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Abstract
A small polygon is a polygon of unit diameter. Themaximal perimeter and themaximal width
of a convex small polygon with n = 2s vertices are not known when s ≥ 4. In this paper, we
construct a family of convex small n-gons, n = 2s and s ≥ 3, and show that the perimeters and
the widths obtained cannot be improved for large n by more than a/n6 and b/n4 respectively,
for certain positive constants a and b. In addition, assuming that a conjecture of Mossinghoff
is true, we formulate the maximal perimeter problem as a nonlinear optimization problem
involving trigonometric functions and, for n = 2s with 3 ≤ s ≤ 7, we provide global optimal
solutions.

Keywords Planar geometry · Polygons · Isodiametric problems · Maximal perimeter ·
Maximal width · Global optimization

Mathematics Subject Classification 52A40 · 52A10 · 52B55 · 90C26

1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A
polygon is said to be small if its diameter equals one. For a given integer n ≥ 3, the maximal
perimeter problem consists in finding a convex small n-gon with the longest perimeter. The
problemwas first investigated by Reinhardt [15] in 1922, and later by Datta [9] in 1997. They
proved that

– for all n ≥ 3, the value 2n sin π
2n is an upper bound on the perimeter of a convex small

n-gon;
– when n is odd, the regular small n-gon is an optimal solution, but it is unique only if n

is prime;
– when n is even, the regular small n-gon is not optimal;
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(a) (R4, 2.828427, 0.707107) (b) (R+3 , 3.035276, 0.866025)

Fig. 1 Two convex small 4-gons (P4, L(P4)), W (P4))

(a)(R6, 3, 0.866025) (b)(R+5 , 3.097874, 0.951057) (c) (R3,6, 3.105829, 0.965926)

Fig. 2 Three convex small 6-gons (P6, L(P6)), W (P6))

– when n has an odd factor, there are finitely many optimal solutions [10, 11, 14] and they
are all equilateral.

When n is a power of 2, the maximal perimeter problem is solved for n ≤ 8. In 1987,
Tamvakis [16] found the unique convex small 4-gon with the longest perimeter, shown in
Fig. 1b. Audet et al. [1] used both geometrical arguments and methods of global optimization
to determine the unique convex small 8-gon with the longest perimeter, illustrated in Fig. 3c.

The diameter graph of a small polygon is the graph with the vertices of the polygon, and
an edge between two vertices exists only if the distance between these vertices equals one.
Figures 1, 2, and 3 represent diameter graphs of some convex small polygons. The solid lines
illustrate pairs of vertices which are unit distance apart. Mossinghoff [12] conjectured that,
for n ≥ 4 power of 2, the diameter graph of a convex small n-gon with maximal perimeter
has a cycle of length n/2+ 1, plus n/2− 1 additional pendant edges, arranged so that all but
two particular vertices of the cycle have a pendant edge. For example, Figs. 1b and 3c exhibit
the diameter graphs of optimal n-gons when n = 4 and when n = 8 respectively. We point
out that numerical values in figures and tables in this paper are rounded at the last reported
digit.

The width of a polygon in some direction is the distance between two parallel lines
perpendicular to this direction and supporting the polygon from below and above. The width
of a polygon is the minimum width for all directions. For a given integer n ≥ 3, the maximal
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(a) (R8, 3.061467, 0.923880) (b) (R+7 , 3.118109, 0.974928) (c) (B∗
8 , 3.121147, 0.976410) (d) (B8, 3.121062, 0.977609)

Fig. 3 Four convex small 8-gons (P8, L(P8)), W (P8))

width problem consists in finding a convex small n-gon with the largest width. This problem
was partially solved by Bezdek and Fodor [6] in 2000. They proved that

– for all n ≥ 3, the value cos π
2n is an upper bound on the width of a convex small n-gon;

– when n has an odd factor, a convex small n-gon is optimal for the maximal width problem
if and only if it is optimal for the maximal perimeter problem;

– when n = 4, there are infinitely many optimal convex small 4-gons, including the 4-gon
illustrated in Fig. 1b.

When n ≥ 8 is a power of 2, the maximal width is only known for the first open case
n = 8. Audet et al. [4] combined geometrical and analytical reasoning as well as methods
of global optimization to prove that there are infinitely many optimal convex small 8-gons,
including the 8-gon illustrated in Fig. 3d.

For n = 2s with integer s ≥ 4, exact solutions in both problems appear to be presently out
of reach. However, tight lower bounds on the maximal perimeter and the maximal width may
be obtained analytically. For instance, Mossinghoff [12] constructed convex small n-gons,
for n = 2s with s ≥ 3, and proved that the perimeters obtained cannot be improved for
large n by more than π5/(16n5). We can also show that, when n = 2s with s ≥ 2, the value
cos π

2n−2 is a lower bound on the maximal width and this bound cannot be improved for
large n by more than π2/(4n3). In this paper, we propose tighter lower bounds on both the
maximal perimeter and the maximal width of convex small n-gons when n = 2s and integer
s ≥ 3. Thus, the main result of this paper is the following:

Theorem 1 For a given integer n ≥ 3, let Ln := 2n sin π
2n denote an upper bound on the

perimeter L(Pn) of a convex small n-gon Pn, and W n := cos π
2n denote an upper bound on

its width W (Pn). If n = 2s with s ≥ 3, then there exists a convex small n-gon Bn such that

L(Bn) = 2n sin
π

2n
cos

(
π

2n
− 1

2
arcsin

(
1

2
sin

2π

n

))
,

W (Bn) = cos

(
π

n
− 1

2
arcsin

(
1

2
sin

2π

n

))
,

and

Ln − L(Bn) = π7

32n6 + O

(
1

n8

)
,

W n − W (Bn) = π4

8n4 + O

(
1

n6

)
.
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The remainder of this paper is organized as follows. Section 2 recalls principal results on
themaximal perimeter and themaximalwidth of convex small polygons.WeproveTheorem1
in Sect. 3. Tight bounds on the maximal width of unit-perimeter n-gons, n = 2s and s ≥ 3,
are deduced from Theorem 1 in Sect. 4. Under the assumption that Mossinghoff’s conjecture
is true, a nonlinear optimization problem involving trigonometric functions is proposed for
the maximal perimeter problem in Sect. 5. Global optimal solutions obtained by using AMPL
with the solver Couenne [5] are given for n = 2s with 3 ≤ s ≤ 7. Section 6 concludes the
paper.

2 Perimeters and widths of convex small polygons

2.1 Maximal perimeter andmaximal width

Let L(P) denote the perimeter of a polygon P and W (P) its width. For a given integer n ≥ 3,
let Rn denote the regular small n-gon. We have

L(Rn) =
{
2n sin π

2n if n is odd,

n sin π
n if n is even,

and

W (Rn) =
{
cos π

2n if n is odd,

cos π
n if n is even.

We remark that L(Rn) < L(Rn−1) [3] and W (Rn) < W (Rn−1) for all even n ≥ 4. The
polygon Rn does not have maximum perimeter nor maximum width for any even n ≥ 4.
Indeed, when n is even, one can construct a convex small n-gon with a longer perimeter and
a larger width than Rn by adding a vertex at distance 1 along the mediatrix of an angle in
Rn−1. We denote this n-gon by R+

n−1 and we have

L(R+
n−1) = (2n − 2) sin

π

2n − 2
+ 4 sin

π

4n − 4
− 2 sin

π

2n − 2
,

W (R+
n−1) = cos

π

2n − 2
.

When n has an odd factor m, we construct another family of convex equilateral small
n-gons as follows:

1. Consider a regular small m-gon Rm ;
2. Transform Rm into a Reuleaux m-gon by replacing each edge by a circle’s arc passing

through its end vertices and centered at the opposite vertex;
3. Add at regular intervals n/m − 1 vertices within each arc;
4. Take the convex hull of all vertices.

We denote these n-gons by Rm,n and we have

L(Rm,n) = 2n sin
π

2n
,

W (Rm,n) = cos
π

2n
.

The 6-gon R3,6 is illustrated in Fig. 2c.
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Theorem 2 (Reinhardt [15], Datta [9]) For all n ≥ 3, let L∗
n denote the maximal perimeter

among all convex small n-gons and let Ln := 2n sin π
2n .

– When n has an odd factor m, L∗
n = Ln is achieved by finitely many equilateral n-gons

[10, 11, 14], includingRm,n. The optimal n-gonRm,n is unique if m is prime and n/m ≤ 2.
– When n = 2s with integer s ≥ 2, L(Rn) < L∗

n < Ln.

When n = 2s , the maximal perimeter L∗
n is only known for s ≤ 3. Tamvakis [16] found

that L∗
4 = 2 + √

6 − √
2, and this value is achieved only by R+

3 , shown in Fig. 1b. Audet et
al. [1] found that L∗

8 ≈ 3.121147, and this value is only achieved by B∗
8, shown in Fig. 3c.

Theorem 3 (Bezdek and Fodor [6]) For all n ≥ 3, let W ∗
n denote the maximal width among

all convex small n-gons and let W n := cos π
2n .

– When n has an odd factor, W ∗
n = W n is achieved by a convex small n-gon with maximal

perimeter L∗
n = Ln.

– When n = 2s with integer s ≥ 2, W (Rn) < W ∗
n < W n.

When n = 2s , the maximal width W ∗
n is only known for s ≤ 3. Bezdek and Fodor

[6] showed that W ∗
4 = 1

2

√
3, and this value is achieved by infinitely many convex small

4-gons, including R+
3 shown in Fig. 1b. Audet, Hansen, Messine, and Ninin found that

W ∗
8 = 1

4

√
10 + 2

√
7, and this value is also achieved by infinitely many convex small 8-gons,

including B8 shown in Fig. 3d. It is interesting to note that while the optimal 4-gon for the
maximal perimeter problem is also optimal for themaximal width problem, the optimal 8-gon
for the maximal perimeter problem is not optimal for the maximal width problem.

2.2 Lower bounds on themaximal perimeter and themaximal width

For n = 2s with integer s ≥ 2, let Tn denote the convex n-gon obtained by subdividing each
bounding arc of a such Reuleaux triangle into either �n/3� or 	n/3
 subarcs of equal length,
then taking the convex hull of the endpoints of these arcs. For a real number a, �a� is the
least integer greater than or equal to a, and 	a
 is the greatest integer less than or equal to a.
We illustrate Tn for some n in Fig. 4. For each n, the perimeter of Tn is given by

L(Tn) =
{

4n−4
3 sin π

2n−2 + 2n+4
3 sin π

2n+4 if n = 3k + 1,
4n+4
3 sin π

2n+2 + 2n−4
3 sin π

2n−4 if n = 3k + 2.

We note that T4 is optimal for the maximal perimeter problem and we can show that

Ln − L(Tn) = π3

4n4 + O

(
1

n5

)

for all n = 2s and s ≥ 2. By contrast,

Ln − L(Rn) = π3

8n2 + O

(
1

n4

)
,

Ln − L(R+
n−1) = 5π3

96n3 + O

(
1

n4

)

for all even n ≥ 4. Tamvakis asked if Tn is also optimal when s ≥ 3. Obviously, T8 is not
optimal, i.e., L(T8) < L∗

8.
For all n = 2s with integer s ≥ 2, let P∗

n denote a convex small n-gon with the longest
perimeter.
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(a) (T8, 3.119054, 0.965926) (b) (T16, 3.136438, 0.994522) (c) (T32, 3.140323, 0.998630)

Fig. 4 Tamvakis polygons (Tn , L(Tn), W (Tn))

(a) (M8, 3.120976, 0.974735) (b) (M16, 3.136532, 0.994323) (c) (M32, 3.140331, 0.998682)

Fig. 5 Mossinghoff polygons (Mn , L(Mn), W (Mn))

Conjecture 1 (Mossinghoff [12]) For all n = 2s with integer s ≥ 2, the diameter graph of
P∗

n has a cycle of length n/2+ 1, plus n/2− 1 additional pendant edges, arranged so that all
but two particular vertices of the cycle have a pendant edge.

Conjecture 2 (Mossinghoff [12]) For all n = 2s with integer s ≥ 2, P∗
n has an axis of

symmetry corresponding to one particular pendant edge in its diameter graph.

Conjecture 1 is proven for n = 4 [16] and n = 8 [1]. Conjecture 2 is only proven for
n = 4 [16], but it is shown numerically for n = 8 in [1]. Mossinghoff [12] constructed a
family of convex small n-gons Mn having the diameter graph described in Conjectures 1 and
2 . These polygons have the property that

Ln − L(Mn) = π5

16n5
+ O

(
1

n6

)

when n = 2s and s ≥ 3. We show Mn for some n in Fig. 5.
On the other hand, for all n = 2s and integer s ≥ 3,

W (Tn) =
{
cos π

2n−2 if n = 3k + 1,

cos π
2n−4 if n = 3k + 2,

W (Mn) = cos

(
π

2n
+ π2

4n2 − π2

2n3

)
,
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v0(0, 0)

v7(x7, y7)

v3(x3, y3)

v1(x1, y1)

v5(0, 1)

v4(x4, y4)

v2(x2, y2)

v6(x6, y6)

α0

α1

α1

α2

Fig. 6 Definition of variables α0, α1, . . . , α n
4
for Bn : Case of n = 8 vertices

and we can show that W (R+
n−1) ≥ max{W (Tn), W (Mn)}. Note that

W n − W (Rn) = 3π2

8n2 + O

(
1

n4

)
,

W n − W (R+
n−1) = π2

4n3 + O

(
1

n4

)

for all even n ≥ 4.

3 Proof of Theorem 1

We use cartesian coordinates to describe an n-gon Pn , assuming that a vertex vi , i =
0, 1, . . . , n − 1, is positioned at abscissa xi and ordinate yi . Placing the vertex v0 at the
origin, we set x0 = y0 = 0. We also assume that the n-gon Pn is in the half-plane y ≥ 0.

For all n = 2s with integer s ≥ 3, consider the n-gon Pn having an (n/2 + 1)-length
cycle: v0 − v1 − · · · − vk − · · · − v n

4
− v n

4 +1 − · · · − v n
2 −k+1 − · · · − v n

2
− v0 plus

n/2− 1 pendant edges: v0 − v n
2 +1, vk − vk+ n

2 +1, v n
2 −k+1 − vn−k , k = 1, . . . , n/4− 1, as

illustrated in Fig. 6. We assume that Pn has the edge v0 − v n
2 +1 as axis of symmetry and for

all k = 1, . . . , n/4 − 1, the pendant edge vk − vk+ n
2 +1 bisects the angle ∠vk−1vkvk+1.

Let α0 := ∠v n
2 +1v0v1, 2αk := ∠vk−1vkvk+1 for all k = 1, . . . , n/4 − 1, and α n

4
:=

∠v n
4 −1v n

4
v n

4 +1. Since Pn is symmetric, we have

α0 + 2
n/4−1∑

k=1

αk + αn/4 = π

2
, (1)

and

L(Pn) = 4 sin
α0

2
+ 8

n/4−1∑
k=1

sin
αk

2
+ 4 sin

αn/4

2
, (2a)
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W (Pn) = min
k=0,1,...,n/4

cos
αk

2
. (2b)

By placing the vertex v0 at (0, 0) in the plane, and the vertex v n
2 +1 at (0, 1), we have

x1 = sin α0 = −xn/2, (3a)

y1 = cosα0 = yn/2, (3b)

xk = xk−1 − (−1)k sin

⎛
⎝α0 + 2

k−1∑
j=1

α j

⎞
⎠ = −x n

2 −k+1 ∀k = 2, 3, . . . , n/4 (3c)

yk = yk−1 − (−1)k cos

⎛
⎝α0 + 2

k−1∑
j=1

α j

⎞
⎠ = y n

2 −k+1 ∀k = 2, 3, . . . , n/4, (3d)

xk+ n
2 +1 = xk + (−1)k sin

⎛
⎝α0 + 2

k−1∑
j=1

α j + αk

⎞
⎠ = −xn−k ∀k = 1, 2, . . . , n/4 − 1,

(3e)

yk+ n
2 +1 = yk + (−1)k cos

⎛
⎝α0 + 2

k−1∑
j=1

α j + αk

⎞
⎠ = yn−k ∀k = 1, 2, . . . , n/4 − 1. (3f)

We also have

x n
4

= −1/2 = −x n
4 +1. (4)

since the edge v n
4

− v n
4 +1 is horizontal and ‖v n

4
− v n

4 +1‖ = 1.

For all k = 0, 1, . . . , n/4, suppose αk = π
n + (−1)kβ with β = β(n) satisfying |β| < π

n .
Then (1) is verified and (2) becomes

L(Pn) = n sin

(
π

2n
+ β

2

)
+ n sin

(
π

2n
− β

2

)
= 2n sin

π

2n
cos

β

2
, (5a)

W (Pn) = cos

(
π

2n
+ |β|

2

)
. (5b)

Coordinates (xi , yi ) in (3) are given by

xk =
k∑

j=1

(−1) j−1 sin
(
(2 j − 1)

π

n
+ (−1) j−1β

)

= sin 2kπ
n sin

(
β − (−1)k π

n

)
sin 2π

n

= −x n
2 −k+1 ∀k = 1, 2, . . . , n/4, (6a)

yk =
k∑

j=1

(−1) j−1 cos
(
(2 j − 1)

π

n
+ (−1) j−1β

)

= sin
(

π
n − β

) + cos 2kπ
n sin

(
β − (−1)k π

n

)
sin 2π

n

= y n
2 −k+1 ∀k = 1, 2, . . . , n/4,

(6b)

xk+ n
2 +1 = xk + (−1)k sin

2kπ

n
= −xn−k ∀k = 1, 2, . . . , n/4 − 1, (6c)
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(a) (B8, 3.121062, 0.977609) (b) (B16, 3.136543, 0.994996) (c) (B32, 3.140331, 0.998784)

Fig. 7 Polygons (Bn , L(Bn), W (Bn)) defined in Theorem 1

yk+ n
2 +1 = yk + (−1)k cos

2kπ

n
= yn−k ∀k = 1, 2, . . . , n/4 − 1. (6d)

Finally, β is chosen so that (4) is satisfied. It follows, from (6a),

sin
(
β − π

n

)
sin 2π

n

= −1

2
⇒ β = β0(n) = π

n
− arcsin

(
1

2
sin

2π

n

)
= π3

2n3 + π5

8n5
+ O

(
1

n7

)
.

Let Bn denote the n-gon obtained by setting β = β0(n). From (5), we have

L(Bn) = 2n sin
π

2n
cos

(
π

2n
− 1

2
arcsin

(
1

2
sin

2π

n

))
,

W (Bn) = cos

(
π

n
− 1

2
arcsin

(
1

2
sin

2π

n

))
,

and

Ln − L(Bn) = π7

32n6 + 11π9

768n8 + O

(
1

n10

)
,

W n − W (Bn) = π4

8n4 + 11π6

192n6 + O

(
1

n8

)
.

By construction, Bn is small and convex for all n = 2s and s ≥ 3. We illustrate Bn for some
n in Fig. 7. This completes the proof of Theorem 1. ��

We implemented all polygons presented in this work as a MATLAB package: OPTIGON,
freely available on GitHub [8]. In OPTIGON, MATLAB functions that give the coordinates
of the vertices are provided. An algorithm developed in [7] to estimate the maximal area of
a small n-gon [15] when n ≥ 6 is even can be also found.

Table 1 shows the perimeters of Bn , along with the upper bounds Ln , the perimeters of
Rn , R

+
n−1, Tn , and Mn for n = 2s and 3 ≤ s ≤ 7. As suggested by Theorem 1, when n is

a power of 2, Bn provides a tighter lower bound on the maximal perimeter L∗
n compared

to the best prior convex small n-gon Mn . For instance, we can note that L∗
128 − L(B128) <

L128 − L(B128) < 2.15 × 10−11. By analysing the fraction L(Bn)−L(Mn)

Ln−L(Mn)
of the length of the

interval [L(Mn), Ln] where L(Bn) lies, it is not surprising that L(Bn) approaches Ln much

faster than L(Mn) does as n increases. After all, L(Bn) − L(Mn) ∼ π5

16n5
for large n.

Table 2 displays the widths of Bn , along with the upper bounds W n , the widths of Rn and
R+

n−1. Again, when n = 2s , Bn provides a tighter lower bound for the maximal width W ∗
n
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Table 2 Widths of Bn

n W (Rn) W (R+
n−1) W (Bn) W n

W (Bn )−W (R+
n−1)

W n−W (R+
n−1)

8 0.9238795325 0.9749279122 0.9776087734 0.9807852804 0.4577

16 0.9807852804 0.9945218954 0.9949956687 0.9951847267 0.7148

32 0.9951847267 0.9987165072 0.9987837929 0.9987954562 0.8523

64 0.9987954562 0.9996891820 0.9996980921 0.9996988187 0.9246

128 0.9996988187 0.9999235114 0.9999246565 0.9999247018 0.9619

compared to the best prior convex small n-gon R+
n−1. We also remark that W (Bn) approaches

W n much faster than W (R+
n−1) does as n increases. It is interesting to note that W (B8) = W ∗

8 ,
i.e., B8 is an optimal solution for the maximal width problem when n = 8.

Propositions 1 and 2 highlight some interesting properties of Bn .

Proposition 1 Let n = 2s with integer s ≥ 3.

1. The coordinates of the vertex v n
4

in Bn are (−1/2, 1/2).
2. For all k = 1, . . . , n/4 − 1, the pendant edge vk − vk+ n

2 +1 of Bn passes through the
point u = (0, 1/2).

Proof Let n = 2s with integer s ≥ 3 and β = π
n − arcsin

( 1
2 sin

2π
n

)
.

1. We have, from (6a),

x n
4

= sin
(
β − π

n

)
sin 2π

n

= −1

2
,

y n
4

= sin
(

π
n − β

)
sin 2π

n

= 1

2
.

2. For all k = 1, . . . , n/4 − 1, coordinates (xi , yi ) in (6) are

xk = sin 2kπ
n sin

(
β − (−1)k π

n

)
sin 2π

n

, xk+ n
2 +1 = xk + (−1)k sin

2kπ

n
,

yk = 1

2
+ cos 2kπ

n sin
(
β − (−1)k π

n

)
sin 2π

n

, yk+ n
2 +1 = yk + (−1)k cos

2kπ

n
.

It follows that, for all k = 1, . . . , n/4 − 1,

xk+ n
2 +1 − xk

yk+ n
2 +1 − yk

= tan
2kπ

n
= xk

yk − 1
2

,

i.e., the pendant edge vk − vk+ n
2 +1 passes through the point u = (0, 1/2). ��

Proposition 2 Let n = 2s with integer s ≥ 3. The area of Bn is n
8 sin

2π
n , which is the area

of the regular small n-gon Rn.

Proof Let n = 2s with integer s ≥ 3 and β = π
n − arcsin

( 1
2 sin

2π
n

)
. Let A0 be the area of

the quadrilateral uv1v n
2 +1v n

2
, Ak be the area of the quadrilateral uvk+1vk+ n

2 +1vk−1 for all
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k = 1, . . . , n/4 − 1, and A n
4
be the area of the triangle uv n

4 +1v n
4 −1, where u = (0, 1/2).

The area of Bn is given by

A(Bn) = A0 + 2
n/4−1∑

k=1

Ak + 2A n
4
.

We have

A0 = 1

2
‖v n

2 +1 − u‖‖v n
2

− v1‖ = 1

2
sin

(π

n
+ β

)
,

Ak = 1

2
‖vk+ n

2 +1 − u‖‖vk−1 − vk+1‖

=
{

1
2 sin

(
π
n + β

)
if k is even,

1
2 sin

2π
n − 1

2 sin
(

π
n + β

)
if k is odd,

for all k = 1, . . . , n/4 − 1, and

A n
4

= 1

2
(x n

4 +1(y n
4 −1 − 1/2) − (y n

4 +1 − 1/2)x n
4 −1) = 1

4
sin

(π

n
+ β

)
.

Thus,

A(Bn) = n

8
sin

(π

n
+ β

)
+ n

8

(
sin

2π

n
− sin

(π

n
+ β

))
= n

8
sin

2π

n
.

��

4 Tight bounds on themaximal width of unit-perimeter polygons

Let P̂ denote the polygon obtained by contracting a small polygon P so that L(P̂) = 1. Thus,
the width of the unit-perimeter polygon P̂ is given by W (P̂) = W (P)/L(P). For a given
integer n ≥ 3,

W (R̂n) =
{

1
2n cot π

2n if n is odd,
1
n cot π

n if n is even.

We remark that W (R̂n) < W (R̂n−1) for all even n ≥ 4. The polygon R̂n does not have
maximum width for any even n ≥ 4. When n is even, one can construct a unit-perimeter
n-gon with the same width as R̂n−1 by adding a vertex in the middle of a side of R̂n−1.

When n has an odd factor m, one can note that

W (R̂m,n) = 1

2n
cot

π

2n
.

Theorem 4 (Audet et al. [2]) For all n ≥ 3, let w∗
n denote the maximal width among all

unit-perimeter n-gons and let wn := 1
2n cot π

2n .

– When n has an odd factor m, w∗
n = wn is achieved by finitely many equilateral n-gons

[10, 11, 14], includingRm,n. The optimal n-gon R̂m,n is unique if m is prime and n/m ≤ 2.
– When n = 2s with integer s ≥ 2, W (R̂n) < wn−1 ≤ w∗

n < wn.

123



Journal of Global Optimization (2022) 84:1033–1051 1045

Table 3 Widths of B̂n

n W (R̂n) wn−1 W (B̂n) wn
W (B̂n )−wn−1

wn−wn−1

8 0.3017766953 0.3129490191 0.3132295145 0.3142087183 0.2227

16 0.3142087183 0.3171454818 0.3172268776 0.3172865746 0.5769

32 0.3172865746 0.3180374156 0.3180504765 0.3180541816 0.7790

64 0.3180541816 0.3182439224 0.3182457366 0.3182459678 0.8870

128 0.3182459678 0.3182936544 0.3182938926 0.3182939071 0.9428

When n = 2s , the maximal width w∗
n of unit-perimeter n-gons is only known for s = 2.

Audet et al. [2] showed that w∗
4 = 1

4

√
6
√
3 − 9 > w3 = 1

6

√
3. For s ≥ 3, exact solutions

appear to be presently out of reach. However, it is interesting to note that

W (B̂n) = 1

2n

(
cot

π

2n
− tan

(
π

2n
− 1

2
arcsin

(
1

2
sin

2π

n

)))

is a tighter lower bound compared to wn−1 on w∗
n when n = 2s and s ≥ 3. Indeed, we can

show that, for all n = 2s and integer s ≥ 3,

wn − W (B̂n) = 1

2n
tan

(
π

2n
− 1

2
arcsin

(
1

2
sin

2π

n

))
= π3

8n4 + O

(
1

n6

)
,

while

wn − W (R̂n) = π

4n2 + O

(
1

n4

)
,

wn − wn−1 = π

6n3 + O

(
1

n4

)

for all even n ≥ 4.
Table 3 lists the widths of B̂n , along with the upper bounds wn , the lower bounds wn−1,

and the widths of R̂n for n = 2s and 3 ≤ s ≤ 7. As n increases, it is not surprising that
W (B̂n) approaches W n much faster than wn−1 does.

5 Solving themaximal perimeter problem

For any n = 2s with integer s ≥ 3, we can construct a convex small n-gon B∗
n with a longer

perimeter than Bn by adjusting the angles α0, α1, . . . , α n
4
from the parametrization of Sect. 3

to maximize the perimeter L(Pn) in (2a) [12]. Hence, L(B∗
n) is the optimal value of the

problem:

L(B∗
n) = max

α
L(Pn) = 4 sin

α0

2
+

n/4−1∑
k=1

8 sin
αk

2
+ 4 sin

αn/4

2
(7a)

s. t. α0 +
n/4−1∑

k=1

2αk + αn/4 = π/2, (7b)
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v0(0, 0)

v5(x5, y5)

v3(x3, y3)

v1(x1, y1)
v7(0, 1)

v6(x6, y6)

v4(x4, y4)

v2(x2, y2)

α0

α1

α2

α3

Fig. 8 Variables α0, α1, . . . , α n
2 −1 for L(Q∗

n): Case of n = 8 vertices

sin α0 −
n/4∑
k=2

(−1)k sin

(
α0 +

k−1∑
i=1

2αi

)
= −1/2, (7c)

0 ≤ αk ≤ π/6 ∀k = 0, 1, . . . , n/4 − 1, (7d)

0 ≤ αn/4 ≤ π/3, (7e)

L(Pn) ≥ L(Bn). (7f)

This formulation was used in [1] for n = 8 to find the convex small 8-gon of maximal
perimeter.

For each n = 2s with integer s ≥ 2, one can also construct a convex small n-gon Q∗
n with

the same diameter graph as R+
n−1 but larger perimeter. Using a similar parametrization as in

Sect. 3, we can show that

L(Q∗
n) = max

α
L(Pn) =

n/2−1∑
k=0

4 sin
αk

2
(8a)

s. t.
n/2−1∑

k=0

αk = π/2, (8b)

n/2−2∑
k=0

(−1)k sin

(
k∑

i=0

αi

)
= 1/2, (8c)

0 ≤ α0 ≤ π/6, (8d)

0 ≤ αk ≤ π/3 ∀k = 1, 2, . . . , n/2 − 1, (8e)

L(Pn) ≥ L(R+
n−1). (8f)

The variables α0, α1, . . . , α n
2 −1 are defined in Fig. 8. Clearly, Q∗

4 ≡ R+
3 and L(Q∗

4) = L∗
4.

We solved both Problems (7) and (8) on the NEOS Server 6.0 using AMPLwith the solver
Couenne 0.5.8, which is a branch-and-bound algorithm that aims at finding global optima of
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nonconvex mixed-integer nonlinear optimization problems [5]. We have made AMPL codes
available in OPTIGON [8].

Table 4 gives the optimal values L(B∗
n) and L(Q∗

n) for n = 2s and 3 ≤ s ≤ 7, along with
the perimeters of Bn and the upper bounds Ln . Couenne took less than 1 second to compute
each L(B∗

n) or L(Q∗
n) except for L(Q∗

16), which was computed in 36 minutes. The results in
Table 4 support the following key points:

1. The optimal perimeter L(B∗
n) for each n ≤ 64 computed agrees with the best value found

in the literature.
2. For all n = 2s and s ≥ 3, L(Q∗

n) < L(Bn) < L(B∗
n), i.e., Q∗

n is a suboptimal solution.

3. As n increases, the fraction L(B∗
n)−L(Bn)

Ln−L(Bn)
appears to approach a scalar b∗ ∈ (0, 1), i.e.,

Ln − L(B∗
n) = O(1/n6).

4. For n = 8, L(B∗
8) = L∗

8.

The optimal angles α∗
k that produce B∗

n and Q∗
n are given in Tables 5 and 6 , respectively.

We observe a pattern of damped oscillation, converging in an alterning manner to a mean
value around π/n. For Q∗

n , this observation leads to the following theorem:

Theorem 5 Suppose n = 2s with integer s ≥ 2. Then there exists a convex small n-gon Qn

such that

L(Qn) = 2n sin
π

2n
cos

(
π

8
− 1

2
arcsin

(
1√
2
cos

π

n

))
,

W (Qn) = cos

(
π

2n
+ π

8
− 1

2
arcsin

(
1√
2
cos

π

n

))
,

and

Ln − L(Qn) = π5

32n4 + O

(
1

n6

)
,

W n − W (Qn) = π3

8n3 + O

(
1

n4

)
.

In particular, for n = 4, L(Q4) = L∗
4 and W (Q4) = W ∗

4 .

Proof The proof is similar to that of Theorem 1. ��
For all n = 2s with integer s ≥ 2, the diameter graph of Qn has a cycle of length n −1 plus

one pendant edge. We represent some polygons Qn in Fig. 9. They are all symmetrical with
respect to the vertical pendant edge. In Qn , the angles α0, α1, . . . , α n

2 −1 defined in Fig. 8 are

given by αk = π/n − (−1)kγ for all k = 0, 1, . . . , n/2 − 1, with

γ = π

4
− arcsin

(
1√
2
cos

π

n

)
= π2

2n2 − π4

6n4 + O

(
1

n6

)
.

We can show that L(Qn) > L(R+
n−1) and W (Qn) < W (R+

n−1) when n = 2s with integer
s ≥ 3.

6 Conclusion

Tighter lower bounds on the maximal perimeter and the maximal width of convex small n-
gons were provided when n is a power of 2. For all n = 2s with integer s ≥ 3, we constructed
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(a) (Q4, 3.035276, 0.866025) (b) (Q8, 3.119338, 0.972957) (c) (Q16, 3.136406, 0.994207) (d) (Q32, 3.140322, 0.998675)

Fig. 9 Polygons (Qn , L(Qn), W (Qn)) defined in Theorem 5

a convex small n-gon Bn whose perimeter and width cannot be improved for large n by more

than π7

32n6
and π4

8n4
, respectively.

In addition, under the assumption that Mossinghoff’s conjecture is true, we formulated
the maximal perimeter problem as a nonlinear optimization problem involving trigonometric
functions and provided global optimal n-gons for n = 2s and 3 ≤ s ≤ 7.

Acknowledgements The author thanks Charles Audet, Professor at Polytechnique Montreal, for helpful dis-
cussions on extremal small polygons and helpful comments on early drafts of this paper.

References

1. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Comb. Theory Ser. A
114(1), 135–150 (2007)

2. Audet, C., Hansen, P., Messine, F.: Isoperimetric polygons of maximum width. Discret. Comput. Geom.
41(1), 45–60 (2009)

3. Audet, C., Hansen, P., Messine, F.: Ranking small regular polygons by area and by perimeter. J. Appl.
Ind. Math. 3(1), 21–27 (2009)

4. Audet, C., Hansen, P., Messine, F., Ninin, J.: The small octagons of maximal width. Discret. Comput.
Geom. 49(3), 589–600 (2013)

5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for
non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

6. Bezdek, A., Fodor, F.: On convex polygons of maximal width. Arch. Math. 74(1), 75–80 (2000)
7. Bingane, C.: Largest small polygons: a sequential convex optimization approach. Optim. Lett. (2022).

https://doi.org/10.1007/s11590-022-01887-5
8. Bingane, C.: OPTIGON: extremal small polygons. https://github.com/cbingane/optigon (2020)
9. Datta, B.: A discrete isoperimetric problem. Geometriae Dedicata 64(1), 55–68 (1997)

10. Hare, K.G., Mossinghoff, M.J.: Sporadic Reinhardt polygons. Discret. Comput. Geom. 49(3), 540–557
(2013)

11. Hare, K.G.,Mossinghoff,M.J.:Most Reinhardt polygons are sporadic. Geometriae Dedicata 198(1), 1–18
(2019)

12. Mossinghoff, M.J.: Isodiametric problems for polygons. Discret. Comput. Geom. 36(2), 363–379 (2006)
13. Mossinghoff, M.J.: An isodiametric problem for equilateral polygons. Contemp. Math. 457, 237–252

(2008)
14. Mossinghoff,M.J.: Enumerating isodiametric and isoperimetric polygons. J. Comb. Theory Ser. A 118(6),

1801–1815 (2011)
15. Reinhardt, K.: Extremale polygone gegebenen durchmessers. Jahresbericht der DeutschenMathematiker-

Vereinigung 31, 251–270 (1922)
16. Tamvakis, N.K.: On the perimeter and the area of the convex polygon of a given diameter. Bull. Greek

Math. Soc. 28, 115–132 (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s11590-022-01887-5
https://github.com/cbingane/optigon

	Tight bounds on the maximal perimeter and the maximal width of convex small polygons
	Abstract
	1 Introduction
	2 Perimeters and widths of convex small polygons
	2.1 Maximal perimeter and maximal width
	2.2 Lower bounds on the maximal perimeter and the maximal width

	3 Proof of Theorem 1
	4 Tight bounds on the maximal width of unit-perimeter polygons
	5 Solving the maximal perimeter problem
	6 Conclusion
	Acknowledgements
	References




