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Abstract
We consider global optimization of mixed-integer bilinear programs (MIBLP) using
discretization-based mixed-integer linear programming (MILP) relaxations. We start from
the widely used radix-based discretization formulation (called R-formulation in this paper),
where the base R may be any natural number, but we do not require the discretization level
to be a power of R. We prove the conditions under which R-formulation is locally sharp,
and then propose an R+-formulation that is always locally sharp. We also propose an H -
formulation that allows multiple bases and prove that it is also always locally sharp. We
develop a global optimization algorithm with adaptive discretization (GOAD) where the dis-
cretization level of each variable is determined according to the solution of previously solved
MILP relaxations. The computational study shows the computational advantage of GOAD
over general-purpose global solvers BARON and SCIP.

Keywords Global optimization · Discretization · Mixed-integer bilinear programming ·
MILP relaxation · Sharp formulation

1 Introduction

Many process systems engineering problems can be cast as mixed-integer bilinear programs
(MIBLP), such as crude oil scheduling [15, 21, 22, 26], multi-period gasoline blending
[5, 18, 19, 23], water network design and operation [1, 2, 14, 16, 17, 20, 31], supply chain
management [27] and hydrogen network optimization [13]. In this paper, we considerMIBLP
in the following form:

min c(w, x, y, δ), (MIBLP)

s.t . g(w, x, y, δ) ≤ 0,
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δ ∈ {0, 1}n,
(wl,m, xm, yl) ∈ S, ∀(l,m) ∈ Θ,

where c, g are linear functions x, y are normalized variables involved in bilinear terms and
w represents values of the bilinear terms, index set Θ associates the components in x and y
to components in w, and set S = {(w, x, y) ∈ R × [0, 1]2 : w = xy}. Note that the binary
variables δ appear linearly in the objective and the constraints.

Due to the integer variables and the nonconvex bilinear terms, obtaining a global solution
of a MIBLP is computationally challenging. In the spatial branch-and-bound framework, the
solution efficiency depends heavily on the tightness of the relaxation problem. A straight-
forward way to generate a relaxation problem is to replace the bilinear terms with their
convex envelopes [24], and then the relaxation problem is a mixed-integer linear program
(MILP). Strengthening constraints derived from the Reformulation-Linearization Technique
[29] can be added to tighten the MILP relaxation. A more sophisticated relaxation strategy,
called piecewise McCormick relaxation, is to partition the domain of variables in a bilinear
term into multiple subdomains and replace the bilinear term with its convex envelops on
each individual subdomain [16, 35]. The disjunctive constraints from piecewise McCormick
relaxation can be represented by a logarithmic number of binary variables and constraints
[34], and this leads to a logarithmic partitioning scheme [7, 25].

Another approach to generate a tight MILP relaxation is based on variable discretization.
In this approach, one variable in the bilinear term is represented by an integer part and a
decimal part. The integer part can take a set of equally spaced discrete values in the variable
range, and the decimal part represents the deviation of the variable value from one of the
discrete values. Using a radix-based representation [19], the integer part can be expressed
by a set of binary variables, then the bilinear term becomes the sum of a set of bilinear
terms and most of the terms can be rigorously transformed into linear constraints via exact
linearization. The base of the radix-based representation, R, can be any natural number, and
the existing discretization based MILP relaxation methods differ primarily in the choice of
R. To the best of our knowledge, Pham et al. [28] first considered the discretization of a
continuous variable involved in a bilinear term. In order to reduce the search space within
the branch and bound framework, they finitely enumerated possible values of the variable
being discretized, so essentially R = 1 was selected. Teles et al. [32] developed a multi-
parametric disaggregation technique (MDT), which is a discretization based method using
R = 10. Following theMDT approach, Kolodziej et al. [18] constructed restrictedMILP and
relaxationMILP in branch-and-bound search for bilinear programming. They concluded that
MDTyields betterMILP relaxation than piecewiseMcCormick relaxation because of smaller
problem size. Kolodziej et al. [19] extended MDT to the general radix-based representation.
They also implemented both binary system (R = 2) and decimal system (R = 10) in their
global optimization algorithms to solvemulti-period pooling problems.Bothmethods showed
significant computational advantage over commercial global optimization solvers. Castro
[6] proposed a discretization method using a mixed-radix numeral system, which includes
multiple bases coming from the prime factorization of b. Through a set of benchmark pooling
problems, he showed the computational advantage of the mixed-radix discretization over a
single-radix discretization as well as the logarithmic partitioning scheme in [25].

The discretization points divide the variable range into subintervals of equal length. Let b
be the number of subintervals, then it indicates the level of discretization. The aforementioned
discretization strategies assume that b is a power of the selected base R, but some other
studies do not make this assumption. For example, Gupte et al. [10] considered the R = 2
case and allowed b to be any natural number no larger than a power of R, and they proved
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Fig. 1 A same optimal point
under different discretization
levels

the condition under which the continuous relaxation of the discretization formulation is a
hull relaxation. Gupte et al. [11] further performed an extensive computational study on
discretization based MILP approximation for the pooling problem and the results suggested
that discretization seems to be a promising approach especially for large-scale standard or
generalized pooling problems. Figure 1 can help explain why in some cases a smaller b is
preferred and why different choices of R may affect the computational efficiency. The figure
shows the same optimal variable value (indicated by the star sign) in the contexts of three
different discretization levels. In the first discretization level, R = 2 and b = 23 = 8, so
the variable range is divided into 8 subintervals. In the second discretization level, R = 10
and b = 10, so the variable range is divided into 10 subintervals. When R = 10, the
discretization formulation requires more binary variables, but the optimal point is closer to
the discretization point that it belongs to (i.e. the discretization point located to the left),
implying that the MILP relaxation at the optimal solution is tighter (see Sect. 4 for more
details). Therefore, R = 10 might be better than R = 2. Following this idea, if the optimal
point is right on a discretization point, as with the third discretization level in the figure
(b = 6), the MILP relaxation is equivalent to the original problem at the optimal point. Note
that for realizing the third discretization level, one may choose any R > 0, but R = 6 is the
most natural choice.

In this paper, we start from the general radix-based discretization formulation, called
R-formulation, where R can be any natural number. We allow discretization level b to be
any natural number no larger than a power of R. We prove the conditions under which R-
formulation is locally sharp (i.e., its continuous relaxation leads to a hull relaxation of a part
of the problem). We then propose a R+-formulation and prove that it is always locally sharp.
We further propose a H -formulation that uses hybrid base and prove that it is also always
locally sharp. We also develop a global optimization method where the MILP relaxations
are generated from adaptive discretization. The remaining part of the paper is organized
as follows: Sect. 2 presents a general process for constructing discretization based MILP
relaxations. Section 3 presents the three discretization formulations and provides theoretical
results regarding the strength of the formulations. Section 4 proposes the global optimization
algorithm with adaptive discretization. Section 5 performs computational study on a set of
multi-period pooling problems, and the paper ends with conclusions in Sect. 6.

2 Discretization basedMILP relaxation

Suppose we discretize variable x in each bilinear term, then Problem (MIBLP) can be re-
written as:

min c(w, x, y, δ), (D-MIBLP)

s.t . g(w, x, y, δ) ≤ 0,

δ ∈ {0, 1}n,
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(wl,m, xm, yl) ∈ SI (bm), ∀(l,m) ∈ Θ,

where

SI (b) =
{

(w, x, y) ∈ R × [0, 1]2 : x = (X + z̃)/b, 0 ≤ z̃ ≤ 1, w = (w̄ + ỹ)/b,

(w̄, X , y) ∈ P(b), ỹ = z̃ y

}
,

and

P(b) = {(w̄, X , y) : w̄ = Xy, X ∈ Z, 0 ≤ X ≤ b, 0 ≤ y ≤ 1} .

Here continuous variable x is represented by integer variable X ∈ [0, b] and a residual term
z̃ ∈ [0, 1]. Parameter b is the discretization level and it can be different for different bilinear
terms. We can relax set SI (b) by replacing z̃ y with its convex envelope, represented by
conv(z̃ y), then the relaxed set is:

SI−Relax (b) =
{

(w, x, y) ∈ R × [0, 1]2 : x = (X + z̃)/b, 0 ≤ z̃ ≤ 1, w = (w̄ + ỹ)/b,

(w̄, X , y) ∈ P(b), ỹ = conv(z̃ y)

}
.

Since ỹ = conv(z̃ y) only involves a set of linear constraints, set SI−Relax (b) does not
contain any bilinear terms. It can be further reformulated such that it only contains 0–1
integer variables:

SB−Relax (b) =
{

(w, x, y) ∈ R × [0, 1]2 : x = (X + z̃)/b, 0 ≤ z̃ ≤ 1, w = (w̄ + ỹ)/b,

(w̄, X , y) ∈ F(b), ỹ = conv(z̃ y)

}
,

whereF(b) denotes any representation of setP(b) that uses binary variables instead of integer
variables, such as a radix-based representation. Discretization based methods in the literature
have different ways to represent F(b). Naturally, we hope the change from SI−Relax (b) to
SB−Relax (b) does not loose tightness of the relaxation, so we assess the quality of any binary
representation F(b) according to the following two conditions:

Projw̄,X ,yF(b) = P(b), (C1)

Projw̄,X ,y(relax(F(b))) = conv(P(b)), (C2)

where Projw̄,X ,y denotes the projection to the (w̄, X , y) space, and relax(·) denotes con-
tinuous relaxation. The first condition means that F(b) is a valid binary representation of
P(b). F(b) usually includes additional binary and continuous variables, so it is defined on
a higher-dimensional space. The second condition means that formulation F(b) is sharp for
representing setP(b) [33]. Furthermore, we say thatF(b) is locally sharp for the discretized
MIBLP problem, because its continuous relaxation leads to the convex hull of part of the
problem [33].

By replacing set SI (bm) in Problem (D-MIBLP) with the relaxed set SB−Relax (bm), we
generate the following MILP relaxation for the original problem:

min c(w, x, y, δ), (R-MILP)

s.t . g(w, x, y, δ) ≤ 0,

δ ∈ {0, 1},
(wlm, xm, yl) ∈ SB−Relax (bm), ∀(l,m) ∈ Θ.
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Table 1 List of symbols

Parameters

b Discretization level of a variable (i.e., number of partitions of variable range)

R Base for radix-based discretization

ε Termination tolerance for the GOAD algorithm

Variables

w Value of bilinear term xy. The product of xm and yl is wlm

w̄ wb minus the residual bilinear term z̃ y

x Variable in bilinear term that is to be discretized, indexed by m in the MIBLP

y Variable in bilinear term that is not to be discretized, indexed by l in the MIBLP

ỹ Value of residual bilinear term z̃ y

ŷ Auxiliary variable in discretization formulations

z Binary variable for expressing integer X

z̃ Residual variable, which is the fractional part of xb

X The integer part of xb

δ Binary variable in the MIBLP

Sets

F Binary representation of set P
H H -formulation of set P
I p
1 /I p

2 Index sets used in the pth integer cut

M A relaxation of P (through McCormick relaxation of Xy)

P Graph of the discretized bilinear equation

R R-formulation of set P
R+ R+-formulation of set P
R Set of real numbers

S Graph of bilinear term

SI Reformulation of S using integer variables

SI−Relax A relaxation of SI (through McCormick relaxation of residual bilinear term)

SB−Relax Binary representation of SI−Relax

Z Set of integer numbers

�k′
Set of integer cuts at GOAD iteration k′

Table 1 summarizes the list of symbols for parameters, variables and sets used in the
formulations and algorithm description.

3 Binary representation formulations and their strength

In this section, we present three formulations for the binary representation F(b), which all
lead to valid relaxations to Problem (MIBLP). We also prove the tightness of continuous
relaxations of the three formulations.
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3.1 R-formulation

We first consider the case that the binary representation F(b) is the R-formulation, which
is the general radix-based discretization formulation widely used in the literature [19]. We
write set F(b) as R(b) for this case, and this set is:

R(b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w̄, X , y, z, ŷ) ∈ R × Z × [0, 1] × {0, 1} × R :

X =
k∑

i=1

Ri−1(

R−1∑
j=0

j · zi j ), 0 ≤ X ≤ b,

w̄ =
k∑

i=1

Ri−1(

R−1∑
j=0

j · ŷi j ),

R−1∑
j=0

zi j = 1,
R−1∑
j=0

ŷi j = y, ∀i ∈ {1, . . . , k},

0 ≤ ŷi j ≤ zi j , ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , k}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where k = �logR b� and R is the predefined base. The following proposition implies that
first condition (C1) is satisfied by the R-formulation:

Proposition 1 P(b) =Projw̄,X ,yR(b).

Proof By construction, P(b) ⊆Projw̄,X ,yR(b). Now we prove Projw̄,X ,yR(b) ⊆ P(b). Pick
any (w̄, X , y, z, ŷ) ∈ R(b), and we are to show (w̄, X , y) ∈ P(b), or more specifically,
w̄ = Xy.

First we show that ŷi, j = yzi, j (∀i, j). If zi, j = 0, then ŷi, j ≤ zi, j = 0, so ŷi, j = yzi, j .
If zi, j = 1, then ∀ j ′ 	= j , zi, j ′ = 0 and therefore ŷi, j ′ = 0. Hence, ŷi, j = y holds. So in this
case we also have ŷi, j = yzi, j .

Based on the above result,

w̄ =
R−1∑
j=0

k∑
i=1

j · Ri−1 · ŷi, j

=
k∑

i=1

Ri−1
R−1∑
j=0

j · y · zi, j

=
⎛
⎝ k∑

i=1

Ri−1
R−1∑
j=0

j · zi, j
⎞
⎠ · y

= Xy.

This completes the proof. 
�
To see whether R(b) satisfies condition (C2), we introduce an intermediate set M(b),

which was initially introduced by Gupte et al. [10] for R = 2:

M(b) =
{

(w̄, X , y) ∈ R × Z × [0, 1] : by + X − b ≤ w̄ ≤ by,

0 ≤ w̄ ≤ X , 0 ≤ X ≤ b

}
.

Then we have the following proposition that indicates the conditions under which (C2) is
satisfied.
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Proposition 2 conv(P(b))= relax(M(b))=Projw̄,X ,y(relax(R(b))) if andonly if b ≥ Rk − 1.

Proof First, the convex hull ofM(b) and the convex hull ofP(b) are same and they are equal
to relax(M(b)), as explained in Gupte et al. [10]. Therefore, relax(M(b)) = conv(P(b)).

Second, we prove relax(M(b)) ⊆ Projw̄,X ,y(relax(R(b))). From P(b) = Projw̄,X ,yR(b)
(Proposition 1), we have P(b) ⊆ Projw̄,X ,y(relax(R(b))). And since Projw̄,X ,y(relax(R(b)))
is convex, conv(P(b)) ⊆ Projw̄,X ,y(relax(R(b))). And the fact relax(M(b)) = conv(P(b))
gives the result.

Next, we prove Projw̄,X ,y(relax(R(b))) ⊆ relax(M(b)) if b ≥ Rk − 1. Pick any point
(w̄, X , y, z, ŷ) ∈ relax(R(b)), then:

w̄ =
R−1∑
j=0

k∑
i=1

j · Ri−1 · ŷi, j ≥ 0.

w̄ =
R−1∑
j=0

k∑
i=1

j · Ri−1 · ŷi, j ≤
R−1∑
j=0

k∑
i=1

j · Ri−1 · zi, j = X .

w̄ =
R−1∑
j=0

k∑
i=1

j · Ri−1 · ŷi, j ≤
k∑

i=1

Ri−1(R − 1)y = (Rk − 1)y ≤ by.

w̄ =
R−1∑
j=0

k∑
i=1

j · Ri−1 · (ŷi, j − zi, j + zi, j )

=
R−1∑
j=0

k∑
i=1

j · Ri−1 · (ŷi, j − zi, j ) +
R−1∑
j=0

k∑
i=1

j · Ri−1 · zi, j

≥ (

k∑
i=1

Ri−1)

R−1∑
j=0

(R − 1)(ŷi, j − zi, j ) + X

=
(

k∑
i=1

Ri−1(R − 1)

) ⎛
⎝R−1∑

j=0

ŷi, j −
R−1∑
j=0

zi, j

⎞
⎠ + X

= (Rk − 1)(y − 1) + X

≥ b(y − 1) + X .

Therefore, (w̄, X , y) ∈ relax(M(b)). Note that the condition b ≥ Rk − 1 implies b = Rk −1
or b = Rk because k = �logR b�.

Finally, we show that b ≥ Rk − 1 is also necessary for Projw̄,X ,y(relax(R(b))) ⊆
relax(M(b)) by an counterexample. Construct a point (w̄, X , y, z, ŷ) ∈ relax(R(b)) by
setting ∀i

zi,0 = R − 1

R
, zi,R−1 = 1

R
, zi, j ′ = 0 (∀ j ′ 	= 0, R − 1),

ŷi,R−1 = 1

R
, ŷi, j ′ = 0 (∀ j ′ 	= R − 1),
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then

X =
R−1∑
j=0

k∑
i=1

j · Ri−1zi, j = Rk − 1

R − 1

R − 1

R
= Rk − 1

R
,

y =
R−1∑
j=0

ŷi, j = 1

R
,

w̄ =
R−1∑
j=0

k∑
i=1

j · Ri−1 ŷi, j = Rk − 1

R − 1

R − 1

R
= (Rk − 1)

R
.

Note that w̄ = Rk − 1

R
= (Rk − 1)y. Therefore, if b < Rk − 1, w̄ > by and (w̄, X , y) /∈

relax(M(b)). 
�

3.2 R+-formulation

Proposition 2 indicates that in order for R-formulation to be locally sharp, the discretization
level b needs to be a power of the base R or the power minus 1. To avoid this problem, we
can add strengthening constraints X + by − b ≤ w̄ ≤ by to R(b). The new formulation is
called R+-formulation, as shown below:

R+(b) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w̄, X , y, z, ŷ) ∈ R × Z × [0, 1] × {0, 1} × R :

X =
k∑

i=1

Ri−1(

R−1∑
j=0

j · zi, j ),

w̄ =
k∑

i=1

Ri−1(

R−1∑
j=0

j · ŷi, j ),

R−1∑
j=0

zi, j = 1,
R−1∑
j=0

ŷi, j = y, ∀i ∈ {1, . . . , k},

0 ≤ ŷi, j ≤ zi, j , ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , k},
X + by − b ≤ w̄ ≤ by

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where k = �logR b�. By construction, binary representationR+(b) satisfies condition (C1),
so the following proposition holds.

Proposition 3 P(b) =Projw̄,X ,yR+(b).

In addition,we can prove thatR+(b) always satisfies condition (C2), as stated in the following
proposition.

Proposition 4 conv(P(b))= relax(M(b)) = Projw̄,X ,y(relax(R+(b))).

Proof The inequalities w̄ ≤ by and w̄ ≥ b(y − 1) + X in relax(M(b)) are implied
by the strengthening constraints. The other inequalities in relax(M(b)) are implied by
Projw̄,X ,y(relax(R+(b))) regardless of the relationship between b and Rk , as shown in the
proof for Proposition 2. 
�
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3.3 H-formulation

When using the discretization based MILP relaxation for global optimization, we may want
to increase the discretization level adaptively in order to avoid unnecessarily large MILP
relaxations. In this case, the relationship between b and R varies during the optimization
procedure. According to the previous discussions, either we use the R-formulation that may
lose local sharpness or the R+-formulation that includes additional constraints. Here we
propose a novel H -formulation that uses multiple bases to represent b:

H(b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w̄, y, X , z, ŷ) ∈ R × Z × [0, 1] × {0, 1} × R :

X =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

zi, j · j
⎞
⎠ , 0 ≤ X ≤ b,

w̄ =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

ŷi, j · j
⎞
⎠ ,

Ri−1∑
j=0

zi, j = 1,
Ri−1∑
j=0

ŷi, j = y, ∀i = 1, . . . , k,

0 ≤ ŷi, j ≤ zi, j , ∀i = 1, . . . , k, ∀ j = 1, . . . , Ri − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where the bases Ri are selected such that b = ∏k
i=1 Ri . For example, if b = 12, then we

may select R1 = 3 and R2 = 4, or R1 = 6 and R2 = 2. Essentially H(b) uses an extension
of the classical radix-based number system that may use different bases for different digits.
Next, we prove that the H -formulation satisfies both condition (C1) and (C2) (and therefore
it is locally sharp).

Proposition 5 P(b) =Projw̄,X ,yH(b).

Proof By construction, P(b) ⊆Projw̄,X ,yH(b). Now we prove Projw̄,X ,yH(b) ⊆ P(b). Pick
any (w̄, X , y, z, ŷ) ∈ H(b). Same to the proof forProposition1,we can show that ŷi, j = yzi, j
(∀i, j). Consequently,

w̄ =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

ŷi, j · j
⎞
⎠ ,

=
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

yzi, j · j
⎞
⎠ ,

=
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

zi, j · j
⎞
⎠ y,

= Xy.

This completes the proof. 
�

Proposition 6 Projx,y,w̄(relax(H(b))) = relax(M(b)) = conv(P(b)).
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Proof Pick any point (w̄, y, X , z, ŷ) ∈ relax(H(b)), then

w̄ =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

ŷi, j · j
⎞
⎠ ≥ 0,

w̄ =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

ŷi, j · j
⎞
⎠ ≤

k∑
i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

zi, j · j
⎞
⎠ = X ,

w̄ =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

ŷi, j · j
⎞
⎠

≤
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

y(Ri − 1)

⎞
⎠

= y ((R1 − 1)R2 . . . Rk + (R2 − 1)R3 . . . Rk + . . . (Rk−1 − 1)Rk + Rk − 1)

= y(b − 1) ≤ by,

w̄ =
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

(ŷi, j − zi, j + zi, j ) · j
⎞
⎠

=
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

(ŷi, j − zi, j ) · j
⎞
⎠ +

k∑
i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

zi, j · j
⎞
⎠

≥
k∑

i=1

(
k∏

n=i+1

Rn

) ⎛
⎝Ri−1∑

j=0

(ŷi, j − zi, j )(Ri − 1)

⎞
⎠ + X

=
k∑

i=1

(
(Ri − 1)

k∏
n=i+1

Rn

)
(y − 1) + X

= (b − 1)(y − 1) + X

≥ b(y − 1) + X ,

so (w̄, X , y) ∈ relax(M(b)). This proves Projw̄,X ,y(relax(H(b)))⊆ relax(M(b)).
We can also prove conv(P(b))⊆Projw̄,X ,y(relax(H(b))) using the same procedure in the

second part of proof for Proposition 2. In addition, according to the first part of the proof for
Proposition 2, relax(M(b)) = conv(P(b)). This completes the proof. 
�

4 Global optimization algorithmwith adaptive discretization

In this section, we develop a global optimization algorithm with adaptive discretization
(GOAD) for MIBLP. The algorithm finds a global solution by iteratively solving a lower
bounding problem and an upper bounding problem.
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4.1 Lower and upper bounding problems

At iteration k′, we solve the following lower bounding problem:

min . c(w, x, y, δ), (L-MILPk
′
)

s.t . g(w, x, y, δ) ≤ 0,

δ ∈ �k′
,

(wlm, xm, yl) ∈ SB−Relax (b
k′
m ), ∀(l,m) ∈ Θ,

c(w, x, y, δ) ≤ UB.

This formulation is slightly different from the general form (R-MILP) introduced in Sect. 2.
First, integer cuts are added to exclude previously visited δ solutions through set �k′

, which
is

�k′ =

⎧⎪⎨
⎪⎩δ ∈ {0, 1}n :

∑
i∈I p

1

δi −
∑
j∈I p

0

δ j ≤ |I p
1 | − 1, ∀p = 1, 2, . . . , k′

⎫⎪⎬
⎪⎭ .

Index set I p
1 = {i ∈ {1, . . . , n} : δ

p
i = 1}, and δ p denotes the solution generated in iteration

p. Index set I p
0 = {i ∈ {1, . . . , n} : δ

p
i = 0}. Second, the last constraint in the formulation

is added to exclude any solution that is no better than the incumbent solution. UB is the
current best upper bound on the optimal objective value and it is updated throughout the
solution procedure. Finally, the discretization level bk

′
m may vary over the iterations, which is

explained later.
Let the value of δ at the solution of (L-MILPk

′
) be δk

′
, then fixing δ to this value will yield

the following upper bounding problem:

min . c(w, x, y, δ), (U-NLPk
′
)

s.t . g(w, x, y, δ) ≤ 0,

δ = δk
′
,

(wlm, xm, yl) ∈ S, ∀(l,m) ∈ Θ.

This is a nonlinear programming (NLP) problem and has no integer variables. This NLP can
be solved to global optimality much more quickly than the original MIBLP. For all problem
instances in the computational study, the solution time for Problem (U-NLPk

′
) is negligible

in comparison to the solution time for the original MIBLP.

4.2 Adaptive discretization scheme

We choose to adaptively determine the discretization levels of variables instead of using
predefined discretization levels. The adaptive scheme has two benefits. First, at the optimal
solution many variables take value at the boundary of their domains, so these variables do
not need to be discretized. Some variables have little impact on the optimal objective value,
so a low discretization level is sufficient for them. Our proposed adaptive discretization
scheme is likely to result in reasonable discretization levels for different variables. Second,
the discretization level of a variable x determines the residual term z̃ needed to represent its
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Fig. 2 Example of adaptive discretization

solution, and a smaller z̃ would imply a smaller relaxation gap because the gap comes from
the difference between ỹ = z̃ y in SI (b) and ỹ = conv(z̃ y) in SB−Relax(b).

The adaptive discretization strategy perfectly matches the hybrid radix-based H -
formulation, because it determines one base at each iteration. We use the example in Fig. 2
to explain the adaptive discretization scheme. For convenience, we assume there is only one
normalized variable x to be discretized. The optimal solution of the problem is shown as
x∗ in the figure. This value is not known by the algorithm in the first several iterations, but
provided in the figure as a reference. In iteration 1, there is no discretization, so the optimal
solution of the lower bounding problem (L-MILP1) only has the x value, represented by x∗

1 .
We want to divide the range of x into R1 pieces such that x∗

1 is close to the discretization
point it belongs to. From the discretization formulation, x = (X + z̃)/b where b is the R1

that we search for, so z̃ = R1x − X . Note that X is the largest integer that is no larger than
R1x , so z̃ = R1x − �R1x�. Therefore, the residual term for x∗

1 is R1x∗
1 − �R1x∗

1�. On the
other hand, we do not want to increase the discretization level too much within one iteration,
so we limit R1 to be between 2 and 10. Thus we can formalize the calculation of R1 as:

R1 = argmin
2≤r≤10

(
r · x∗

1 − �r · x∗
1�

)
.

As shown inFig. 2, following this formulaweget R1 = 3 in iteration 1. Then the discretization
level b = R1 and the range of x is divided into 3 equal pieces for the next iteration.

In iteration 2, we have the residual term value at the optimal solution of (L-MILP2),
represented as z̃∗2. As the residual term is scaled to [0, 1], z̃∗2 reflects the scaled distance
between the x∗

2 and the largest discretized point that is no larger than x
∗
2 . The actual difference

is z̃∗2/R2. Optimal point x∗
2 is located in the 3rd subinterval of the range. Now we want to

further divide the 3rd subinterval into several pieces such that x∗
2 is close to the discretization

point it belongs to. Following the following formula that uses z̃∗2:

R2 = argmin
2≤r≤10

(
r · z̃∗2 − �r · z̃∗2�

)
we get R2 = 2, which indicates further dividing the 3rd subinterval into two pieces, and
therefore dividing each other subinterval into two as well. As a result, the new discretization
level is b = R1R2 = 6. For all subsequent iterations, we follow the same formula that uses
the residual value. For example, in iteration 3, using the residual value R3 should be 5, and
then the discretization level becomes b = R1R2R3 = 30. From Fig. 2, the optimal solution
from the lower bound problem x∗

3 is already very close to the actual optimal solution x∗, so
the algorithm is likely to converge right after this iteration.

In some cases, the residual from the optimal solution of (L-MILPk
′
) is close to an extreme

point of the range and the above formula won’t give a reasonable result. For these cases we
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Table 2 The GOAD algorithm for problem (MIBLP)

Initialization

Set termination tolerance ε = 10−3.

Set iteration counter k′ = 0.

Set bounds for Problem (MIBLP): UBD = +∞, LBD = −∞.

Set initial discretization level b1m = 1 for all xm .

Lower Bounding Problem

(1.a) Solve Problem (L-MILPk
′
). If Problem L-MILPk

′
is infeasible, terminate. If

no feasible solution has been found, then Problem (MIBLP) is infeasible; otherwise,
the incumbent solution is an ε-optimal solution.

(1.b) If obj
L−MI LPk′ > LBD, update LBD = obj

L−MI LPk′ . Let

(w, y, x, δ, z̃)∗ be the optimal solution.

(1.c) Based on z̃∗m (or x∗
m when k′=1), calculate Rm,k′ according to the adaptive

discretization strategy and then bk
′+1

m = ∏k′
i=1 Rm,i .

(1.d) If |UBD − LBD| ≤ ε, terminate and the incumbent solution is an ε-optimal
solution; otherwise, go to step (2.a).

Upper Bounding Problem

(2.a) Solve Problem (U-NLPk
′
) to global optimality.

(2.b) Ifobj
U−NLPk′ < UBD, change the incumbent solution to the current solution

and update UBD = obj
U−NLPk′ .

(2.c) Add an integer cut to exclude δ∗.
(2.d) If |UBD − LBD| ≤ ε, terminate. If no feasible solution has been found, then
Problem (MIBLP) is infeasible; otherwise, the incumbent solution is an ε-optimal
solution. If |UBD − LBD| > ε, k′ = k′ + 1 and go to step (1.a).

simply further divide all subintervals into two. Specifically, for iteration k′, if |z̃∗k′ − 0.5| ≥
0.45 (or |x∗

k′ − 0.5| ≥ 0.45 when k′ = 1), we set Rk′ = 2. Therefore, the full formula for
calculating Rk′ is:

Rk′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

argmin
2≤r≤10

(
r · x∗

k′ − �r · x∗
k′ �

)
, k′ = 1 and |x∗

k′ − 0.45| < 0.45,

argmin
2≤r≤10

(
r · z̃∗k′ − �r · z̃∗k′ �

)
, k′ ≥ 2 and |z̃∗k′ − 0.45| < 0.45,

2, k′ = 1 and |x∗
k′ − 0.45| ≥ 0.45,

2, k′ ≥ 2 and |z∗k′ − 0.45| ≥ 0.45.

Note that R-formulation or R+ formulation can also be used for the adaptive discretization
scheme. In this case, the discretization level b is still calculated from Rk′ , but it is represented
in the formulation using the predefined base R.

4.3 The GOAD algorithm

Table 2 presents the GOAD algorithm. Finite termination of the algorithm is guaranteed,
because total number of integer values δ can take is finite and the integer cuts in (L-MILPk

′
)

exclude all previously generated values δ.
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5 Computational study

The computational study contains two parts. The first part aims to compare R- and R+-
formulations and to verify Propositions 2 and 4. The second part aims to compare the
performance of the GOAD algorithm using different discretization formulations as well
as commercial global optimization solvers.

We test on 20 multi-period pooling problems, including 5 benchmark problems from the
literature (P146t3, P480t4, P531t4, P721t3, P852t4), and they are available inMINLPproblem
library at www.minlp.org. For each benchmark problem, we also construct several variants
that address different numbers of time periods, so each benchmark problem is extended to
4 problem instances that have 3, 4, 5, 6 time periods (labelled as t3–t6 respectively). The
parameters for all problem instances are provided in “Appendix A”.We formulate all problem
instances using a formulation that is essentially the source-based (SB) formulation in [23],
but the blender operating modes are described using the expression in [19]. The details of the
formulation are provided in “Appendix B”. In this formulation, each bilinear term includes a
variable that represents a fraction of inventory leaving a tank, and we always discretize this
variable for the MILP relaxation. The simulation is performed on a computer with 4-core
3.40GHz CPU, 4GB memory, and Windows 10 operating system. The binary variables zi, j
in all formulations are set to be SOS1 variables in GAMS.

5.1 Comparison of R- and R+-formulations

From Propositions 2 and 4, the key difference between R and R+-formulations is that the for-
mer is locally sharp only when b ≥ Rk −1 while the latter is always locally sharp. In order to
show this, we compare the MILP relaxation problem (L-MILP) in three scenarios: b = 100,
b = 512 and b = 750. In each scenario, (L-MILP) adopts 4 different formulations: R formu-
lation and R+ formulation with R = 2 and R = 10 respectively. The problems are modeled
on GAMS 24.8.5 [3] and solved by CPLEX 12.7.1 using 6 threads, with absolute/relative
tolerance 10−5. We set CPLEX option ”cut=−1” so that the solver do not generate cuts that
may influence the comparison. We set a time limit of 3600s for each problem.

We also compare the root gaps of the formulations, by solving their continuous relaxations
at the root node. Specifically, the root gap is calculated as

Gap = |ObjMI LP − ObjLP
ObjMI LP

| × 100%,

where ObjMI LP and ObjLP represent the optimal objective values of the MILP problem and
its continuous relaxation, respectively. The continuous relaxations are also solved by CPLEX
12.7.1 with absolute/relative tolerance 10−4.

Tables 3, 4 and 5 show respectively the results for b = 100, b = 512, b = 750. For each
problem instance, we highlight the lowest root gap(s) in bold unless all formulations have the
same root gap. First, we discuss the second set of problem instances P480t3-P480t6 which
best demonstrate the strength of the formulations. When b = 100 (Table 3), 2+-formulation
has a tighter root gap than 2-formulation. This verifies Proposition 2 and 4, because for
b = 100 and R = 2, k = �log2 100� = 7, so b < 2k − 1 and 2-formulation is not locally
sharp but 2+-formulation is. On the other hand, 10-formulation and 10+-formulation have
the same root gap (which is also same to that of 2+-formulation). This is because b is a power
of 10 and therefore both formulations are locally sharp. When b = 512 (Table 4) where b
is a power of 2, 2-formulation, 2+-formulation, and 10+-formulation have the same root
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gap, because they are all locally sharp. 10-formulation has a larger root gap because it is not
locally sharp. When b = 750 (Table 5) where b is neither a power of 2 or a power of 10, only
2+- and 10+-formulations are locally sharp. So the root gaps of 2- and 10-formulations are
larger. The different formulations for the other sets of the problem instances in Tables 3, 4
and 5 have the same root gap, so they can not be used to verify Proposition 2 and 4. But they
do not contradict the propositions either.

Second, we can see that for each problem the locally sharp formulation with the smallest
problem size usually has the best solution efficiency, such as the 2-formulationwhen b = 512.
However, the solution efficiency is also influenced bymany other factors, such as the variables
to be branched on and the relaxation problems solved at the nodes. So it is hard to conclude
that R = 2 is better than R = 10 or the other way. Next, we will examine whether within the
GOAD framework certain formulation is better than the others.

5.2 Performance of the GOAD algorithm

We compare three GOAD algorithms that use 2+-, 10+-, and H -formulations, general-
purpose global optimization solvers SCIP 7.0 [9] and BARON 21.1.13 [30], and Gurobi
9.1.2 [12] that can solve MIBLP problems to global optimality. We implement all solution
methods via GAMS 36.2 [4]. For a GOAD algorithm, the lower bounding problem (L-MILP)
is solved by CPLEX 20.1.0 with 6 threads, the upper bounding problem (U-NLP) is solved
by SCIP 7.0, and for both bounding problems the time limit is 1800s and absolute/relative
tolerance is 10−3. For using a global solver to a problem, we also allow the solver to use 6
threads. For either a GOAD algorithm or global solver, the total time limit is 3600s and the
absolute/relative tolerance is 10−3.

Note that at an iteration we determine the next discretization level according to the optimal
solution of (L-MILP). This problem has the same optimal objective value under different
discretization formulations, but since it usually has multiple optimal solutions, different
discretization formulations may give us different optimal solutions and therefore different
discretization level for the next iteration. For a fair comparison, we use the discretization level
determined from the H -formulation, no matter what discretization formulation the GOAD
algorithm uses.

Figure 3 shows the performance profiles [8] of the solution methods under consideration.
The horizontal axis τ denotes the relative solution time (or called performance ratio), and the
vertical axis ρs(τ ) denotes the percentage of problem instances solved within relative time τ .
It can be seen that the GOAD algorithm with any of the three discretization formulations per-
forms better than SCIP and BARON. There is no clear winner among the three discretization
formulations within the GOAD framework, which is not unexpected as the three formula-
tions are all locally sharp. In addition, the solution times for the three formulations not only
depend on the tightness of the continuous relaxations, but also depend on other factors such
as number of binary variables, number of constraints, the nodes explored in the branch-and-
bound search. Therefore, the relative performance of the three formulations is different for
different problem instances. It can also be seen that Gurobi performs better than any of the
GOAD algorithm, SCIP, and BARON. This may be because Gurobi can generate additional
strengthening cuts from solutions of convex relaxations, while the GOAD algorithm does not
generate cuts from solutions of lower bounding problems.

Table 6 provides additional results for the GOAD algorithm. The column of bmax shows
the maximum discretization level among discretization levels of all variables at the termi-
nation of GOAD, and the column of bmin shows the minimum discretization level. The last
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Fig. 3 Performance profiles of different solution methods

Table 6 Additional results for the GOAD algorithm

Problem Optimal obj. bmax bmin Portion of var. with bmin

P146t3 45.297 36 8 95.0%

P146t4 54.125 64 4 93.3%

P146t5 59.738 288 16 91.3%

P146t6 64.762† – † – † – †

P480t3 7.722 10 2 95.0%

P480t4 9.227 128 32 88.3%

P480t5 9.529 7 2 90.0%

P480t6 9.831 84 16 94.0%

P531t3 13.507 49 4 89.5%

P531t4 20.039 125 8 96.5%

P531t5 21.976 40 4 94.7%

P531t6 20.901 250 8 93.7%

P721t3 13.527 10 2 90.0%

P721t4 15.735 10 2 88.3%

P721t5 16.438 24 4 92.5%

P721t6 18.197 1024 32 94.0%

P852t3 45.605 7 2 92.5%

P852t4 53.963 10 2 95.0%

P852t5 56.088 10 2 95.0%

P852t6 59.326 54 4 95.0%

†No optimum found within 1h. The optimal obj. is from Gurobi

column includes the percentage of variables that has the minimum discretization level at the
termination of GOAD. It can be seen that for all problems, the vast majority of the vari-
ables have the minimum discretization level, but some variables may need a much higher
discretization level. This indicates the importance of allowing different discretization levels
in the adaptive discretization scheme. In addition, the various maximum discretization levels
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indicate the importance of flexible choice of bases. For example, P721t6 requires b = 1024
for some variable; within a traditional 10-based formulation it would have to partition the
variable range into 104 pieces. P721t4 requires b = 10 for some variables and a traditional
2-based formulation may not be as good as a 10-based formulation.

6 Concluding remarks

The GOAD method we develop for MIBLP generates strong MILP relaxations via an adap-
tive discretization scheme. The adaptive scheme allows to increase discretization levels of
different variables over the iterations and different variables may have different discretization
levels. The advantage of this flexibility is demonstrated in the computational study, where
different variables do have different discretization levels at the convergence of the algorithm
and most of them are much smaller than the maximum discretization level. The adaptive dis-
cretization scheme demands that the discretization level b can be any natural number instead
of a power of a predefined base R. In this case, the classical fixed-base R-formulation may
not be locally sharp if b < Rk − 1 (where k = �logRb�). We propose a R+-formulation
that includes extra strengthening constraint and prove that this formulation is locally sharp
no matter what b is. We further propose a H -formulation that allows multiple bases and
prove that it is also locally sharp because b is a multiplication of the bases used. Compared
to a fixed-base formulation, H -formulation fits more naturally for the adaptive discretiza-
tion scheme. The GOAD method solves the original MIBLP by iteratively solving the lower
bounding MILP that comes from discretization and an upper bounding NLP. The time for
global optimization of the NLP is negligible in comparison to the solution time for the MILP,
so the latter determines the overall solution time.

The GOAD method has better performance profile than general-purpose global solvers
SCIP and BARON in the computational study, nomatter whether 2+-, 10+, or H -formulation
is used for discretization. However, the GOADmethod is less efficient than Gurobi, which is
not a general-purpose global solver but can solve MIBLPs to global optimality. Further
improvement of the GOAD method may be achieved by introduction of improved dis-
cretization formulations and strengthening cuts. For example, we may limit the bases in
the H -formuation to prime numbers, such as in [6], and add more cuts in set SB−Relax (bm)

to strengthen the lower bounding problem. We may also generate additional valid cuts from
the solution of the lower bounding problem at each step and use these cuts to strengthen the
problem in future steps.
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Appendix A: Parameters for themultiperiod pooling problems

See Table 7.

Table 7 Supply and demand
parameters

Tank T1 T2 T3 T4 T5 T6

F_IN (s,t)

P146 S1 0.3 0.1 0.7 0.5 0.7 0.4

S2 0 0.8 0.3 0.4 0.4 0.3

P480 S1 0 0.2 0.7 0.5 0 0.3

S2 0 0.6 0.6 0.5 0 0.2

P531 S1 0.4 0.1 0.2 0.8 0.6 0.8

S2 0.8 0.1 0.4 0.8 0.6 0.5

P721 S1 1 0.1 0.4 0.5 0.2 0

S2 0.6 0.2 0.8 0.6 0.5 0

P852 S1 0.3 0.1 0.7 1 0.4 0.3

S2 0 0.8 0.3 0 0.3 0.2

F_OUT(d,t)

P146 D1 0.95 0.44 0.77 0.65 0.3 0.4

D2 0.03 0.38 0.8 0.34 0.4 0.3

P480 D1 0.3 0.19 0.18 0.63 0 0.1

D2 0.34 0.69 0.37 0.78 0 0.1

P531 D1 0.06 0.53 0.66 0.29 0.36 0.12

D2 0.4 0.42 0.63 0.43 0.22 0.3

P721 D1 0.02 0.17 0.73 0.4 0.2 0.3

D2 0.04 0.65 0.65 0.5 0.12 0.1

P852 D1 0.44 0.77 0.19 0.45 0.23 0.1

D2 0.38 0.8 0.49 0.65 0.11 0.3

Tanks: S={S1,S2} includes source tanks, D={D1,D2} includes
demand tanks
T1–T6: Individual time periods
F_IN (s,t): Incoming mass (103 kg) of source tank s in time period t
F_OUT(d,t): Outgoingmass (103 kg) from demand tank d in time period
t
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Appendix B: The SB formulation for themultiperiod pooling problems

See Table 8 for the list of symbols in the SB formulation

Table 8 List of symbols for the SB formulation

Type Name Description

Indices and sets i ∈ S ∪ B ∪ D Nodes

l ∈ L Initial liquid present in tanks

s ∈ S Source nodes

b ∈ B Pool nodes

d ∈ D Demand nodes

t ∈ T Time periods

q ∈ Q Components

(i, i ′) ∈ A Allowed arcs

(i, l) ∈ L Pairs of tank and liquid

Parameters βs Cost for supply flows

βd Price for product flows

M big-M

F I N
s,t Incoming flow into supply tank s during time period t

FOUT
d,t Flow withdraw from demand tank d during time period t .

C0
q,l Concentration of component q in liquid l

CL
q,d Lower bound on product concentration

CU
q,d Upper bound on product concentration

FL
i,i ′ Lower bound on pipe capacity

FU
i,i ′ Upper bound on pipe capacity

I Li Lower bound on inventories

IUi Upper bound on inventories

αi,i ′ Fixed cost for each arc in use

βi,i ′ Operation cost for the unit flow

Variables fl,i,i ′,t Individual source flow from i to i’ during t

Il,i,t Inventory that source from l in tank i during t

xb,i ′,t Split fraction variable

f OUT
l,d,t Source flow send to d during t

Binary variables yi,i ′,t Whether flow exists in arc (i,i’) during time period t
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The SB formulation
Objective:

max .
∑
t∈T

⎡
⎣ ∑
i :(i,d)∈A

∑
d∈D

βd fi,d,t −
∑
s∈S

∑
i :(s,i)∈A

βs fs,i,t −
∑

(i,i ′)∈A

(αi,i ′ yl,i,i ′,t + βi,i ′ fi,i ′,t )

⎤
⎦ .

s.t.
Bilinear terms:

fl,b,i,t = Il,b,t−1xb,i,t , ∀(b, l) ∈ L, (b, i) ∈ A, t > 1. (SB1)

Mass Balance:

Il,s,t = I 0l,s/Il,s,t−1 + F I N
s,t −

∑
i :(s,i)∈A

fl,s,i,t , ∀(l, s) ∈ L, t ∈ T , x (SB1)

Il,b,t = I 0l,b/Il,b,t−1 −
∑

i :(b,i)∈A

fl,b,i,t

+
∑

i :(i,b)∈A

fl,i,b,t , ∀b ∈ B, (l, b) ∈ L, t ∈ T , (SB3)

Il,d,t = I 0l,d/Il,d,t−1 − f OUT
l,d,t +

∑
i :(i,d)∈A

fl,i,d,t , ∀d ∈ D, t ∈ T . (SB4)

Quality Bounds:∑
l

Il,b,t−1C
0
q,l ≥ CL

q,d

∑
l

Il,b,t−1 − M(1 − yb,d,t ), ∀(b, d) ∈ A, q ∈ Q, t > 1,

(SB5)

∑
l

Il,b,t−1C
0
q,l ≤ CU

q,d

∑
l

Il,b,t−1 + M(1 − yb,d,t ), ∀(b, d) ∈ A, q ∈ Q, t > 1,

(SB5)

C0
q,s ys,d,t ≥ CL

q,d ys,d,t , ∀(s, d) ∈ A, t ∈ T , (SB7)

C0
q,s ys,d,t ≤ CU

q,d ys,d,t , ∀(s, d) ∈ A, t ∈ T , (SB8)

C0
q,b yb,d,t ≥ CL

q,d yb,d,t , ∀(b, d) ∈ A, t = 1. (SB9)

C0
q,b yb,d,t ≤ CU

q,d yb,d,t , ∀(b, d) ∈ A, t = 1. (SB10)

Tank Capacity:

I Li ≤ Ii,t ≤ IUi , ∀i ∈ N , t ∈ T . (SB11)
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Pipe Capacity:

FL
i,i ′,t yi,i ′,t ≤ fi,i ′,t ≤ FU

i,i ′,t yi,i ′,t , ∀(i, i ′) ∈ A, t ∈ T . (SB12)

Individual Flow Constraints:∑
l

Il,b,t = Ib,t , ∀(b, l) ∈ L, t ∈ T , (SB13)

∑
l

f outl,d,t = FOUT
d,t , ∀d ∈ D, t ∈ T . (SB14)

Operation Mode:

yi,b,t + yb,i ′,t ≤ 1, ∀(i, b), (b, i ′) ∈ A, t ∈ T . (SB15)

Variable Bounds:

fi,i ′,t ≥ 0, ∀(i, i ′) ∈ A, t ∈ T , (SB16)

0 ≤ xb,i,t ≤ 1, ∀(b, i) ∈ A, t ∈ T , (SB17)

yi,i ′,t ∈ {0, 1}, ∀(i, i ′) ∈ A, t ∈ T . (SB18)
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