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Abstract

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width
of a convex small polygon with n = 2° vertices are not known when s > 4. In this paper, we
construct a family of convex small n-gons,n = 2° and s > 3, and show that the perimeters and
the widths obtained cannot be improved for large n by more than a/n® and b/n* respectively,
for certain positive constants a and b. In addition, assuming that a conjecture of Mossinghoff
is true, we formulate the maximal perimeter problem as a nonlinear optimization problem
involving trigonometric functions and, forn = 2° with3 < s < 7, we provide global optimal
solutions.

Keywords Planar geometry - Polygons - Isodiametric problems - Maximal perimeter -
Maximal width - Global optimization

Mathematics Subject Classification 52A40 - 52A10 - 52B55 - 90C26

1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A
polygon is said to be small if its diameter equals one. For a given integer n > 3, the maximal
perimeter problem consists in finding a convex small n-gon with the longest perimeter. The
problem was first investigated by Reinhardt [15] in 1922, and later by Datta [9] in 1997. They
proved that

— for all n > 3, the value 2n sin ;—n is an upper bound on the perimeter of a convex small
n-gon;

— when 7 is odd, the regular small n-gon is an optimal solution, but it is unique only if n
is prime;

— when n is even, the regular small n-gon is not optimal;
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(a) (R4, 2.828427,0.707107) (b) (r7,3.035276, 0.866025)

Fig.1 Two convex small 4-gons (P4, L(P4)), W(P4))

(a) (R¢, 3,0.866025) (b) (R, 3.097874, 0.951057) (¢) (R3,6, 3.105829, 0.965926)

Fig.2 Three convex small 6-gons (Pg, L(Pg)), W (Pg))

— when n has an odd factor, there are finitely many optimal solutions [10, 11, 14] and they
are all equilateral.

When 7 is a power of 2, the maximal perimeter problem is solved for n < 8. In 1987,
Tamvakis [16] found the unique convex small 4-gon with the longest perimeter, shown in
Fig. 1b. Audet et al. [1] used both geometrical arguments and methods of global optimization
to determine the unique convex small 8-gon with the longest perimeter, illustrated in Fig. 3c.

The diameter graph of a small polygon is the graph with the vertices of the polygon, and
an edge between two vertices exists only if the distance between these vertices equals one.
Figures 1, 2, and 3 represent diameter graphs of some convex small polygons. The solid lines
illustrate pairs of vertices which are unit distance apart. Mossinghoff [12] conjectured that,
for n > 4 power of 2, the diameter graph of a convex small n-gon with maximal perimeter
has a cycle of length n/2 + 1, plus n/2 — 1 additional pendant edges, arranged so that all but
two particular vertices of the cycle have a pendant edge. For example, Figs. 1b and 3c exhibit
the diameter graphs of optimal n-gons when n = 4 and when n = 8 respectively. We point
out that numerical values in figures and tables in this paper are rounded at the last reported
digit.

The width of a polygon in some direction is the distance between two parallel lines
perpendicular to this direction and supporting the polygon from below and above. The width
of a polygon is the minimum width for all directions. For a given integer n > 3, the maximal
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(a) (s, 3.061467,0.923880)  (b) (8F,3.118100,0.974028) (€) (8,3.121147,0.076410)  (d) (s, 3.121062, 0.977609)

Fig.3 Four convex small 8-gons (Pg, L(Pg)), W(Pg))

width problem consists in finding a convex small n-gon with the largest width. This problem
was partially solved by Bezdek and Fodor [6] in 2000. They proved that

— for all n > 3, the value cos 2”—” is an upper bound on the width of a convex small n-gon;

— when n has an odd factor, a convex small n-gon is optimal for the maximal width problem
if and only if it is optimal for the maximal perimeter problem;

— when n = 4, there are infinitely many optimal convex small 4-gons, including the 4-gon
illustrated in Fig. 1b.

When n > 8 is a power of 2, the maximal width is only known for the first open case
n = 8. Audet et al. [4] combined geometrical and analytical reasoning as well as methods
of global optimization to prove that there are infinitely many optimal convex small 8-gons,
including the 8-gon illustrated in Fig. 3d.

For n = 2% with integer s > 4, exact solutions in both problems appear to be presently out
of reach. However, tight lower bounds on the maximal perimeter and the maximal width may
be obtained analytically. For instance, Mossinghoff [12] constructed convex small n-gons,
for n = 2° with s > 3, and proved that the perimeters obtained cannot be improved for
large n by more than P / (16n5 ). We can also show that, when n = 2% with s > 2, the value
cos ﬁ is a lower bound on the maximal width and this bound cannot be improved for
large n by more than 772 /(4n3). In this paper, we propose tighter lower bounds on both the
maximal perimeter and the maximal width of convex small n-gons when n = 2* and integer
s > 3. Thus, the main result of this paper is the following:

Theorem 1 For a given integer n > 3, let L, := 2nsin 5 denote an upper bound on the

perimeter L(P,) of a convex small n-gon Py, and W, := cos % denote an upper bound on
its width W (Py). If n = 2% with s > 3, then there exists a convex small n-gon B,, such that

L1 b4 1 . (1 . 2w
L(B,) =2nsin —cos | — — —arcsin| —sin— | ],
2n 2n 2 2 n

T 1 . 1 . 27
W(B,) = cos| — — — arcsin | — sin — ,
n 2 2 n

_ 7’ 1
Ln—L(Bn)Zw-FO s

and
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The remainder of this paper is organized as follows. Section 2 recalls principal results on
the maximal perimeter and the maximal width of convex small polygons. We prove Theorem 1
in Sect. 3. Tight bounds on the maximal width of unit-perimeter n-gons, n = 2° and s > 3,
are deduced from Theorem 1 in Sect. 4. Under the assumption that Mossinghoff’s conjecture
is true, a nonlinear optimization problem involving trigonometric functions is proposed for
the maximal perimeter problem in Sect. 5. Global optimal solutions obtained by using AMPL
with the solver Couenne [5] are given for n = 2° with 3 < s < 7. Section 6 concludes the

paper.
2 Perimeters and widths of convex small polygons

2.1 Maximal perimeter and maximal width

Let L(P) denote the perimeter of a polygon P and W (P) its width. For a given integer n > 3,
let R, denote the regular small n-gon. We have

2nsin 7 if n is odd,
LRy =" "
nsin 3 if n is even,
and
cos ;7 if n is odd,
WER) =1 2 "
cos - if nis even.

We remark that L(R,;) < L(R,—1) [3] and W(R,) < W(R,—_1) for all even n > 4. The
polygon R, does not have maximum perimeter nor maximum width for any even n > 4.
Indeed, when 7 is even, one can construct a convex small z-gon with a longer perimeter and
a larger width than R, by adding a vertex at distance 1 along the mediatrix of an angle in
Rp—1. We denote this n-gon by RI'L | and we have

LR )= (2n—2)sin

T . T . T
+ 4 sin — 2sin s
2n —2 n — 4 2n —2

W(®R" ;) = cos T
n T T o =2
When 7 has an odd factor m, we construct another family of convex equilateral small
n-gons as follows:

1. Consider a regular small m-gon R,,;

2. Transform R,, into a Reuleaux m-gon by replacing each edge by a circle’s arc passing
through its end vertices and centered at the opposite vertex;

3. Add at regular intervals n/m — 1 vertices within each arc;

4. Take the convex hull of all vertices.

We denote these n-gons by R, , and we have
L(Ry,n) = 2nsin 1,
2n
b4
W(Rm.n) = cos —.
’ 2n

The 6-gon R3¢ is illustrated in Fig. 2c.

@ Springer



Journal of Global Optimization (2022) 84:1033-1051 1037

Theorem 2 (Reinhardt [15], Datta [9]) For alln > 3, let L} denote the maximal perimeter
among all convex small n-gons and let L, = 2n sin 7.

— When n has an odd factor m, L}, = L, is achieved by finitely many equilateral n-gons
[10,11,14], including Ry, n. The optimal n-gon Ry, p, is unique if m is prime and n/m < 2.
— When n = 2° with integer s > 2, L(R,) < L} < L,.

When n = 2°, the maximal perimeter L is only known for s < 3. Tamvakis [16] found
that L} =2+ /6 — /2, and this value is achieved only by RY, shown in Fig. 1b. Audet et
al. [1] found that Lg ~ 3.121147, and this value is only achieved by Bg, shown in Fig. 3c.

Theorem 3 (Bezdek and Fodor L6]) For all n > 3, let W, denote the maximal width among
all convex small n-gons and let W,, := cos ;—n

— When n has an odd factor, Wy = W, is achieved by a convex small n-gon with maximal

perimeter L, = L,,. o

— When n = 2° with integer s > 2, W(R,) < W) < W,,.

When n = 2°, the maximal width W,* is only known for s < 3. Bezdek and Fodor
[6] showed that W, = % 3, and this value is achieved by infinitely many convex small
4-gons, including R3+ shown in Fig. 1b. Audet, Hansen, Messine, and Ninin found that
W = %\/ 10 + 2+/7, and this value is also achieved by infinitely many convex small 8-gons,
including Bg shown in Fig. 3d. It is interesting to note that while the optimal 4-gon for the

maximal perimeter problem is also optimal for the maximal width problem, the optimal 8-gon
for the maximal perimeter problem is not optimal for the maximal width problem.

2.2 Lower bounds on the maximal perimeter and the maximal width

For n = 2° with integer s > 2, let T, denote the convex n-gon obtained by subdividing each
bounding arc of a such Reuleaux triangle into either /37 or |n/3] subarcs of equal length,
then taking the convex hull of the endpoints of these arcs. For a real number a, [a] is the
least integer greater than or equal to @, and |a] is the greatest integer less than or equal to a.
We illustrate T,, for some n in Fig. 4. For each n, the perimeter of T, is given by

4n—4

T4 tdgin T ifp =3k + 1,

sin
L(T,) = 3 2n—2 3 2n+4
4n+4 s b4 2n—4 ; big : _
53— SIN 575 + =5 sin 5 if n =3k + 2.

We note that T4 is optimal for the maximal perimeter problem and we can show that

—_ 73 1

for all n = 2* and s > 2. By contrast,

_ 3 1
Ln_L(Rn):@‘FO 7’74 s

— . 573 1
b= L) =963 7O Ga

for all even n > 4. Tamvakis asked if T}, is also optimal when s > 3. Obviously, Tg is not
optimal, i.e., L(Tg) < Lg.

For all n = 2° with integer s > 2, let P} denote a convex small n-gon with the longest
perimeter.
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(a) (Ts, 3.119054, 0.965926) (b) (T16,3.136438, 0.994522)

Fig.4 Tamvakis polygons (T, L(Ty), W(Ty))

(a) (Ms,3.120976,0.974735)  (b) (M16,3.136532,0.994323)  (€) (M32,3.140331, 0.998682)

Fig.5 Mossinghoff polygons (M, L(M;), W(My))

Conjecture 1 (Mossinghoff [12]) For all n = 2* with integer s > 2, the diameter graph of
P has a cycle of length n/2 + 1, plus n/2 — 1 additional pendant edges, arranged so that all
but two particular vertices of the cycle have a pendant edge.

Conjecture 2 (Mossinghoff [12]) For all n = 2° with integer s > 2, P} has an axis of
symmetry corresponding to one particular pendant edge in its diameter graph.

Conjecture 1 is proven for n = 4 [16] and n = 8 [1]. Conjecture 2 is only proven for
n = 4 [16], but it is shown numerically for n = 8 in [1]. Mossinghoff [12] constructed a
family of convex small n-gons M, having the diameter graph described in Conjectures 1 and
2 . These polygons have the property that

_ P 1
Ln—L(Mn):@-FO 6

when n = 2% and s > 3. We show M,, for some n in Fig. 5.
On the other hand, for all n = 2° and integer s > 3,

W) — cosﬁ ifn =3k +1,
" | cos 57y ifn =3k +2,

W) T N 72 x?
=cos| —+——— ],
" 2n  4n?  2m3
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V5(07 1)
va(xa,y4) -7 Tt~ vi(z1,y1)
N \
f \
\
/, L \
) 1 \
f \
f \
f \
/ a2 !
va(w2,y2) ~ v3(r3,y3)
\\ ;
\ /
\ /
\ /
/
\\ (&7 y
/
ve(T6,Y6) -7 vr(zr,y7)
\\\ ///
VO(O’ 0)
Fig.6 Definition of variables «g, o1, ..., a% for By,: Case of n = 8 vertices

and we can show that W(R,Jll]) > max{W(T,), W(4,)}. Note that

_ 3m2 1
W”_W(R"):SW—FO B

— + 72 1
Wy —-WR,_) = ol + 0 e

for all even n > 4.

3 Proof of Theorem 1

We use cartesian coordinates to describe an n-gon P,, assuming that a vertex v;, i =
0,1,...,n — 1, is positioned at abscissa x; and ordinate y;. Placing the vertex vo at the
origin, we set xo = ygp = 0. We also assume that the n-gon P, is in the half-plane y > 0.

For all n = 2° with integer s > 3, consider the n-gon P, having an (n/2 + 1)-length
cycletvp — vy — - — v — - — VL = Vigp = = Vigg — = VE =V plus
n/2 — 1 pendant edges: vo — V41 Vi = Vg1 V] = Viks k=1,....,n/4—1,as
illustrated in Fig. 6. We assume that P,, has the edge v — Vigqas axis of symmetry and for
allk =1,...,n/4 — 1, the pendant edge vy — Vit L4 bisects the angle /v _1 Vg Viyi-

Let oy = ZV%_HV()Vl, 20{k = ka,IVkaJrl for all k = 1, ey I’l/4 - 1, and O{% =
Lv%,lv%v%ﬂ. Since P, is symmetric, we have

njd—1 .
o + 2 Z O+ onja =7 (1
k=1
and
o AR o
L(Pn):4sin70+8 Z sin?k+4sin 2/4, (2a)

k=1
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. Ok
W(p,) = k=0,nll,l.1},n/4 cos 5 (2b)

By placing the vertex v at (0, 0) in the plane, and the vertex Vi at (0, 1), we have

X1 =sinog = —Xn/2, (3a)
Y1 = COS) = Yn/2, (3b)
k—1
xe=x— (=Dfsin [ao+2) o | =—xa gy VE=2,3,....n/4 (o)
j=1
k—1
W=y —(=Dfcos lao+2) aj | =yappr YE=2,3,....,n/4,  (d)
j=1
k—1
Xepnar =X+ (D sin a0 +2) i+ o | =—xup VE=1,2,...,0/4 -1,
j=1
(3e)
k—1
Vet 241 = Yk + (—l)kcos o +22aj +ar | =y Yk=1,2,...,n/4—1. (3f)
j=1

We also have
xn=—1/2=—xn. “

since the edge v — v, is horizontal and [|va — v 4| = 1.
Forallk =0, 1,...,n/4, suppose o = 7 + (—D*B with 8 = B(n) satisfying | 8] < o
Then (1) is verified and (2) becomes

asin(E LB i (= Z B Zonsin = cos P
L(P,) = nsin (2n + 2) + n sin (Zn 2) = 2n sin o cos k (5a)
W(p)=cos<1+@) (5b)
! n 2 )

Coordinates (x;, y;) in (3) are given by

k
xe =Y (=1 sin (@ = D7+ (=171 B)
i=1 "
s 2k s kT
sin =~ sin (B — (—1)*%
_ sin S sin(f — (') = —xu_gp1 Vk=1,2,....n/4, (6a)
sin =T 2

k
— N (1! i~ DI 41!
ye= D (=1 eos () = DT+ (=1)7'B)

j=1
sin (= B) + cos 3% sin (6 — (=D}
= n Sinnzl n =y%7k+1 Vk:l’z’...’n/él_’
n
(6b)
2k
Xl = Xk + (—l)k sin AT —Xp—x Yk=1,2,...,n/4—1, (6¢)
n
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(a) (Bs,3.121062,0.977609)  (b) (B1s, 3.136543,0.994996)  (C) (Baz, 3.140331, 0.998784)

Fig.7 Polygons (B, L(B;), W(B;)) defined in Theorem 1

X 2k
Vit241 = Yk + (=1)"cos - = Y-k Yk=1,2,...,n/4—1. (6d)
Finally, 8 is chosen so that (4) is satisfied. It follows, from (6a),
sin (B — Z) 1 T (1 . 27 PR 1
T%”n =—E:ﬂ:ﬁg(n):;—arcsm(ism?) = ﬁ+%+0<,77)'

Let B, denote the n-gon obtained by setting § = So(n). From (5), we have

.7 b4 1 (1 . 2m
L(B,) =2nsin —cos| — — —arcsin | —sin — ] |,
2n 2 2

2n n

b4 1 . 1 . 2m
W(B,) =cos| — — — arcsin | — sin — ,
n 2 2 n

_ 77 117° 1
Ln =L®a) = 3376+ 76858 T O 10 )

and

— 7zt 11xn® 1
Wn_W(Bn):sﬁ‘i‘ilgznG-FO }178 .

By construction, B, is small and convex for all n = 2* and s > 3. We illustrate B,, for some
n in Fig. 7. This completes the proof of Theorem 1. O

We implemented all polygons presented in this work as a MATLAB package: OPTIGON,
freely available on GitHub [8]. In OPTIGON, MATLAB functions that give the coordinates
of the vertices are provided. An algorithm developed in [7] to estimate the maximal area of
a small n-gon [15] when n > 6 is even can be also found.

Table 1 shows the perimeters of B,, along with the upper bounds L,, the perimeters of
Ry, R;ll, T,, and M, forn = 2% and 3 < s < 7. As suggested by Theorem 1, when n is
a power of 2, B, provides a tighter lower bound on the maximal perimeter L compared
to the best prior convex small n-gon M,. For instance, we can note that LT28 — L(Big) <

LENZLL) of the length of the

n— n)

interval [L(M,), L, ] where L(B,) lies, it is not surprising that L(B,) approaches L, much

Li2g — L(Bag) < 2.15 x 10711, By analysing the fraction

faster than L (M,,) does as n increases. After all, L(B,) — L(M,) ~ % for large n.

Table 2 displays the widths of B,,, along with the upper bounds W, the widths of R,, and
R:lr_l. Again, when n = 2, B,, provides a tighter lower bound for the maximal width W'
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Table2 Widths of B,

WE)-WER )

" —
n W (Rn) W(Rn—l) W (Bn) W Wn*W(R,T,l)
8 0.9238795325 0.9749279122 0.9776087734 0.9807852804 0.4577
16 0.9807852804 0.9945218954 0.9949956687 0.9951847267 0.7148
32 0.9951847267 0.9987165072 0.9987837929 0.9987954562 0.8523
64 0.9987954562 0.9996891820 0.9996980921 0.9996988187 0.9246

128 0.9996988187 0.9999235114 0.9999246565 0.9999247018 0.9619

compared to the best prior convex small 7-gon R:lr_l . We also remark that W (B,,) approaches
W, much faster than W(R:_]) does as n increases. It is interesting to note that W (Bg) = Wg,
i.e., Bg is an optimal solution for the maximal width problem when n = 8.

Propositions 1 and 2 highlight some interesting properties of Bj,.

Proposition 1 Let n = 2° with integer s > 3.

1. The coordinates of the vertex v in By, are (—1/2,1/2).
2. Forallk = 1,...,n/4 — 1, the pendant edge vy — Vit 241 0f By passes through the
point u = (0, 1/2).

Proof Letn = 2* with integer s > 3 and = Z — arcsin (§ sin 2%).

n n

1. We have, from (6a),

sin (B —Z) 1
Xn = ——— M0 —
sin%—lﬂ 2
sin(%—ﬂ) 1
yu = SHIT = 5

n

2. Forallk =1,...,n/4 — 1, coordinates (x;, y;) in (6) are

s 2kmw km
sin =% sin (B — (—1)*% . 2k
M= - -( 2 ")’ Xjptp1 = Xk + (—D¥ sin =,
SIHT n
2k : km
1 cos #Zsin (B — (—DKZ) o 2k
=5+ . 1, nig = yr+ (—=1)" cos —.
e =73 sin 2% Vit 241 =Yk + (=1 "

n

It follows that, forallk = 1,...,n/4 — 1,

Xk+2+1 — Xk 2k Xk
—— =tan— = —,
Ye+5+1 = Yk n Ye = 3
i.e., the pendant edge vy — Vi1 41 passes through the point u = (0, 1/2). O

2

Proposition 2 Let n = 2° with integer s > 3. The area of By, is % sin = which is the area

of the regular small n-gon R,,.
Proof Let n = 2* with integer s > 3 and = Z — arcsin (% sin 27”) Let Ag be the area of
the quadrilateral uviva v, Ay be the area of the quadrilateral UVEA1 Vit 241 VE—1 for all
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k=1,...,n/4—1,and A% be the area of the triangle uvapva_g, where u = (0, 1/2).
The area of B, is given by
n/4—1
ABy) =Ao+2 Y A + 241
k=1

‘We have

A —IIIV + I~ VII—1 i ( +/5)
= —||vey — n — = —sin | — R
0= 31V — Ve = Vil =3 30y

1
Ak = SIVir 41 = ulllivir = Vi |

_ %sin(%+,3) if k is even,
| Asin2E — Lsin(Z + B) ifkisodd,

forallk=1,...,n/4—1,and

1 | 4
Ay = 3001 = 1/2) = g1 = /Dy ) = g sin (T +8).

n
1

Thus,

4 Tight bounds on the maximal width of unit-perimeter polygons

Let P denote the polygon obtained by contracting a small polygon P so that L(P) = 1. Thus,
the width of the unit-perimeter polygon P is given by W(P) = W(P)/L(P). For a given
integer n > 3,

1

WRy) = %n P . .
n ot if niseven.

cot zl if n is odd,
n

We remark that W(R,) < W(R,_1) for all even n > 4. The polygon R, does not have

maximum width for any even n > 4. When 7 is even, one can construct a unit-perimeter

n-gon with the same width as R,,_| by adding a vertex in the middle of a side of R,,_.
When n has an odd factor m, one can note that

W) = —— cot =
= —col —.
i 2n 2n

Theorem 4 (Audet et al. [2]) For all n > 3, let w;; denote the maximal width among all
unit-perimeter n-gons and let w, := ﬁ cot %

— When n has an odd factor m, w;; = w, is achieved by finitely many equilateral n-gons
[10, 11, 14], including Ry, .. The optimal n-gon Ry, ,, is unique if m is prime andn/m < 2.
— When n = 2° with integer s > 2, W(R,,) < Wy_1 < Wy < Wy
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Table3 Widths of B,

n W) Wt W(En) W Ll s
8 0.3017766953 0.3129490191 0.3132295145 0.3142087183 0.2227
16 0.3142087183 0.3171454818 0.3172268776 0.3172865746 0.5769
32 0.3172865746 0.3180374156 0.3180504765 0.3180541816 0.7790
64 0.3180541816 0.3182439224 0.3182457366 0.3182459678 0.8870
128 0.3182459678 0.3182936544 0.3182938926 0.3182939071 0.9428

When n = 2°, the maximal width w of unit-perimeter n-gons is only known for s = 2.

Audet et al. [2] showed that w} = %\/ 6/3 -9 > w3 = %ﬁ For s > 3, exact solutions
appear to be presently out of reach. However, it is interesting to note that

~ 1 T T 1 . 1 . 27
W(B,) = — [ cot — —tan | — — — arcsin [ — sin —
2n 2n 2n 2 2 n

is a tighter lower bound compared to w,—_; on w;, when n = 2% and s > 3. Indeed, we can
show that, for all n = 2 and integer s > 3,

_ . 1 T 1 (1 . 2% w3 1
w,l—W(Bn):Ztan E—Earcsm Esm? :w+0 5

Ty — WEn) = =10 (2
w, — = — — ],
" " 4n2 n4
_ _ T 1
wn_wnfl:@'i_o I’l74
for all even n > 4.

Table 3 lists the widths of B,,, along with the upper bounds w,, the lower bounds w,_1,
and the widths of ﬁifor n =2%and 3 < s < 7. As n increases, it is not surprising that
W(B,) approaches W, much faster than w,_; does.

while

5 Solving the maximal perimeter problem

For any n = 2° with integer s > 3, we can construct a convex small n-gon B with a longer
perimeter than B, by adjusting the angles o, o1, . . ., an from the parametrization of Sect. 3
to maximize the perimeter L(P,) in (2a) [12]. Hence, L(B}) is the optimal value of the
problem:

n/4—1
L) =max L(P,) :4sin%°+ 1; 8sin% + 4sin “”2/4 (7a)
n/4—1
s.t. oo+ Z 20 —|—an/4:n/2, (7b)
k=1
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vo(0,0)
Fig.8 Variables o, o, ..., 0‘%—1 for L(Qf,): Case of n = 8 vertices
n/4 k—1
sinag — » (=¥ sin (ao + Zza,) =—1/2, (7¢)
k=2 i=1
O<oap <7/6 Yk=0,1,....,n/4—1, (7d)
050!,,/457‘[/3, (7e)
L(Pp) = L(By). (7f)

This formulation was used in [1] for n = 8 to find the convex small 8-gon of maximal
perimeter.

For each n = 2° with integer s > 2, one can also construct a convex small n-gon Q' with
the same diameter graph as R;_l but larger perimeter. Using a similar parametrization as in
Sect. 3, we can show that

n/2—1
. O
L(gy) = max L(P,) = > 4sin — (8a)
k=0
n/2—1
st Y g =m/2, (8b)
k=0

n/2—-2 k
> (=DFsin ( a,) =1/2, (8¢)
k=0 0

i=

0<ap=<m/6, (8d)

O<aox<m/3 Vk=1,2,....,n/2—1, (8e)

L(P,) = LR} )). (8f)
The variables ag, a1, ..., @z_; are defined in Fig. 8. Clearly, Q} = R;r and L(Q}) = Lj.

We solved both Problems (7) and (8) on the NEOS Server 6.0 using AMPL with the solver
Couenne 0.5.8, which is a branch-and-bound algorithm that aims at finding global optima of
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nonconvex mixed-integer nonlinear optimization problems [5]. We have made AMPL codes
available in OPTIGON [8].

Table 4 gives the optimal values L(B;) and L(Q}) for n = 2% and 3 < s <7, along with
the perimeters of B, and the upper bounds L,,. Couenne took less than 1 second to compute
each L(B}) or L(Q}) except for L(Q},), which was computed in 36 minutes. The results in
Table 4 support the following key points:

1. The optimal perimeter L(B}) for each n < 64 computed agrees with the best value found
in the literature.

2. Foralln =2%ands > 3, L(Q}) < L(B,) < L(B}),i.e., Q} is a suboptimal solution.
3. As n increases, the fraction LB)—LEn) appears to approach a scalar b* € (0, 1), i.e.,

_ Ln_L(Bn)
L, — L(BY) = 0(1/n%).
4. Forn =8, L(B}) = Lg.

The optimal angles o that produce B, and Q) are given in Tables 5 and 6 , respectively.
We observe a pattern of damped oscillation, converging in an alterning manner to a mean
value around 7 /n. For Q, this observation leads to the following theorem:

Theorem 5 Suppose n = 25 with integer s > 2. Then there exists a convex small n-gon Q,

such that
L(Oy) = 2nsi T T 1 . 1 T
=2nsin —cos| — — —arcsin{ —cos — | |,
" 2n 8 2 J2 on

W(o,) b4 + b4 1 . 1 b4
=COS|{ — — — —arcsim | — coS — ,
" 2n 8 2 V2 on

and

_ 73 1
Ln_L(Qn)=W+O nfé ,

8n3

In particular, for n = 4, L(Q4) = L} and W(Q4) = W}.

_ 73 1
Wy — W(Qn) =—+0 (ﬁ) .

Proof The proof is similar to that of Theorem 1. O

For all n = 2% with integer s > 2, the diameter graph of Q,, has a cycle of length n — 1 plus
one pendant edge. We represent some polygons Q, in Fig. 9. They are all symmetrical with
respect to the vertical pendant edge. In Q,, the angles o, o, .. ., an_y defined in Fig. 8 are

given by ax = m/n — (—D)¥y forallk =0, 1,...,n/2 — 1, with

T . 1 T 72 a4 I 1
=— —arcsin| —=cos — | = — — — — .
Y'=3 V2 n 2n2  6n4 no

We can show that L(Q,) > L(R! |) and W(Q,) < W(R' ,) when n = 2% with integer
s > 3.

6 Conclusion

Tighter lower bounds on the maximal perimeter and the maximal width of convex small n-
gons were provided when n is a power of 2. For all n = 2* with integer s > 3, we constructed
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(a) (01,3.035276,0.866025) () (0s,3.119338,0.972957) () (Qro,3.136406,0.994207) (l) (@32, 3.140322, 0.998675)

Fig.9 Polygons (Q, L(Qn), W(Qy)) defined in Theorem 5

a convex small n-gon B, whose perimeter and width cannot be improved for large n by more
than % and ;,—i, respectively.

In addition, under the assumption that Mossinghoff’s conjecture is true, we formulated
the maximal perimeter problem as a nonlinear optimization problem involving trigonometric

functions and provided global optimal n-gons forn = 2% and3 < s < 7.
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