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Abstract
We propose an indefinite proximal subgradient-based algorithm (IPSB) for solving nons-
mooth composite optimization problems. IPSB is a generalization of the Nesterov’s dual
algorithm, where an indefinite proximal term is added to the subproblems, which can make
the subproblem easier and the algorithm efficient when an appropriate proximal operator is
judiciously setting down. Under mild assumptions, we establish sublinear convergence of
IPSB to a region of the optimal value. We also report some numerical results, demonstrating
the efficiency of IPSB in comparing with the classical dual averaging-type algorithms.

Keywords Nonsmooth optimization · Composite convex optimization · Nesterov’s dual
averaging · Subgradient

1 Introduction

Consider the nonsmooth composite convex optimization problem

min
x∈Q {F(x) := f (x) + h(x)} , (1.1)

where Q ⊆ R
n is a simple closed convex set, f , h : R

n → R ∪ {+∞} are convex (not
necessarily smooth) and F : Rn → R ∪ {+∞} is nonsmooth. Moreover, h is assumed to
be the summation of a quadratic convex and a convex function (SQCC). Problem (1.1) has
received much attention due to its broad applications in several different areas such as signal
processing, system identification, machine learning and image processing; see, for instance,
[6, 7, 10] and references therein.

Among the numerical algorithms for solving nonsmooth optimization problems (1.1)
such as splitting algorithms [9], cutting plane methods [21], ellipsoid methods [11], bun-
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dle methods [17], gradient sampling methods [4] and smoothing methods [19], subgradient
methods [25] are fundamental, which have been extensively studied due to their applicability
to a wide variety of problems and low requirement on memory [3, 8, 22, 23]. The itera-
tion complexity for applying a subgradient method to solve the general nonsmooth convex
minimization problem is O(1/ε2), i.e., after O(1/ε2) iterations, the difference between the
objective function value and the optimum is about ε; see [21]. For problems equipped with
additional structure, various approaches are proposed such as smoothing schemes [19], fast
iterative shrinkage-thresholding algorithm [1], bundle method [17], to improve the iteration
complexity to O(1/ε).

Note that for the nonsmooth optimization problems, it is usually not the case that
the subgradient vanishes at the solution point, and as a consequence, the stepsize in the
subgradient-based method should be approaching zero. Such a vanishing property of the
stepsize slows down the convergence rate of the subgradient method [20]. To deal with
this undesirable phenomenon, Nesterov proposed a dual averaging (DA) scheme [20]. Each
iteration of DA scheme takes the form

xk+1 = argmin
x∈Q

{
k∑

i=0

〈λi Di , x − x0〉 + βk+1r(x)

}
, Dk ∈ ∂F(xk), ∀k ≥ 0, (1.2)

where λk , ∀k ≥ 0 are stepsizes, {βk}∞k=0 is a positive nondecreasing sequence and r(·)
is an auxiliary strongly convex function. Following the DA scheme, Xiao [26] proposed
a regularized dual averaging (RDA) scheme, which generates the iterate by minimizing a
problem that involves all the past subgradients of f and the whole function h,

xk+1 = argmin
x∈Q

{
k∑

i=0

〈gi , x − x0〉 + (k + 1)h(x) + βk+1r(x)

}
, gi ∈ ∂ f (xi ), ∀k ≥ 0,

(1.3)
where x0 is the minimizer of h over Q. Setting the auxiliary function r(·) as 1

2‖·−x0‖2 in the
above RDA scheme (1.3) becomes the so-called proximal subgradient-based (PSB) method

xk+1 = argmin
x∈Q

{
k∑

i=0

〈gi , x − x0〉 + (k + 1)h(x) + βk+1

2
‖x − x0‖2

}
, gi ∈ ∂ f (xi ), ∀k ≥ 0.

(1.4)
The regularization function r(·) is crucial in RDA and PSB, which plays a similar role as

the proximal term in the classical proximal point algorithm (PPA) [5, 18, 24]. On one hand,
it ensures the existence and uniqueness of the solution of the subproblems, and makes the
subproblems stable. On the other hand, it also influences the efficiency of the algorithms.
Recently, much attention was paid on relaxing the strong convexity requirements on the
proximal term in PPA [13] and related algorithms such as augmented Lagrangian method
[12] and alternating direction method of multipliers [14, 16], and such a strategy achieves
great success in numerical experiments. In this paper, we relax r(·) in (1.3) to an indefinite
one, yielding the following dynamic regularized dual averaging (DRDA) scheme

xk+1 = argmin
x∈Q

{
k∑

i=0

〈gi , x − x0〉 + (k + 1)h(x) + βk+1rk(x)

}
, gi ∈ ∂ f (xi ), ∀k ≥ 0,

(1.5)
where (k + 1)h(·) + βk+1rk(·) is strongly convex for each k. Note that under this require-
ment, even if the function h(·) is convex, rk(·) could be carefully chosen to be nonconvex.
Specially, we introduce an appropriate indefinite item in (1.4) and then propose the indefinite
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proximal subgradient-based (IPSB) algorithm. Convergence rate is established under mild
assumptions. We do numerical experiments on the regularized least squares problem and
elastic net regression. Numerical results demonstrate the efficiency of IPSB in comparing
with the existing algorithms SDA and PSB.

The rest of this paper is organized as follows. In the following subsection, we introduce
some notations and preliminaries. Section 2 reviews the simple dual averaging algorithm, the
proximal subgradient-based algorithm and gives our new extensions. Section 3 presents the
convergence analysis. Numerical experiments are performed in Sect. 4.Wemake conclusions
in Sect. 5.

1.1 Notations and preliminaries

In this subsection, we present some definitions and preliminary results that will be used in
our analysis later. Let Q be a closed convex set in R

n . We use 〈s, x〉 and sT x to denote the
inner product of s and x , two real vectors with the same dimension. Let Sn denote the set
of symmetric matrices of order n, and I denote the identity matrix whose dimension is clear
from the context. The Euclidean norm defined by

√〈·, ·〉 is denoted by ‖ · ‖. Let [m] denote
the set {1, 2, . . . ,m}. The ball with center x and radius r reads as

Br (x) = {y ∈ R
n : ‖y − x‖ ≤ r}.

The subdifferential of a convex function f at point x ∈ dom f is given by

∂ f (x) := {g ∈ R
n : f (y) ≥ f (x) + 〈g, y − x〉,∀y ∈ R

n},
and any element in ∂ f (x) is called a subgradient of f at x , where dom f is the domain of f ,
i.e., the set of x ∈ R

n such that f (x) is finite.
A function f : Rn → R∪{+∞} is called strongly convex if there exists a constant κ > 0

such that

f (x) ≥ f (y) + 〈g, x − y〉 + κ

2
‖x − y‖2, ∀x, y ∈ R

n, ∀g ∈ ∂ f (y),

where the constant κ is called the strong convexity parameter.
For M ∈ R

n×n , we use the notation ‖x‖2M to denote xT Mx even if M is not positive
semidefinite. Denote by tr (M) the trace of the matrix M .

Definition 1.1 (SQCC) A function h : Rn → R ∪ {∞} is called the summation of quadratic
convex and convex functions (SQCC) if there exists a (nonlinear) quadratic convex function
q : Rn → R ∪ {∞} and a convex function h̃ : Rn → R ∪ {∞} such that

h(x) = q(x) + h̃(x), ∀x ∈ R
n .

Since h is SQCC, there exists a non-zero positive semidefinite matrix �h ∈ S
n such that

for all x , y ∈ R
n ,

h(y) ≥ h(x) + 〈u, y − x〉 + 1

2
‖y − x‖2�h

, ∀u ∈ ∂h(x), (1.6)

or equivalently,

〈x − y, u − v〉 ≥ ‖x − y‖2�h
, ∀u ∈ ∂h(x), v ∈ ∂h(y).
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2 A new proximal subgradient algorithm

In the first subsection, we briefly review two existing algorithms SDA and PSB. Then in the
second subsection, we describe the indefinite proximal subgradient-based (IPSB) algorithm.

2.1 SDA and PSB

We start from the classical subgradient algorithm [3] for minimizing the problem (1.1)

xk+1 = PQ(xk − λkdk), k ∈ N, (2.1)

where PQ denotes the projection onto Q, dk is either a subgradient Dk ∈ ∂F(xk) or the
normalized subgradient Dk/‖Dk‖, and the sequence of the stepsizes {λk}∞k=0 satisfies the
divergent-series rule:

λk > 0, λk → 0,
∞∑
i=0

λk = ∞.

In order to avoid taking decreasing stepsizes (i.e., λk → 0) as in the classical subgradient
algorithm, Nesterov [20] proposed the SDA algorithm,

xk+1 = argmin
x∈Q

{
k∑

i=0

〈λi Di , x − x0〉 + βk+1

2
‖x − x0‖2

}
, Dk ∈ ∂F(xk), ∀k ≥ 0, (2.2)

where {βk+1}∞k=0 is a positive nondecreasing sequence and x0 denotes the initial point. There
are two simple strategies for choosing {λi }∞i=0, either λi ≡ 1 or λi = 1/‖di‖. SDA can solve
the generalized nonsmooth convex optimization problem and it has been proved to be optimal
from the view point of worst-case black-box lower complexity bounds [20]. By considering
problems with additive structure as in (1.1), Xiao [26] proposed the RDA scheme. A detailed
algorithm under the RDA scheme is PSB, which is as follows

xk+1 = argmin
x∈Q

{
k∑

i=0

(〈gi , x − x0〉 + h(x)) + βk+1

2
‖x − x0‖2

}

= argmin
x∈Q

{
k∑

i=0

〈gi , x − x0〉 + (k + 1)h(x) + βk+1

2
‖x − x0‖2

}
, (2.3)

where gi ∈ ∂ f (xi ), ∀i ≥ 0, the stepsize λi ≡ 1, {βk+1}∞k=0 is nondecreasing, and x0 ∈
argmin x∈Qh(x). The above iteration (2.3) reduces to (2.2) when h ≡ 0.

2.2 Algorithm IPSB

Motivated by indefinite approaches, we extend RDA to the following dynamic regularized
dual averaging (DRDA) scheme

xk+1 = argmin
x∈Q

{
k∑

i=0

〈gi , x − x0〉 + (k + 1)h(x) + βk+1rk(x)

}
. (2.4)
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We only assume that the sum (k + 1)h(x) + βk+1rk(x) is strongly convex. A simple choice
of rk(x) is

rk(x) = 1

2
‖x − x0‖2Gk+1

,

where Gk+1 = I − (k + 1)�h/βk+1. Algorithm 1 describes the algorithm in detail.

Algorithm 1: Indefinite proximal subgradient-based (IPSB) algorithm

Initialization: Set s0 = 0, γ > 0 and {β̃k+1}∞k=0. Initialize k = 0 and choose

x0 ∈ argmin
x∈Q

h(x);

Output: x̂k+1 = 1
k+1

∑k
i=0 xi ;

1: Stop if a termination criterion is met. Otherwise, compute gk ∈ ∂ f (xk );
2: Set sk+1 = sk + gk ;
3: Choose βk+1 = γ β̃k+1, and set Gk+1 := I − k+1

βk+1
�h ;

4: Solve

xk+1 = argmin
x∈Q

{〈
sk+1, x − x0

〉 + (k + 1)h(x) + βk+1

2
‖x − x0‖2Gk+1

}
;

5: Let k = k + 1 and go to step 1.

In Algorithm 1, the choice of the indefinite matrix Gk in step 3 guarantees the strong
convexity of the subproblem minimized in step 4. In some specially structured problems, the
introduction of Gk can make the subproblem in step 4 much easier to solve.

Remark 2.1 Note that as the progressing of the iteration, the influence of the initial point
x0 should be vanishing. In other words, the auxiliary quadratic term should be as small as
possible. By comparing the auxiliary functions in the k-th step of the algorithms PSB and
IPSB, we can obtain

1

2
‖x − x0‖2Gk+1

= 1

2
‖x − x0‖2I−(k+1)�h/βk+1

= 1

2
‖x − x0‖2 − k + 1

2
‖x − x0‖2�h/βk+1

<
1

2
‖x − x0‖2,

which indicates that the indefinite term can reduce the impact of x0 on the k-th subproblem
as k increases.

Remark 2.2 The following choice of the sequence {β̃k+1}∞k=0 initialized in Algorithm 1 is
due to Nesterov [20]:

β̃1 = λ̂, β̃k+1 = β̃k + 1

β̃k
, k ∈ N, (2.5)

where λ̂ > 0 is an initial parameter.

For the sequence {β̃k+1}∞k=0, we have the following estimation, which corrected the previous
estimation in [20, Lemma 3].
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Lemma 2.1 Based on (2.5), we have√
λ̂2 + 2k − 2 ≤ β̃k ≤ λ̂ + 1

λ̂
+

√
λ̂2 + 2k − 4, ∀k ≥ 1. (2.6)

Proof According to (2.5), we can obtain β̃1 = λ̂ and β̃2
k = β̃2

k−1 + β̃−2
k−1 + 2. Consequently,

β̃2
k ≥ β̃2

k−1 + 2 ≥ β̃2
1 + 2(k − 1) = λ̂2 + 2(k − 1), ∀k ≥ 2,

which implies the left-hand side of estimation (2.6). Conversely, we can derive that

β̃k = β̃k−1 + 1

β̃k−1
≤ β̃k−1 + 1√

λ̂2 + 2(k − 2)
≤ β̃1 +

k−2∑
t=0

1√
λ̂2 + 2t

= λ̂ +
k−2∑
t=0

1√
λ̂2 + 2t

. (2.7)

From

1√
λ̂2 + 2t

≤ 2√
λ̂2 + 2t +

√
λ̂2 + 2(t − 1)

=
√

λ̂2 + 2t −
√

λ̂2 + 2(t − 1),

we have

k−2∑
t=0

1√
λ̂2 + 2t

= 1

λ̂
+

k−2∑
t=1

1√
λ̂2 + 2t

≤ 1

λ̂
+

√
λ̂2 + 2(k − 2) − λ̂. (2.8)

Finally, the right-hand side of the estimation (2.6) follows from substituting (2.8) into (2.7).
��

3 Convergence analysis

Similar to Nesterov’s analysis [20], the convergence of the algorithm IPSB is established.
First let us define two auxiliary functions as follows

Uk(s) := max
x∈FD

{〈s, x − x0〉 − kh(x)}, (3.1)

Vk(s) := max
x∈Q

{
〈s, x − x0〉 − kh(x) − βk

2
‖x − x0‖2Gk

}
, (3.2)

where FD = {x ∈ Q : 1
2‖x − x0‖2 ≤ D}, D > 0 and Gk = I − k�h/βk, ∀k ≥ 1. Let

x0 ∈ argminx∈Q h(x). Since s0 = 0, we have

V1(−s0) = max
x∈Q

{
−h(x) − β1

2
‖x − x0‖2G1

}
= max

x∈Q

{
−h(x) − 1

2
‖x − x0‖2β1 I−�h

}
,

(3.3)
Notice that (3.3) is a concavemaximization problem and then it has a unique optimal solution
in the closed convex set Q. According to Danskin’s theorem [2, Proposition B.25], we obtain
that both V1(−s0) and ∇V1(−s0) are well defined. Let

T := V1(−s0) + 〈−g0,∇V1(−s0)〉 + h(x1). (3.4)
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In the following, the first lemma studies the relation between Uk(s) and Vk(s), and the
second lemma studies the smoothness of function Vk(s).

Lemma 3.1 For any s ∈ R
n and k ∈ N, we have

Uk(s) ≤ βk D + Vk(s) (3.5)

Proof According to the definitions (3.1), (3.2) and FD = {x ∈ Q : 1
2‖x − x0‖2 ≤ D}, we

have

Uk(s) = max
x∈FD

{〈s, x − x0〉 − kh(x)}

≤ min
β≥0

max
x∈Q

{
〈s, x − x0〉 − kh(x) − β(

1

2
‖x − x0‖2 − D)

}

≤ max
x∈Q

{
〈s, x − x0〉 − kh(x) − βk(

1

2
‖x − x0‖2 − D)

}

≤ max
x∈Q

{
〈s, x − x0〉 − kh(x) − βk

2
‖x − x0‖2 + βk D + k

2
‖x − x0‖2�h

}
= βk D + Vk(s),

where the first inequality corresponds to the partial Lagrangian relaxation, and the last
inequality holds as �h � 0. ��

Lemma 3.2 The well-defined function Vk(s) is convex and continuously differentiable. Then
we have

∇Vk(s) = xk(s) − x0, ∀k ≥ 1, (3.6)

where xk(s) is the minimizer of the function Vk(s). In addition, ∇Vk(s) is 1/βk-Lipschit z
continuous, i.e., there exists a constant 1/βk > 0 such that

‖∇Vk(s) − ∇Vk(t)‖ ≤ 1

βk
‖s − t‖, ∀s, t ∈ R

n .

Proof Since the objective function of problem (3.2) is βk−strongly concave with respect to
x , xk(s) is the unique maximizer of Vk(s). Then (3.6) follows from Danskin’s theorem [2,
Proposition B.25].

For any l(x) ∈ ∂h(x), s1, s2 ∈ R
n , according to the first-order optimality conditions, we

have

〈−s1 + kl(xk(s1)) + βkGk(xk(s1) − x0), xk(s2) − xk(s1)〉 ≥ 0,

〈−s2 + kl(xk(s2)) + βkGk(xk(s2) − x0), xk(s1) − xk(s2)〉 ≥ 0.

Adding these two inequalities together, we can get

〈s2 − s1, xk(s1) − xk(s2)〉 ≤ k〈l(xk(s2)) − l(xk(s1)), xk(s1) − xk(s2)〉
+ 〈βkGk(xk(s2) − xk(s1)), xk(s1) − xk(s2)〉

≤ − k‖xk(s1) − xk(s2)‖2�h
− βk‖xk(s1) − xk(s2)‖2Gk

≤ − βk‖xk(s1) − xk(s2)‖2, ∀k ≥ 1,
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where last inequality follows from Gk = I − k
βk

�h . Thus, we have

‖xk(s1) − xk(s2)‖2 ≤ − 1

βk
〈s2 − s1, xk(s1) − xk(s2)〉

≤ 1

βk
‖s2 − s1‖‖xk(s1) − xk(s2)‖,∀k ≥ 1,

which is equivalent to

‖∇Vk(s1) − ∇Vk(s2)‖ ≤ 1

βk
‖s2 − s1‖, ∀k ≥ 1.

��
Let F∗

D = minx∈FD F(x). According to the convexity of the objective function, we have

F(x̂k+1) − F∗
D ≤ 1

k + 1

k∑
i=0

[ f (xi ) + h(xi )] − min
x∈FD

[ f (x) + h(x)]

= 1

k + 1
max
x∈FD

k∑
i=0

[ f (xi ) − f (x) + h(xi ) − h(x)]

≤ 1

k + 1
max
x∈FD

k∑
i=0

[〈gi , xi − x〉 + h(xi ) − h(x)]. (3.7)

Consequently, we define the gap function as

δk+1 := max
x∈FD

k∑
i=0

[〈gi , xi − x〉 + h(xi ) − h(x)].

It follows from the inequality (3.5) that

δk+1 =
k∑

i=0

[〈gi , xi − x0〉 + h(xi )] +Uk+1(−sk+1) (3.8)

≤
k∑

i=0

[〈gi , xi − x0〉 + h(xi )] + βk+1D + Vk+1(−sk+1)

:= 
k+1. (3.9)

Remark 3.1 For any fixed k, there exists a constant P that satisfiesmaxi∈[k] 1
2‖xi −x0‖2 ≤ P .

Thus we have
1

2

k∑
i=1

‖xi+1 − x0‖2�h
≤ λmaxkP, (3.10)

where λmax is the maximum eigenvalue of �h .

Now we present the upper bounds as follows.

Theorem 3.1 Let the sequence {xi }ki=0 ⊂ Q and {gi }ki=0 ⊂ R
n be generated by Algorithm 1.

Let sequence {βi }ki=0 satisfies βk = γ β̃k , where {β̃i }ki=1 is defined in (2.5), β̃0 = β̃1 and
γ > 0. Then
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1. For any k ∈ N, we have

δk ≤ 
k ≤ βk D + T + 1

2

k−1∑
i=0

1

βi
‖gi‖2 + λmax (k − 1)P. (3.11)

2. Assume that

(1) the sequence {gk}k≥0 is bounded, which means that

∃L > 0, such that ‖gk‖ ≤ L, ∀k ≥ 0, (3.12)

(2) there exists a solution x∗ satisfying

〈g, x − x∗〉 ≥ 0, g ∈ ∂ f (x), ∀x ∈ Q. (3.13)

Then it holds that

‖xk − x∗‖2 ≤ 2T + 2λmax (k − 1)P

βk
+ ‖x∗ − x0‖2Gk

+ L2. (3.14)

3. Let x∗ be an interior solution, i.e., there exist r , D > 0 satisfying Br (x∗) ⊆ FD. Assume
there is a �h > 0 such that

max
z∈∂h(y)
y∈Br (x∗)

‖z‖ ≤ �h .

Then we have

‖s̄k+1‖ ≤ 1

r(k + 1)

[
βk+1D + T + 1

2

k∑
i=0

1

βi
‖gi‖2 + λmaxkP

]
+ �h, (3.15)

where s̄k+1 = 1
k+1

∑k
i=0 gk.

Proof 1. According to the definitions of Vk(s) and Gk , for any integer k ≥ 1, we have

Vk−1(−sk) = max
x∈Q

{
〈−sk, x − x0〉 − (k − 1)h(x) − βk−1

2
‖x − x0‖2Gk−1

}

≥ 〈−sk, xk − x0〉 − (k − 1)h(xk) − βk−1

2
‖xk − x0‖2Gk−1

= Vk(−sk) + h(xk) + βk

2
‖xk − x0‖2Gk

− βk−1

2
‖xk − x0‖2Gk−1

≥ Vk(−sk) + h(xk) + βk − βk−1

2
‖xk − x0‖2 − 1

2
‖xk − x0‖2�h

≥ Vk(−sk) + h(xk) − 1

2
‖xk − x0‖2�h

.

According to Lemma 3.2, we have

Vk(s + σ) ≤ Vk(s) + 〈σ,∇Vk(s)〉 + 1

2βk
‖σ‖2, ∀s, σ ∈ R

n . (3.16)

123



542 Journal of Global Optimization (2023) 87:533–550

Substituting sk into (3.16) yields that

Vk(−sk) + h(xk) − 1

2
‖xk − x0‖2�h

≤ Vk−1(−sk) = Vk−1(−sk−1 − gk−1)

≤ Vk−1(−sk−1) + 〈−gk−1,∇Vk−1(−sk−1)〉 + 1

2βk−1
‖gk−1‖2

= Vk−1(−sk−1) + 〈−gk−1, xk−1 − x0〉 + 1

2βk−1
‖gk−1‖2, ∀k ≥ 1,

which further implies that

〈gk−1, xk−1 − x0〉 + h(xk)

≤ Vk−1(−sk−1) − Vk(−sk) + 1

2βk−1
‖gk−1‖2 + 1

2
‖xk − x0‖2�h

, ∀k ≥ 1.

By summing the above inequality from 1 to k, we obtain

k∑
i=1

[〈gi , xi − x0〉 + h(xi+1)]

≤ V1(−s1) − Vk+1(−sk+1) + 1
2

k∑
i=1

[
1
βi

‖gi‖2 + ‖xi+1 − x0‖2�h

]
,

which is equivalent to

k∑
i=0

[〈gi , xi − x0〉 + h(xi )] + Vk+1(−sk+1) ≤ V1(−s1) + h(x0) + h(x1) − h(xk+1)

+ 1

2

k∑
i=1

[
1

βi
‖gi‖2 + ‖xi+1 − x0‖2�h

]
. (3.17)

By combining with (3.16) and s1 = s0 + g0, we have

V1(−s1) = V1(−s0 − g0) ≤ V1(−s0) + 〈−g0,∇V1(−s0)〉 + 1

2β1
‖g0‖2

= T − h(x1) + 1

2β0
‖g0‖2,

where the equality follows from (3.4) andβ0 = β1. By noting that x0 = argminx∈Q h(x),
we can obtain that

h(x0) ≤ h(xk+1).

Finally, combining (3.9), (3.17) and the above inequalities, we conclude that


k+1 ≤ βk+1D + T + 1

2

k∑
i=0

1

βi
‖gi‖2 + 1

2

k∑
i=1

‖xi+1 − x0‖2�h
.

2. Notice that xk = argminx∈Q 〈sk, x − x0〉 + kh(x) + βk
2 ‖x − x0‖2Gk

. By the convexity of
the objective function, we have

〈sk + klk + βkGk(xk − x0), x − xk〉 ≥ 0, ∀x ∈ Q. (3.18)
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Notice that Gk = I − k�h/βk . Then we can define the following βk−strongly convex
function

φk(x) := kh(x) + βk

2
‖x − x0‖2Gk

, k ∈ N,

which implies that

φk(x) ≥ φk(xk) + 〈klk + βkGk(xk − x0), x − xk〉 + βk

2
‖xk − x‖2. (3.19)

By taking φk(xk) from the right-hand side of the inequality (3.19) to the left-hand side,
we can get

〈klk + βkGk(xk − x0), x − xk〉 + βk

2
‖xk − x‖2

≤ k[h(x) − h(xk)] + βk

2
‖x − x0‖2Gk

− βk

2
‖xk − x‖2Gk

.

Combining with (3.18) yields that

βk

2
‖xk − x‖2 ≤ kh(x) − kh(xk) + βk

2
‖x − x0‖2Gk

− βk

2
‖xk − x0‖2Gk

+ 〈klk + βkGk(xk − x0), xk − x〉
≤ kh(x) − kh(xk) + βk

2
‖x − x0‖2Gk

− βk

2
‖xk − x0‖2Gk

− 〈sk, xk − x〉

=Vk(sk) + kh(x) + βk

2
‖x − x0‖2Gk

+ 〈sk, x − x0〉

= Vk(sk) +
k−1∑
i=0

〈gi , xi − x0〉 +
k−1∑
i=0

h(xi )

+ βk

2
‖x − x0‖2Gk

+
k−1∑
i=0

〈gi , x − xi 〉 + kh(x) −
k−1∑
i=0

h(xi ). (3.20)

Furthermore, we notice that (3.17) is taken into the following form

Vk+1(−sk+1)+
k∑

i=0

[〈gi , xi − x0〉+h(xi )] ≤ T + 1

2

k∑
i=0

1

βi
‖gi‖2+ 1

2

k∑
i=1

‖xi+1− x0‖2�h
.

(3.21)
By substituting (3.20) into (3.21), we can get

βk

2
‖xk − x‖2 ≤ T +1

2

k−1∑
i=0

1

βi
‖gi‖2 + 1

2

k−1∑
i=1

‖xi+1 − x0‖2�h

+βk

2
‖x − x0‖2Gk

+
{
k−1∑
i=0

[ f (x) + h(x)] − [ f (xi ) + h(xi )]
}

.

Finally, we set x = x∗ := argminx∈FD
f (x) + h(x). Then it holds that

βk

2
‖xk − x∗‖2 ≤ T + 1

2

k−1∑
i=0

1

βi
‖gi‖2 + 1

2

k−1∑
i=1

‖xi+1 − x0‖2�h
+ βk

2
‖x∗ − x0‖2Gk

.

According to the conditions (2.5) and (3.12), we obtain the inequality (3.14).
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3. Based on (3.8), we can obtain

δk+1 =
k∑

i=0

[〈gi , xi − x∗〉 + h(xi )] + max
x∈FD

{〈sk+1, x
∗ − x

〉 − (k + 1)h(x)}

=
k∑

i=0

[〈gi , xi − x∗〉 + h(xi ) − h(x∗)] + max
x∈FD

{〈sk+1, x
∗ − x

〉 + (k + 1)h(x∗)

− (k + 1)h(x)}

≥
k∑

i=0

{ f (xi ) + h(xi ) − f (x∗) − h(x∗)} + max
x∈FD

{〈sk+1, x
∗ − x

〉 + (k + 1)h(x∗)

− (k + 1)h(x)}
≥ max

x∈Br (x∗)
{〈sk+1, x

∗ − x
〉 + (k + 1)h(x∗) − (k + 1)h(x)}.

Notice that

x̄ = arg max
x∈Br (x∗)

〈
sk+1, x

∗ − x
〉
.

Then we have ‖x∗ − x̄‖ = r and〈
sk+1, x

∗ − x̄
〉 = ‖sk+1‖‖x∗ − x̄‖ = r‖sk+1‖.

Thus, it holds that

δk+1 ≥ max
x∈Br (x∗)

{〈sk+1, x
∗ − x

〉 + (k + 1)h(x∗) − (k + 1)h(x)}
≥ 〈

sk+1, x
∗ − x̄

〉 + (k + 1)h(x∗) − (k + 1)h(x̄)

≥ r‖sk+1‖ + (k + 1)
〈
l(x̄), x∗ − x̄

〉
≥ r‖sk+1‖ − (k + 1)‖l(x̄)‖‖x∗ − x̄‖
= r‖sk+1‖ − (k + 1)r‖l(x̄)‖,

which implies

1

k + 1
‖sk+1‖ ≤ 1

r(k + 1)
δk+1 + ‖l(x̄)‖ ≤ 1

r(k + 1)
δk+1 + �h .

Then (3.15) follows from (3.11). ��

As a main result, we can now estimate the upper bound on the complexity of IPSB in the
following.

Theorem 3.2 Assume there exists a constant L > 0 such that ‖gk‖ ≤ L, ∀k ≥ 0. Denote by
{xi }ki=0 the sequence generated by Algorithm 1. Let F∗

D = minx∈FD F(x). Then we have

F(x̂k+1) − F∗
D − λmax P ≤ β̃k+1

k + 1

(
γ D + L2

2γ

)
+ T − λmax P

k + 1
. (3.22)
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Proof By combining (2.5) with the inequalities (3.7) and (3.11), we have

F(x̂k+1) − F∗
D ≤ 1

k + 1
δk+1(D) ≤ 1

k + 1

[
βk+1D + T + 1

2

k∑
i=0

1

βi
‖gi‖2 + λmaxkP

]

≤ β̃k+1

k + 1

(
γ D + L2

2γ

)
+ T − λmax P

k + 1
+ λmax P,

which finishes the proof of the inequality (3.22). ��

Remark 3.2 According to Lemma 2.1, we know that the sequence {β̃k}∞k=0 can be used for
balancing the terms appearing in the right-hand side of inequality (3.11). It follows from
Theorem 3.2 that IPSB converges to the region of the optimal value with rate O(1/

√
k).

4 Numerical experiments

In this section, we perform numerical experiments to compare the algorithms IPSB, SDA
and PSB on two kinds of test problems. All experiments were implemented in MTALAB
2018b and run on a laptop with a dual core (1.6 + 1.8 GHz) processor and 8 GB RAM.

4.1 Regularized least squares problem

In this subsection, we test the regularized least squares problem

min
x∈Rn

{
‖Ax − b‖2 + ρ̄ max

i∈[m] fi (x)
}

, (4.1)

where A ∈ R
n1×n2 , b ∈ R

n1 and fi (x), i ∈ [m] are all positive and strongly convex. Notice
that (4.1) is a special case of (1.1) with f (x) = ‖Ax − b‖2 and h(x) = ρ̄ maxi∈[m] fi (x).

In our first test, we set m = 2, f1(x) = ‖x‖2B and f2(x) = ‖x − c‖2B , where B ∈ R
n2×n2

and c ∈ R
n2 . We set B �= 0 to be positive semidefinite but singular so that the function h is

SQCC. In fact, we have �h = 2B. Applying Algorithm 1 to solve (4.1) reduces to

⎧⎨
⎩
sk+1 = sk + gk,

xk+1 = argmin
x

{
〈sk+1, x〉 + (k + 1)max{‖x‖2B , ‖x − c‖2B} + βk+1

2
‖x−x0‖2I− 2(k+1)

βk+1
B

}
,

where gk ∈ ∂ f (xk) and

∂ f (x) =
⎧⎨
⎩

AT (Ax − b)

‖Ax − b‖ , i f Ax − b �= 0,

{AT x ∈ R
n : ‖x‖ ≤ 1}, i f Ax − b = 0.
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The three different algorithms in comparison for solving (4.1) are explicitly reformulated as

SDA : xk+1 = x0 − 1

βk+1

k∑
i=0

(gi + li ),

PSB : xk+1 =
⎧⎨
⎩

(2(k + 1)B + βk+1 I )
−1(βk+1x0 − sk+1), if ‖x‖2B > ‖x − c‖2B ,

(2(k + 1)B + βk+1 I )
−1(βk+1x0 − sk+1), if ‖x‖2B < ‖x − c‖2B ,(

2(k + 1)B + βk+1Ḡ
)−1

(βk+1x0 − sk+1 + ρ̄1Bc) , otherwise,

I PSB : xk+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x0 − 1

βk+1
(2(k + 1)Bx0 + sk+1), if ‖x‖2B > ‖x − c‖2B ,

x0 − 1

βk+1
(2(k + 1)Bx0 + sk+1 − 2(k + 1)Bc), if ‖x‖2B < ‖x − c‖2B ,

x0 − 1

βk+1
(2(k + 1)Bx0 + sk+1 + 2ρ̄2Bc), otherwise ,

where expression for ρ̄1, ρ̄2 and Ḡ is as follows

ρ̄1 = (k + 1)cT (Bc + sk+1 − βk+1x0)

cT Bc
,

ρ̄2 = 1

4‖Bc‖2
(
βk+1c

T B(c − x0) + 2cT Bsk+1 + 4(k + 1)cT B · Bx0
)

,

Ḡ = I − Bc · cT
cT Bc

.

In addition, lk ∈ ∂h(xk) and

∂h(x) = {l ∈ R
n2×n2 : l = 2Bx + 2αBc, α ∈ [0, 1]}.

In our experiments, we choose ρ̄ = 1 and n1×n2 ∈ {400×900, 800×2000, 1500×3000}.
In Algorithm 1, we set γ = 20, λ̂ = 1e − 3 and the termination criterion is set as either
|F(x̂ k) − F(x̂ k−1)| ≤ 10−3 or the number of iterations reaches 300. Starting from a fixed
seed, we independently randomly generate x∗ = (10, . . . , 10) ∈ R

n2 , c ∈ R
n2 from standard

normal distribution N (0, 0.25) and then generate each elment of A from N (0, 202). We set
b ∈ R

n1 as follows

bi =
n2∑
j=1

Ai j x
∗, i ∈ [n1].

The matrix B is constructed by randomly generating eigenvalues and eigenvectors. The first
ten eigenvalues of B are random positive numbers and the rest are zero. We construct the
eigenvecters by randomly generating orthogonal matrix with uniformly distributed random
elements. When n1 = 400, n2 = 900, MATLAB code to generate the above data is as
follows. The others are similar.

n_1=400; n2=900;
randn( ‘seed’ ,0)
A = 20∗randn(n1,n2) ; x_op = randn(n2,1) ;
b = A∗x_op;
rand( ‘seed’ ,0)
y = 5e2∗rand(10 ,1); x = [y; zeros(n2−10,1)];
X = diag(x) ; U = orth (rand(n2,n2) ) ;
B = U’ ∗ X ∗ U;
c = 0.5∗randn(n2,1) ;
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Fig. 1 Numerical comparison between algorithms SDA and IPSB

Fig. 2 Numerical comparison between algorithms PSB and IPSB

where x_op corresponds to the variable x∗.
We plot the variants of log(log F(x̂k)) versus the iterations number k and CPU runtime

in Figs. 1 and 2, respectively.
As shown in Fig. 1, IPSB would have a better function value than SDA in the iteration

process. By zooming in on the details of the figures, it can be seen that the value generated
by IPSB is decreasing rather than constant.

PSB runs much slower than IPSB because of the heavy computation cost of matrix inver-
sion. It is shown in Fig. 2 that IPSB is much more efficient than PSB.

4.2 Elastic net regression

The elastic net is a regularized regression model [27] by linearly combining LASSO and
ridge regression. It is formulated as

min
ω∈Rn

‖y − Xω‖22 + η1‖ω‖1 + η2‖ω‖22, (4.2)

where p is the number of samples, n is the number of features, y ∈ R
p is the response vector,

X ∈ R
p×n is the design matrix, and η1, η2 > 0 are regularization parameters. It corresponds

to setting f (ω) = η1‖ω‖1 and h(ω) = ‖y− Xω‖22 +η2‖ω‖22 in (1.1). The iteration schemes
of three different algorithms in comparison for solving (4.2) are reformulated as
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Table 1 Computational cost in each iteration

Algorithm SDA PSB IPSB

Complexity per iteration O(kpn) O(n3 + pn2 + kn) O(kn + pn)

SDA : ωk+1 = ω0 + 1

βk+1

k∑
i=0

(
2XT (Xωi − y) + η1sgn(ωi ) + 2η2ωi

)
,

PSB : ωk+1 = ((k + 1)(2XT X + 2η2 I ) + βk+1 I )
−1

(
βk+1ω0 + 2XT y − η1

k∑
i=0

sgn(ωi )

)
,

I PSB : ωk+1 = ω0 − 1

βk+1

(
(k + 1)(2XT (Xω0 − y) + 2η2ω0) + η1

k∑
i=0

sgn(ωi )

)
,

where the initial point ω0 is given by (XT X + η2 I )−1Xy = argminω∈Rn h(ω), sgn(·) is
the sign function, and the sequence {βk}k≥0 utilizes the form (2.5). We list in Table 1 the
computational complexity in each iteration. It demonstrates that in each iteration PSB has
the highest computational cost when n is much larger than k, and SDA takes the highest cost
when k is much larger than p and n.

We set the termination criterion as

| f (ω̄) − f̄ |
f̄

≤ εrel ,

where f̄ is an approximation of the optimal value obtained by running 500 iterations of SDA
in advance, ω̄ = ∑t

i=1 ωi/n and t is the realistic number of iterations until termination.
We conduct the experiments with the following synthetic data and real data, respectively.
Synthetic data: Starting a fixed seed, we independently and randomly generate Xi j ∼

N (0, 0.01), ω∗ ∼ N (0, 1), εi ∼ N (0, 0.04), and then set yi = ∑n
j=1 Xi jω

∗ + εi , i ∈ [p],
j ∈ [n]. We choose p × n ∈ {300 × 1000, 500 × 2000, 700 × 3000, 1000 × 5000}. The
hyperparameters used for the synthetic data are set as

γ = 102, β0 = 3 × 10−2, εrel = 10−1.

When p = 300, n = 1000, the MATLAB code to generate the data is as follows. The
others are similar.

p=300; n=1000;
randn( ’seed ’ ,0);
X=0.1.∗randn(p,n) ;
x_op=randn(n,1) ;
ep=0.2.∗randn(p,1) ;
y=X∗x_op+ep;

where x_op and ep correspond to the variables ω∗ and ε respectively.
MNIST data [15]: There are 70, 000 samples from the images of 10 digits in the MNIST

data set, each with a 28 × 28 gray-scale pixel-map, for a total of 784 features. We take the
digits 8 and 9. Thus we have p = 13783 and n = 784. Moveover, let y ∈ {+1,−1}n be the
binary label. The hyperparameters used for MNIST data are as follows

γ = 103, β0 = 10−3, εrel = 10−2.
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Table 2 Numerical results for synthetic data

p n SDA PSB IPSB

Iter. Time Accu. Iter. Time Accu. Iter. Time Accu.

300 1000 178 0.5548 0.9007 121 10.2557 0.9009 120 0.0575 0.9009

500 2000 121 1.3441 0.9005 84 50.9602 0.9012 83 0.2241 0.9011

700 3000 98 1.9449 0.9009 71 146.9056 0.9007 70 0.4141 0.9002

1000 5000 76 3.0670 0.9001 63 629.0511 0.9004 66 1.0915 0.9001

Bold values indicate the result of running the algorithm proposed in this article, which have certain advantages
in comparison

Table 3 Numerical results for MNIST data

p n SDA PSB IPSB

Iter. Time Accu. Iter. Time Accu. Iter. Time Accu.

13783 784 29 2.57 0.9902 31 2.14 0.9901 32 0.62 0.9901

Bold values indicate the result of running the algorithm proposed in this article, which have certain advantages
in comparison

Tables 2 and 3 represent the experimental results for synthetic data and MNIST data,
respectively. In both Tables, we report the results of the numbers of iterations (Iter.), running
time in seconds and the accuracy (Accu.) defined as 1 − | f (ω̄) − f̄ |/ f̄ .

In synthetic data, SDA takes the largest number of iterations among the three, IPSB runs in
less CPU time than the other two algorithms, and PSB is the most inefficient one. In MNIST
data, the three algorithms take almost the same number of iterations so that IPSB takes the
least CPU time.

5 Conclusions

Nesterov’s dual averaging scheme succeeds in avoiding that stepsizes decrease as in the
subgradient methods for nonsmooth convex minimizing problem. It is then extended to solve
problems with an additional regularization, denoted by (RDA).

In this paper, we propose the dynamic regularized dual averaging scheme by relaxing the
positive definite regularization term in RDA, which can not only reduce the impact of the
initial point on the subproblems in later iterations but also make the new subproblem in each
iteration easy to solve. Under this new scheme, we proposed indefinite proximal subgradient-
based (IPSB) algorithm.We analyze the convergence rate of IPSB, which is O(1/

√
k), where

k is the number of iterations. And IPSB converges to a region of the optimal value. Numerical
experiments on regularized least squares problem and elastic net regression show that IPSB
is more efficient than the existing algorithms SDA and PSB. Future works include more
real applications of IPSB and further improvement of IPSB by, for example, relaxing the
condition on the initial point.
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