x1)3.

Proof We wish to obtain a closed-form solution for the area of the resulting triangle region.
To do so, we compute the vertices of this triangle, construct vectors between them, then
compute the cross-product of these vectors.

The equations of the tangent lines are given by

y = 2x1(x − x1) + x21 = 2x1(x − x1
2 ),

y = 2x2(x − x2) + x22 = 2x2(x − x2
2 ).

We thus find that the intersection of these lines is given by the point ( x1+x2
2 , x1x2). Thus, the

three vertices are given as v1 = (x1, x21 ), v2 = ( x1+x2
2 , x1x2), and v3 = (x2, x22 ). From these

vertices, we obtain two vectors

v2 − v1 = [ 12 (x2 − x1), x1(x2 − x1)] = (x2 − x1)[ 12 , x1],
v3 − v2 = [ 12 (x2 − x1), x2(x2 − x1)] = (x2 − x1)[ 12 , x2].

The area is given by the magnitude of the cross product as

A = 1

2
|(v2 − v1) × (v3 − v2)| = 1

2
(x2 − x1)

2| 12 x2 − 1
2 x1| = 1

4
(x2 − x1)

3.

As required. ��
With Lemma 7, we are now ready to show that the area of NN-R1 is optimal among all

piecewise McCormick relaxations with a fixed number of pieces.

Proposition 5 The minimum possible area covering y = x2 on x ∈ [a, b] with a sequence of
n McCormick Relaxations is 1

4 (b−a)3/n2, and is achieved via uniformly spaced breakpoints.

Proof Consider a general piecewise McCormick relaxation of y = x2 on the interval [a, b]
with consecutive breakpoints a = x0 ≤ x1 ≤ · · · ≤ xn = b. For any segment of consecutive
breakpoints xi and xi+1, the McCormick relaxation between those points is bounded by the
secant line between (xi , x2i ) and (xi+1, x2i+1), and the tangent lines to y = x2 at xi and xi+1.
For simplicity, let i = 1 for this discussion.

Thus, letting yi = xi − xi−1, i = 1 . . . n, the problem of choosing the area-optimal
breakpoints a ≤ x1,≤ x2 ≤ · · · ≤ xn−1 ≤ xn reduces to solving

min
y∈Rn+

{
1

4

n∑
i=1

y3i :
n∑

i=1

yi = b − a

}
. (48)

It is then easy to show via the KKT conditions that, due to the convexity of
∑

i y
3
i on

positive support, all yi must be equal, yielding the uniformly-spaced solution yi = b−a
n .

Thus, the choice of breakpoints induced by our algorithm is optimal. ��
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The NN-R1 relaxation is exactly a union of McCormick Relaxations 2n uniformly spaced
breakpoints. Hence the total area is 1

4 (b− a)32−2n . We now show that adding the inequality
(43b) with j = L cuts off an extra fourth of the total area.

Proposition 6 The area of the relaxation in (43) is 3
16 (b − a)32−2n.

Proof We will compute the area removed by the addition of this cut on a general interval
[x1, x2], where x1 = 2−L i for some i ∈ �0, 2L − 1�. As shown in Lemma 6, the cut (43b)
with j = L intersects the curve at x = x1+x2

2 . Now, the area removed by the addition of this
cut is the area of the triangle formed by the intersections of the tangent lines at x1, x2, and
the midpoint x3 := x1+x2

2 . These vertices, given as intersection points vi j for tangent lines
for xi and x j , are derived following the process in Lemma 7 as:

v12 = ( x1+x2
2 , x1x2

)
v13 = ( 1

2 · ( x1+x2
2 + x1

)
, 1
2 x1(x1 + x2)

) = ( 1
4 (3x1 + x2),

1
2 x1(x1 + x2)

)
v23 = ( 1

2 · ( x1+x2
2 + x2

)
, 1
2 x2(x1 + x2)

) = ( 1
4 (x1 + 3x2), 1

2 x2(x1 + x2)
)

From these points, we obtain vectors

v12 − v13 = ( 1
4 (x2 − x1),

1
2 x1(x2 − x1)

) = (x2 − x1)
( 1
4 ,

1
2 x1

)
v23 − v12 = ( 1

4 (x2 − x1),
1
2 x2(x2 − x1)

) = (x2 − x1)
( 1
4 ,

1
2 x2

)
.

Finally, we obtain cut area

Acut = 1

2
|(v12 − v13) × (v23 − v12)| = 1

2
(x2 − x1)

2 · 1
8

(x2 − x1) = 1

16
(x2 − x1)

3.

The result easily follows. ��

7 A computational study

We study the efficacy of our MIP relaxation approach on a family of nonconvex quadratic
optimization problems. We compare 9 methods:

1. GRB: The native method in Gurobi v9.1.1 for nonconvex quadratic problems.
2. GRB-S: The native method in Gurobi v9.1.1, applied to the diagonalized shift reformu-

lation of (2).
3. BRN: Baron v21.1.13, using CPLEX v12.10 for the MIP/LP solver.
4. BRN-S: Baron v21.1.13, using CPLEX v12.10 for the MIP/LP solver, applied to the

diagonalized shift reformulation of (2).
5. CPLEX: The native method in CPLEX v12.10 for nonconvex quadratic objectives.
6. CDA: The algorithm of Dong and Luo [23]. The number of layers L will correspond to

the parameter ν appearing in their paper.
7. NN: The new formulation (8).
8. NMDT: The “normalized multi-parametric disaggregation technique” (NMDT) of Castro

[14]. See Appendix A for a restatement in terms of the number of levels L .
9. T-NMDT: A tightened variant of NMDT also described in Appendix A.

We can cluster these methods into two families: five “native” methods (GRB, GRB-S, BRN,
BRN-S, and CPLEX) that pass an exact representation of the quadratic problem to the solver,
and four “relaxations” (CDA, NN, NMDT, and T-NMDT) which relax the quadratic problem
using a MIP reformulation, which is then passed to an underlying solver. For each of these
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relaxations, we use Gurobi v9.1.1 as the underlying MIP solver. Note that GRB, BRN, and
CPLEX are directly given (50), which is an optimization problem with linear constraints and
a nonconvex quadratic objective. In contrast, GRB-S and BRN-S are given the diagonalized
reformulation of (50) per (2), which is an optimization problem with a convex quadratic
objective and a series of nonconvex quadratic constraints.4

Our objective in this computational study is to measure the quality of the dual bound
provided by the different methods. To place the methods on an even footing on the primal
side, as initialization we run the nonconvex quadratic optimization method in Gurobi v9.1.1
with “feasible solution emphasis” to produce a good starting feasible solution. We then inject
this primal objective bound as a “cut-off” for each method.

We will consider 4 metrics, which will be applied with respect to a given family of
instances:

– time: The shifted geometric mean of the solve time in seconds (shift is minimum solve
time in the family).

– gap: The shifted geometric mean of the final relative optimality gap |db−bpb|
|bpb| , where db

is the dual bound provided by the method and bpb is the best observed primal solution
for the instance across all methods. Shift is taken as max{10−4, minimum gap observed
in the family}.

– BB: The number of instances in which the method either produced the best dual bound,
or attained Gurobi’s default optimality criteria of gap < 10−4. Note that on a given
instance, more than one method can potentially attain the best bound.

– TO: The number of instances in which the solver times out and terminates due to the
time limit.

We note that even if the solver terminates within the time limit (with an “optimal” solver
status), the optimality gap for NN or CDA as reported in Table 3 may be nonzero, due to the
fact that these two methods serve as relaxations for the original boxQP problem.

We implement each model in the JuMP algebraic modeling language [24]. To compute
the shift used by the four relaxations, GRB-S, and BRN-S, we use Mosek v9.2 to solve a
semidefinite programming problem to produce the “tightest” diagonal matrix D = diag(δ)
such that Q + D is positive semidefinite as in Dong and Luo [23]:

min
δ∈Rn

e · δ s.t. Q + diag(δ) � 0. (49)

In Sect. 7.4 we study an alternative, simpler method for computing this shift and its
computational implications. Note that this time to solve the SDP is not included in the solve
time numbers, but is relatively small (on the order of a few seconds for the largest instances)
and is computation that is shared by most of the approaches.

Each method is provided a time limit of 10 minutes. Computational experiments are
performed on amachine with a 3.8 GHzCPUwith 24 cores and 128GB of RAM. Each solver
is restricted to one thread, and all experiments for a given instance are run concurrently. Our
code and the corresponding problem instances are publicly available at https://github.com/
joehuchette/quadratic-relaxation-experiments.

4 CPLEX does not support nonconvex quadratic constraints of this form, so we do not include a corresponding
approach with the diagonal shift.
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7.1 Baseline comparison

We start by comparing our nine methods on 99 box constrained quadratic objective (boxQP)
optimization problem instances as studied in Chen and Burer [17] and Dong and Luo [23]:

min
0≤x≤1

x ′Qx + c · x . (50)

Despite its simple constraint structure, this is a nonconvex optimization problem when Q is
not positive semidefinite, and is difficult from both a theoretical and a practical perspective.

For this baseline study, we fix each of the relaxations to use L = 3 layers; we will revisit
this selection in Sect. 7.3. We leave as future work an implementation that iteratively refines
the approximation to guarantee a pre-specified approximation error, as done by Dong and
Luo [23].

We split these instances into three families: 63 “solved” instances on which each method
terminates at optimality within the time limit, 18 “unsolved” instances on which eachmethod
terminates due to the time limit, and 18 “contested” instances on which some methods
terminate and some do not. We present the computational results in Table 3, stratified by
family. At a high level, we observe that NN attains the “best bound” on 87 of 99 instances.
We now survey each family in more detail. Alternatively, we stratify the results based on the
size of the instances in Appendix B.
Solved instances On the solved instances, all methods are able to terminate quickly-all in
under two seconds, on average. The nativemethods are able tomeet the termination criteria on
nearly all instances, while the relaxation methods lag behind. Our new NN method performs
the best, attaining the termination gap criteria on roughly half of the instances, while CDA
performs theworst, attaining it on only 5 of 63 instances.We stress that, for these experiments,
L is set relatively low. In Sect. 7.3 we revisit this decision, and observe that this gap can be
closed on these easy instances by increasing L at a nominal computational cost.
Contested instances On the contested instances the native solvers BRN, CPLEX, and GRB
perform best, producing the best bound in a clear majority of the 18 instances. Interestingly,
the shifted variants BRN-S and GRB-S perform worse, with Gurobi exhibiting a substantial
degradation in performance as opposed to without the diagonal shift. In contrast, the relax-
ations time out on a majority of the instances. Taken together, we conclude that there is a
transitional family of instances wherein the native solvers still excel, but which the more
complex relaxations succumb to the curse of dimensionality.
Unsolved instances This family of instances tests the scenario where amethod is given a fixed
time budget and is asked to produce the best possible dual bound. On these 18 instances, NN
is the clear winner, producing the best bounds on 15 and the lowest mean gap. The other
relaxations come relatively close in terms of termination gap, but do not attain the best bound
on any instance. The native GRB performs the worst of all methods in terms of gap closed,
but applying the shift as in GRB-S helps tremendously, producing gaps than are much lower
than the other native solver methods and close to what the relaxations are able to provide.

7.2 Varying the solver focus

Modern solvers such as Gurobi expose high-level parameters for configuring the search
algorithm for different goals. In this subsection, we configure Gurobi to focus on the best
objective bound (MIPFocus=3). We summarize our results in Table 4. The story on the
“solved” and “contested” instances remains roughly the same as in Sect. 7.1. However, on
the “unsolved” instances all methods perform better, with the largest improvement coming
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Table 3 Baseline computational
results on 99 boxQP instances

Family Method Time (s) Gap (%) BB TO

Solved BRN 0.51 0.00 63/ 63 –

CPLEX 0.68 0.00 63/ 63 –

GRB 0.37 0.00 63/ 63 –

BRN-S 0.96 0.00 63/ 63 –

GRB-S 0.63 0.00 62/ 63 –

CDA 1.24 0.08 5/ 63 –

NN 0.39 0.01 26/ 63 –

NMDT 0.67 0.02 19/ 63 –

T-NMDT 1.07 0.01 24/ 63 –

Contested BRN 66.1 0.00 12/ 18 6/ 18

CPLEX 46.0 0.00 17/ 18 1/ 18

GRB 34.4 0.00 15/ 18 3/ 18

BRN-S 154.6 0.02 10/ 18 8/ 18

GRB-S 450.1 1.22 2/ 18 16/ 18

CDA 429.0 1.49 0/ 18 15/ 18

NN 273.0 0.24 2/ 18 10/ 18

NMDT 318.0 0.54 1/ 18 11/ 18

T-NMDT 446.5 0.83 1/ 18 14/ 18

Unsolved BRN – 11.48 0/ 18 –

CPLEX – 15.67 3/ 18 –

GRB – 30.73 0/ 18 –

BRN-S – 11.86 0/ 18 –

GRB-S – 5.21 0/ 18 –

CDA – 5.33 0/ 18 –

NN – 4.31 15/ 18 –

NMDT – 4.59 0/ 18 –

T-NMDT – 5.04 0/ 18 –

from the native Gurobi methods. Nonetheless, the NNmethod is still attaining the best bound
on 10 of 18 instances, with the GRB-S method coming close in terms of gap closed, and is
able to produce the best bound on the remaining 8 instances.

7.3 Varying the relaxation resolution

In the previous experiments, we fixed the number of layers for each relaxation at L = 3.
In this subsection, we study how varying this parameter affects each relaxation, in terms of
both solve time and gap closed. In particular, we consider setting L ∈ {2, 4, 6, 8} for each
relaxation method, and experiment with the same set of 99 boxQP instances as before. We
summarize the results in Table 5.

On the “solved” instances we observe that, unsurprisingly, increasing L allows us to reach
the best bound criteria on far more instances. Moreover, we observe that this results in only
a nominal increase in computational cost; all methods terminate with a mean solve time
of seconds, even with the finest discretization. We observe that NN performs the best, in
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Table 4 Computational results
with Gurobi configured with
MIPFocus=3

Family Method Time (s) Gap (%) BB TO

Solved GRB 0.70 0.00 63/ 63 –

GRB-S 0.64 0.00 63/ 63 –

CDA 1.71 0.08 5/ 63 –

NN 0.48 0.01 18/ 63 –

NMDT 1.45 0.04 17/ 63 –

T-NMDT 1.13 0.01 24/ 63 –

Contested GRB 49.3 0.00 14/ 18 4/ 18

GRB-S 458.9 0.26 3/ 18 15/ 18

CDA 470.2 1.31 0/ 18 16/ 18

NN 301.9 0.18 4/ 18 10/ 18

NMDT 457.8 0.83 0/ 18 15/ 18

T-NMDT 436.6 0.34 1/ 18 14/ 18

Unsolved GRB – 6.13 0/ 18 –

GRB-S – 3.58 8/ 18 –

CDA – 4.71 0/ 18 –

NN – 3.34 10/ 18 –

NMDT – 4.50 0/ 18 –

T-NMDT – 4.05 0/ 18 –

terms of mean solve time and “best bound” for each value of L considered. Morever, NN
can attain the termination criteria on each instance with L = 8, which is not the case for
any other method. These results indicate that, on easy instances, increasing the resolution is
cheap, and can attain the same dual bound quality as the native solvers in roughly the same
time. In contrast, on the “unsolved” instances we observe that increasing L results in higher
gaps across the board. This is unsurprising–increasing L results in larger formulations, and
on instances where the solver is already struggling this will quickly lead to performance
degradation due to the “combinatorial explosion” effect. Moreover, even small values for L
offer a nontrivial refinement in a branch-and-bound setting over a tight convex relaxation.
This result suggests that, for instances known to be hard, a reasonable strategy would be to
set L to a small value by default and then target finer discretizations on individual quadratic
terms as-needed, through a dynamic refinement approach or otherwise.

7.4 Varying the diagonal perturbation

We now turn our attention to how the diagonal shift that is used by the relaxations, BRN-S,
and GRB-S is computed. As discussed above, we may solve the SDP (49) to compute a
valid shift that is “tightest” under some reasonable objective measure. While this approach
is reasonable for the boxQP instances studied here, it may not be practical for larger-scale
instances due to the scalability of the SDP solver. Therefore, we compare this shift against
a simpler “eigenvalue” shift D = −λmin I , where I ∈ R

n×n is the identity matrix and λmin

is the smallest eigenvalue of Q. This minimum eigenvalue can be readily computed, and the
resulting shift is conceptually similar to the convexification process used in αBB [6], for
example.
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Table 5 Computational results
with varying discretization levels

Family Method L Time (s) Gap (%) BB TO

Solved CDA 2 0.39 0.79 0/ 63 –

4 1.64 0.01 24/ 63 –

6 2.84 0.00 52/ 63 –

8 3.74 0.00 61/ 63 –

NN 2 0.30 0.04 8/ 63 –

4 0.41 0.00 41/ 63 –

6 0.48 0.00 58/ 63 –

8 0.55 0.00 63/ 63 –

NMDT 2 0.41 0.12 8/ 63 –

4 0.84 0.01 31/ 63 –

6 1.17 0.00 41/ 63 –

8 1.41 0.00 46/ 63 –

T-NMDT 2 0.58 0.05 8/ 63 –

4 1.24 0.00 37/ 63 –

6 1.43 0.00 53/ 63 –

8 1.59 0.00 62/ 63 –

Contested CDA 2 136.18 1.10 2/ 13 0/ 13

4 552.44 0.68 0/ 13 10/ 13

6 595.58 1.33 0/ 13 12/ 13

8 600.00 2.06 0/ 13 13/ 13

NN 2 206.03 0.16 1/ 13 3/ 13

4 268.56 0.04 4/ 13 3/ 13

6 293.47 0.07 4/ 13 5/ 13

8 319.46 0.08 8/ 13 5/ 13

NMDT 2 208.66 0.42 0/ 13 3/ 13

4 376.76 0.16 2/ 13 5/ 13

6 447.43 0.18 4/ 13 7/ 13

8 473.95 0.18 4/ 13 7/ 13

T-NMDT 2 344.76 0.33 0/ 13 6/ 13

4 511.43 0.36 1/ 13 9/ 13

6 505.40 0.24 3/ 13 8/ 13

8 534.02 0.26 4/ 13 8/ 13

Unsolved CDA 2 – 3.98 0/ 23 -

4 – 4.72 0/ 23 –

6 – 5.02 0/ 23 –

8 – 5.29 0/ 23 –

NN 2 – 3.37 23/ 23 –

4 – 3.53 0/ 23 –

6 – 3.63 0/ 23 –

8 – 3.72 0/ 23 –
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Table 5 continued Family Method L Time (s) Gap (%) BB TO

NMDT 2 – 3.55 0/ 23 –

4 – 3.92 0/ 23 –

6 – 4.05 0/ 23 –

8 – 4.16 0/ 23 –

T-NMDT 2 – 3.84 0/ 23 –

4 – 4.36 0/ 23 –

6 – 4.31 0/ 23 –

8 – 4.30 0/ 23 –

We perform a similar experiment as in Sect. 7.1, focusing on comparing our two shifts
head-to-head for each method that utilizes it. We summarize our results in Table 6. We
observe that the tighter shift provided by the SDP (49) offers a substantial improvement over
the eigenvalue shift across the board. On the “solved” instances, we observe an order of
magnitude reduction in solve time for all methods, as well as a significant increase in best
bound attainment for the relaxation methods. On the “contested” instances, we observe a
similar degradation when using the shift. The difference is perhaps most striking for GRB:
on the 22 instances, produces the best bound on 16 of 22 with the SDP shift, but with the
eigenvalue shift only attains it on only one, and times out on remaining 21. Finally, for the
“unsolved” instances we observe that the SDP shift provides 2-3x smaller gaps than the
eigenvalue shift for each method.

7.5 A (simple) problemwith quadratic constraints

In this section, we present a unique class of instances onwhich ourmodel displays suprisingly
strong performance compared to Gurobi. In this model, we minimize a 1-norm with respect
to box constraints and an additional quadratic constraint stating that the 2-norm is greater
than some bound. The specific model considered is

min 100
n

∑n
i=1 |xi − εi |

s.t. xi ∈ [−1, 1] i ∈ �n�∑n
i=1 x

2
i ≥ n − 0.5

(51)

where εi = rand(−1, 1) · 10−3, sorted in ascending order of |εi |. We note that this problem
can be solved in closed form.

We compare against GRB, GRB-S, and T-NMDT for various values of n, with L = 10.
The results are shown in Table 7 below.

The results indicate a strong performance advantage of NN above the competing methods
shown. Note that the number of nodes for GRB and GRB-S are consistently close to 2n+1,
with computational times to match, while T-NMDT is even worse. On the other hand, while
NN shows only moderate increases in computational time, with a max of about 1.66s, with a
far smaller node count to match.

Upon deeper investigation, we found that the primary computational advantage of the
NN method stems from Gurobi’s Gomory cuts. In fact, turning off presolve, heuristics, and
all cuts except for Gomory cuts, the performance significantly improves over the baseline
performance. For n = 22 the problem solves in 0.09s with only 191 nodes and 39 Gomory
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Table 6 Computational results
with two different diagonal shifts

Family Method Shift Time Gap (%) BB TO

Solved GRB eigen 1.81 0.00 51/ 51 –

sdp 0.19 0.00 51/ 51 –

CDA eigen 3.57 0.14 17/ 51 –

sdp 0.47 0.07 34/ 51 –

NN eigen 1.22 0.01 14/ 51 –

sdp 0.14 0.00 16/ 51 –

NMDT eigen 1.73 0.04 12/ 51 –

sdp 0.26 0.01 19/ 51 –

T-NMDT eigen 3.85 0.02 19/ 51 –

sdp 0.40 0.00 24/ 51 –

Contested GRB eigen 582.97 3.52 1/ 22 21/ 22

sdp 130.76 0.05 16/ 22 6/ 22

CDA eigen 600.00 5.02 0/ 22 22/ 22

sdp 126.65 0.23 0/ 22 5/ 22

NN eigen 562.82 2.03 0/ 22 19/ 22

sdp 43.24 0.02 6/ 22 0/ 22

NMDT eigen 577.73 2.84 0/ 22 20/ 22

sdp 62.64 0.11 1/ 22 2/ 22

T-NMDT eigen 594.63 3.72 0/ 22 22/ 22

sdp 116.27 0.05 1/ 22 4/ 22

Unsolved GRB eigen – 8.64 0/ 26 –

sdp – 4.17 0/ 26 –

CDA eigen - 9.22 0/ 26 –

sdp - 4.23 0/ 26 –

NN eigen - 8.31 0/ 26 –

sdp – 3.12 26/ 26 –

NMDT eigen – 8.47 0/ 26 –

sdp – 3.42 0/ 26 –

T-NMDT eigen – 9.01 0/ 26 –

sdp – 3.95 0/ 26 –

cuts. For n = 250, over an order of magnitude higher, the problem solves in 10.65s with only
13016 nodes and 378 Gomory cuts.

We expect that Gurobi is performing a spatial branching algorithm. However, the problem
was constructed so that the feasible solutions are near corners of a hypercube, while at spatial
branching relaxations, optimal solutions to the relaxations are close to the center. Moreover,
this property is likely to hold in a spatial branch-and-bound algorithm, meaning that you will
likely need to branch on all variables in order to identify the correct corner. This behavior
would yield at least O(2n) spatial branching nodes, and give poor bounds throughout the
branching process, as observed in the computational results. On the other hand, for the NN
formulation provides an alternative branching structure that, when combined with Gomory
cuts, provide excellent computational performance for this collection of instances.

123



904 Journal of Global Optimization (2022) 84:869–912

Table 7 Computational results
for a stylized quadratically
constrained problem with L = 10

n Method Time (s) Gap (%) Nodes

10 GRB 0.30 0.00 2047

GRB-S 0.08 0.00 2047

NN 0.10 0.00 89

T-NMDT 16.89 0.00 45306

15 GRB 1.66 0.00 66828

GRB-S 1.22 0.00 66828

NN 0.72 0.00 3477

T-NMDT 318.95 0.00 1494473

18 GRB 8.88 0.00 528270

GRB-S 8.08 0.00 528210

NN 1.20 0.00 7757

T-NMDT (TO) 0.73 3451026

20 GRB 37.15 0.00 2099824

GRB-S 35.49 0.00 2099563

NN 1.17 0.00 9746

T-NMDT (TO) 1.04 3976996

22 GRB 202.63 0.00 8389900

GRB-S 309.72 0.00 8389887

NN 1.66 0.00 11226

T-NMDT (TO) 0.91 2937766

7.6 More difficult problems with nonconvex quadratic constraints

To conclude our computational section, we study a “best nearest” variant of the boxQP
problem that is in the spirit of the problem from Sect. 7.5. In more detail, for some fixed
γ̂ ∈ R and x̂ ∈ [0, 1]n , we solve the problem

min
x

‖x − x̂‖1
s.t. x ′Qx + c · x ≤ 0.95γ̂

0 ≤ x ≤ 1.

Since each boxQP instance considered has negative objective cost, this will constrain the
feasible region to those points which are “close” to optimal for the original boxQP instance.
We construct 54 instances based on the the basic family of boxQP instances from Chen
and Burer [17]. We set x̂ as the vector of all 0.5s, and set γ̂ to be the best primal cost on
the underlying boxQP instance that is found by Gurobi after 10 minutes. We summarize the
results in Table 8.

On the “solved” instances, we observe that our NN relaxation has the lowest mean solve
time of all methods, and is able to prove optimality on 6 of 8 methods. We note that the
optimality gaps for CDA and NMDT are nearly two orders of magnitude greater than what
was observed on the baseline boxQP instances in Table 3. This is in keeping with the com-
mon knowledge in the global optimization (e.g. Dey and Gupte [20]) that tight relaxations
for quadratic functions in the constraints do not necessarily lead to tight relaxations in the
objective.
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Table 8 Baseline computational
results on 54 “best nearest”
boxQP instances

Family Method Time (s) Gap (%) BB TO

Solved BRN 12.64 0.00 8/ 8 –

GRB 5.27 0.00 8/ 8 –

BRN-S 13.06 0.00 8/ 8 –

GRB-S 32.31 0.00 8/ 8 –

CDA 6.13 1.70 0/ 8 –

NN 4.50 0.06 6/ 8 –

NMDT 11.99 1.03 0/ 8 –

T-NMDT 22.66 0.07 6/ 8 –

Contested BRN 176.89 0.00 30/ 40 12/ 40

GRB 66.53 0.04 28/ 40 12/ 40

BRN-S 173.21 0.01 29/ 40 12/ 40

GRB-S 566.15 10.07 1/ 40 39/ 40

CDA 412.17 7.12 0/ 40 34/ 40

NN 383.73 2.92 5/ 40 33/ 40

NMDT 481.24 6.10 0/ 40 35/ 40

T-NMDT 522.14 4.16 4/ 40 36/ 40

Unsolved BRN – 69.60 0/ 6 –

GRB – 65.66 0/ 6 –

BRN-S – 48.23 0/ 6 –

GRB-S – 24.42 0/ 6 –

CDA – 12.29 0/ 6 –

NN – 8.98 6/ 6 –

NMDT – 10.10 0/ 6 –

T-NMDT – 10.31 0/ 6 –

Similar to the baseline boxQP instances, we observe that the “contested” instances are
a transient class where the native methods are able to terminate within the time limit with
greater frequency than the relaxations, leading to significantly smaller mean optimality gaps.
On the hardest “unsolved” instances, we again see that our NNmethod produces the smallest
optimality gap across all methods on each of the 6 instances, outperforming all othermethods.

8 Conclusion

We present a simple MIP model for relaxing quadratic optimization problems that competes
with robust commercial solvers in terms of solve time and bound quality. There are a number
of ways that our method could be further improved. For example, we could follow the
strategy of Dong and Luo [23] and implement an adaptive strategy that dynamically refines
individual quadratic terms as-needed. Additionally, for boxQP instances we can potentially
improve performance by leveraging the results of Hansen et al. [35], or applying existing
cutting plane procedures [10]. Further, we could apply bound tightening on variables [32] or
include a tail-end call to a nonlinear solver to produce an optimal primal feasible solution.

We also have performed preliminary analysis on a variant of this method to model
higher-order monomials as opposed to quadratics. Fundamental results of Wei [54] show
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that our sawtooth functions form a basis for any continuous functions. Unfortunately, we
have observed that a comparable approximation for x3 seem to require a relatively large
number of basis functions. We summarize our preliminary results in Appendix C.We believe
it would be interesting future work to observe if this seeming obstruction is fundamental, or
if compact methods for higher-order monomials can be derived through our approach.

A Normalizedmulti-parametric disaggregation technique

We present a standard approach to descretizing continuous variables for handling bilinear
products in nonlinear models. This approach is perhaps the most straightforward way to
convert bilinear problems toMILPs and has been referred to asNormalizedMulti-Parametric
Disaggregation Technique (NMDT) [14]. We adapt the bilinear approach here to a squaring
a single variable.

Consider x ∈ [0, 1], and let L be a positive integer. We then use the representation

x =
p∑

i=1

2−iβi + Δx (52a)

βi ∈ {0, 1} i ∈ �L� (52b)

Δx ∈ [0, 2−L ], (52c)

where L is the number of binary variables to use.
Multiplying (52a) by x , and substituting the representation into the xΔx term, we obtain

y = x · x =
L∑

i=1

2−i xβi + xΔx

=
L∑

i=1

2−i xβi +
(

L∑
i=1

2−iβi + Δx

)
Δx

=
L∑

i=1

2−i (x + Δx)βi + Δx2

Now, using the fact that x + Δx ∈ [0, 1 + 2−L ], first lift the model by adding variables ui
and Δu such that ui = (x + Δx)βi and Δu = Δx2, and then we relax these equations using
McCormick Envelopes.

Given bounds x ∈ [xmin, xmax] and β ∈ [0, 1], The McCormick envelope M(x, β) is
defined as the following relaxation of u = xβ

M(x, β) = {
(x, β, y) ∈ [xmin, xmax] × [0, 1] × R : (55)

}
. (54)

xmin · β ≤ u ≤ xmax · β

x − xmax · (1 − β) ≤ u ≤ x − xmin · (1 − β) (55)

To approximate u = x2 with x ∈ [0, xmax], this becomes

M(x) =
{

(x, u) ∈ [0, xmax] × R : u ≥ 0

xmax(2x − xmax) ≤ u ≤ xmax · x

}
. (56)
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We present two ways to use this approach. The first is the most direct use of NMDT, as
used in [14]. This model is

x =
L∑

i=1

2−iβi + Δx (57a)

y =
L∑

i=1

2−i ui + Δu (57b)

(x, βi , ui ) ∈ M(x, βi ) i ∈ �L� (57c)

(Δx, x,Δu) ∈ M(Δx, x) (57d)

βi ∈ {0, 1} i ∈ �L� (57e)

Δx ∈ [0, 2−L ] (57f)

Here, the only error introduced in the relaxation is from Δu = xΔx , yielding a maximum
error of 2−L−2, again occurring when Δx = 2−L−1.

Alternatively, we consider the expansion of the xΔx term. We thus obtain the T-NMDT
relaxation for y = x2.

x =
L∑

i=1

2−iβi + Δx (58a)

y =
L∑

i=1

2−i ui + Δu (58b)

(x + Δx, βi , ui ) ∈ M(x + Δx, βi ) i ∈ �L� (58c)

(Δx,Δu) ∈ M(Δx) (58d)

βi ∈ {0, 1} i ∈ �L� (58e)

Δx ∈ [0, 2−L ] (58f)

Since βi is binary, ui = βi (x + Δx) is represented exactly. Thus, the only possible error
is introduced in the relaxation of Δy = Δx2, which yields a maximum error of 2−2L−2,
occurring when Δx = 2−L−1.

Now, the expected error of T-NMDT is the expected error from the relaxationofΔy = Δx2.
Modeling Δx as a uniform random variable within its bounds [0, 2−L ], and noting that the
only overestimator from (56) is y ≤ 2−LΔx we obtain expected overapproximation error

E(2−LΔx − Δx2) = ∫ 2−L

0 2L(2−LΔx − Δx2)dΔx

= 2L
∫ 2−L

0 (2−LΔx − Δx2)dΔx
= 2L( 16 (2

−L)3)

= 1
62

−2L .

(59)

Similarly, the expected underapproximation error can be computed as 1
122

−2L .

B Additional baseline computation summaries

In Table 9 we summarize the results of our baseline experiments stratified by the number of
decision variables as in, e.g., Table 4 of Dey et al. [21].
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Table 9 Computational results
with instances stratified based on
number of variables

Family Method Time (s) Gap (%) BB TO

n ∈ [20, 30] BRN 0.19 0.00 18/ 18 0/ 33

CPLEX 0.20 0.00 18/ 18 0/ 18

GRB 0.14 0.00 18/ 18 0/ 18

BRN-S 0.34 0.00 18/ 18 0/ 18

GRB-S 0.05 0.00 18/ 18 0/ 18

CDA 0.16 0.06 2/ 18 0/ 18

NN 0.05 0.00 9/ 18 0/ 18

NMDT 0.09 0.01 7/ 18 0/ 18

T-NMDT 0.11 0.00 8/ 18 0/ 18

n ∈ [40, 50] BRN 0.46 0.00 33/ 33 0/ 33

CPLEX 0.70 0.00 33/ 33 0/ 33

GRB 0.37 0.00 33/ 33 0/ 33

BRN-S 0.87 0.00 33/ 33 0/ 33

GRB-S 0.54 0.00 33/ 33 0/ 33

CDA 1.00 0.07 3/ 33 0/ 33

NN 0.36 0.00 16/ 33 0/ 33

NMDT 0.61 0.03 11/ 33 0/ 33

T-NMDT 0.98 0.01 15/ 33 0/ 33

n ∈ [60, 80] BRN 13.66 0.00 15/ 21 6/ 21

CPLEX 15.10 0.00 19/ 21 3/ 21

GRB 9.99 0.00 16/ 21 5/ 21

BRN-S 25.29 0.00 15/ 21 6/ 21

GRB-S 112.85 0.00 12/ 21 8/ 21

CDA 112.31 0.30 0/ 21 7/ 21

NN 37.26 0.04 4/ 21 3/ 21

NMDT 53.73 0.12 2/ 21 4/ 21

T-NMDT 110.42 0.07 2/ 21 6/ 21

n ∈ [90, 125] BRN 261.48 0.24 9/ 27 18/ 27

CPLEX 218.22 0.13 13/ 27 16/ 27

GRB 170.56 0.20 11/ 27 16/ 27

BRN-S 375.45 0.55 7/ 27 20/ 27

GRB-S 578.95 3.43 1/ 27 26/ 27

CDA 569.53 3.84 0/ 27 26/ 27

NN 533.97 2.35 14/ 27 25/ 27

NMDT 543.72 2.84 0/ 27 25/ 27

T-NMDT 563.94 3.39 0/ 27 26/ 27

C General representations with sawtooth bases

The premise of our formulation is that the function y = x2 can be arbitrarily closely approx-
imated by a series of sawtooth functions. We discuss here if such approximations could
conveniently apply to other polynomials.
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Table 10 Comparison of L1-error

Function N = 2 N = 4 N = 8 N = 16 N = 32

x2 0.994 0.249 (4) 0.0622 (4) 0.0155 (4) 0.0039 (3.97)

x3 − π2x 7.23 2.07 (3.5) 0.626 (3.3) 0.304 (2.06) 0.108 (2.81)

Factor of improvement over the previous value for L is shown in bold

In [54], the authors present a Fourier series-like method that leverages orthogonal triangu-
lar functions to derive a convergent class of L2-optimal approximations for general functions
on the interval [−π, π]. Define the periodic triangular functions

X(x) =
{

π2+2πx
8 −π < x + 2πk ≤ 0, k ∈ Z

π2−2πx
8 0 < x + 2πk ≤ π, k ∈ Z

Y (x) =
{

πx
4 −π

2 < x + 2πk ≤ π
2 , k ∈ Z

π2−πx
4

π
2 < x + 2πk ≤ 3π

2 , k ∈ Z

(60)

The authors then build their orthogonal basis functions using an orthogonal linear trans-
formation of the basis

1, X(x), Y (x), X(2x), Y (2x), . . . , X(nx), Y (nx).

However, aswith Fourier series approximations, thismethod has the limitation that all approx-
imating functions are equal at the endpoints of the interval, resulting in a poor approximation
for functions at which the endpoints are not equal. Thus, to obtain good approximations for
x3 on [−π, π], we first add the linear function −π2x to enforce equality at the endpoints.

Then, applying this method to x2 and x3 − π2x on the interval x ∈ [−π, π], we obtain
the following numbers for the (L1-error). Note that almost all of the Y (nx) functions are
relevant for approximating x3 − π2x (and no X(nx)’s), while only a few X(nx) functions
(and no Y (nx)′s) are relevant for approximating x2.

To investigate the outlook of sparsely approximating x3 with triangular functions directly,
we solved the following MIP to obtain the L1-optimal triangular approximation to x3 on the
interval [0, 1] using re-scaled versions of the basis functions above, and explicitly including
a linear shift. We discretely approximate the L − 1 error via the error at uniformly-spaced
points x1, . . . , xNp ∈ [0, 1], allowing the inclusion of only N f triangular functions.

min 1
Np

∑Np
j=1 t j

s.t . t j ≥ ∑
i=I (λi fi (x j ) + λ0x j + fc) − x3j ∀ j

t j ≥ −(
∑

i∈I (λi fi (x j ) + λ0x j + fc) − x3j ) ∀ j
−M · αi ≤ λi ≤ M · αi ∀i ≥ 1∑N

i=1 αi ≤ N f

λi ∈ [−M, M] ∀i
αi ∈ {0, 1} ∀i

(61)

The result, shown in Fig. 4, suggests that it is not possible to use this triangular basis to obtain
a similar-quality sparse approximation for x3 as for x2: the best achievable error rate for x3

is roughly O(N−2
f ), compared to O(2−2N f ) for the quadratic. See also Table 10 where we

compare the convergence of the two approximations.
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Fig. 4 The L1-error of x3 vs. the
number of approximating
triangular functions N f . The
equation of the regression line
suggests an asymtotic error rate
of roughly O(N−2

f ), compared to

O(2−2N f ) for the quadratic
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