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Abstract
In this paper, existence results for scalar and vector equilibrium problems involving two
bifunctions are established. To this aim, a new concept of generalized pseudomonotonic-
ity for a pair of bifunctions is introduced. It leads to existence criteria different from the
ones encountered in the literature. The given applications refer to minimax inequalities and
variational inequality problems.
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Variational inequality

1 Introduction and preliminaries

Various optimization problems can be brought to the following format:

find x0 ∈ X such that f (x0, y) ≥ 0, ∀y ∈ X , (EP)

where X is a nonempty convex subset of a Hausdorff topological vector space and f is a real
bifunction defined on X × X .

This problem was called by Muu and Oettli [30] an equilibrium problem and, after the
appearance of the seminal article of Blum and Oettli [13], the term “equilibrium problem”has
been adopted by all the researchers working on this topic. The study of the problem (EP)
actually started before the papers mentioned above with the works of Nikaido and Isoda [32]
and of Ky Fan [21]. Over time a considerable number of existence criteria of the solution has
been obtained, both in finite and infinite dimensional settings, under various assumptions on
the set X and on the bifunction f . The bulk of the literature on problem (EP) assumes that
the bifunction f is monotone or it satisfies various types of generalized monotonicity. We
need to recall two of them, used in the paper:

Definition 1 A bifunction f : X × X → R is said to be

B Mircea Balaj
mbalaj@uoradea.ro

1 Department of Mathematics, University of Oradea, University Street 1, Oradea 410087, Romania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-022-01159-7&domain=pdf


740 Journal of Global Optimization (2022) 84:739–753

(i) pseudomonotone, if

x, y ∈ X , f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0;
(ii) properly quasimonotone, if for any nonempty finite subset A of X and all y ∈ convA,

minx∈A f (x, y) ≤ 0.

In some works, in order to establish existence results of the solutions, besides the bifunction
f , is considered a second bifunction g : X × X → R, the pair ( f , g) satisfying a certain
type of generalized monotonicity(see [23, 33, 35]). The present paper fits in this group of
articles. Its goal is to study problem (EP) when the bifunctions f and g satisfy the following
condition:

for each y ∈ X , there exists z ∈ X such that
x ∈ X , g(z, x) ≤ 0 �⇒ f (x, y) ≥ 0.

(1)

It is easy to see that (1) holds whenever the condition below is fulfilled:

for every y ∈ X , there exists z ∈ X such that − g(z, x) ≤ f (x, y) for all x ∈ X .

But the above condition is only sufficient and not necessary. For instance, if all the values
of f are nonnegative, then (1) is satisfied for any real bifunction g.

If we wish to relate condition (1) by others encountered in literature, we need to recall
the concept of pseudomonotone (ordered) pair of bifunctions. Given two bifunctions p, q :
X × X → R, it is said that p is pseudomonotone with respect to q (see [9, 33]) if

x, y ∈ X , p(y, x) ≥ 0 �⇒ q(x, y) ≤ 0,

This fact motivates us to introduce a more general concept:

Definition 2 We say that p is generalized pseudomonotone with respect to q if there exists
a function h : X → R such that for x, y ∈ X

p(h(y), x) ≥ 0 �⇒ q(x, y) ≤ 0.

Note that in the above definition the order of the two bifunctions is relevant and that the
pseudomonotonicity implies the generalized pseudomonotonicity. Condition (1) can be now
restated as follows: −g is generalized pseudomonotone with respect to − f .

In Sect. 2, we establish existence results of the solution for problem (EP) when X is a
convex subset of Hausdorff topological vector space and−g is generalized pseudomonotone
with respect to − f . As usual, the absence of compactness of X will impose a coercivity
condition.

In Sect. 3, as applications of the aforementioned results we obtain generalizations of Ky
Fan minimax inequality and Sion minimax theorem.

To the best of our knowledge, Oettli ([33]) was the first who observed that a vector
equilibrium problem can be reduced to a scalar equilibrium problem and his method has
been then used in many papers (see, for instance, [6, 9, 20, 23]). Oettli’s approach will be
used in Sect. 4 to derive existence results for two type of vector equilibrium problems. In the
same section we study the existence of solution for a vector variational inequality problem
of Stampacchia type.

From now on, for a subset A of a topological vector space E , the standard notations
conv A, cl A, int A designate respectively, the convex hull, the closure and the interior of
A. If A ⊆ C ⊆ E , we denote by clC A the closure of A with respect to C .
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2 Scalar equilibrium problems

Definition 3 A subset Y of a topological space X is said to be compactly closed if for each
compact subset K of X , the set Y ∩ K is closed in K .

It is worth mentioning that the class of compactly closed sets is larger than the one of closed
sets. A Hausdorff space X is called c-space (see, [19, p. 152], [27, p. 230]) if every compactly
closed subset of X is closed. Necessary and sufficient conditions in order that a Hausdorff
space to be c-space can be found in [34] and [37].

Theorem 1 Let X be a convex subset of a Hausdorff topological vector space and f , g be
two real bifunctions defined on X × X such that

(i) for each y ∈ X, the set {x ∈ X : f (x, y) ≥ 0} is compactly closed;
(ii) g is properly quasimonotone;
(iii) -g is generalized pseudomonotone with respect to - f ;
(iv) there exist a nonempty compact subset K of X and a point y0 ∈ X such that f (x, y0) < 0

for all x ∈ X \ K.

Then, there exists x0 ∈ K such that f (x0, y) ≥ 0 for all y ∈ X.

Proof Denote by A the family of all finite subsets of X that contain the point y0 and choose
arbitrarily an A ∈ A. From (iii), for each y ∈ A, there exists zy ∈ X such that

{x ∈ X : g(zy, x) ≤ 0} ⊆ {x ∈ X : f (x, y) ≥ 0}. (2)

Set

C := conv {zy : y ∈ A}.
Clearly, C is compact. Consider the set-valued mapping G : {zy : y ∈ A} ⇒ C defined by

G(z) = {x ∈ C : g(z, x) ≤ 0}.
Since g is properly quasimonotone, it follows easily that G is a KKMmapping. By Ky Fan’s
lemma [21, Lemma 1],

∅ �=
⋂

y∈A

clCG(zy).

From (2) and (i), we infer that
⋂

y∈A

clCG(zy) =
⋂

y∈A

clC
[{x ∈ X : g(zy, x) ≤ 0} ∩ C

] ⊆
⋂

y∈A

clC
[{x ∈ X : f (x, y) ≥ 0} ∩ C

]

=
⋂

y∈A

{x ∈ X : f (x, y) ≥ 0} ∩ C =
⋂

y∈A

{x ∈ C : f (x, y) ≥ 0}.

Consequently,
⋂

y∈A

{x ∈ C : f (x, y) ≥ 0} �= ∅.

From (iv), {x ∈ C : f (x, y0) ≥ 0} ⊆ K , hence any point in the intersection above belongs
to K . Therefore, the set

S(A) = {x ∈ K : f (x, y) ≥ 0 for all y ∈ A}
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is nonempty and closed in K .
Let now A1, A2 be two subsets from A. As S(A1 ∪ A2) ⊆ S(A1) ∩ S(A2), it follows that

the family {S(A) : A ∈ A} has the finite intersection property. Since K is compact, we infer
that

⋂
A∈A S(A) �= ∅. It is straightforward to see that any point x0 ∈ ⋂

A∈A S(A)} satisfies
the conclusion of the theorem.

Remark 1 Clearly, when X is compact, the coercivity condition (iv) is automatically satisfied
taking K = X .

It is easy to see that Theorem 1 remains true if condition (iv) is replaced with the following
one:

there exist a nonempty compact subset K of X and a finite set F ⊂ X , such that for every
x ∈ X \ K , miny∈F f (x, y) < 0.

It could be of interest to compare Theorem1with [35, Theorem2.2], that offers sufficient con-
ditions for the solvability of the dual equilibrium problem. Replacing f (x, y)with− f (y, x),
the mention theorem from [35] becomes a particular case of Theorem 1. The coercivity con-
dition is the same in the both results but the other assumptions are different. Thus, in [35] is
imposed the condition that−g(y, x) ≤ f (x, y) for all (x, y) ∈ X×X , and as we have seen in
Sect. 1, this condition is stronger than assumption (iii) of Theorem 1. Then, in the mentioned
paper is required as for every y ∈ X , the function f (·, y) to be upper semicontinuous on
each nonempty compact subset of X , and again this assumption is stronger than condition
(i) of Theorem 1.

We give below a simple example in which Theorem 1 works but other existence results
encountered in the literature are not applicable.

Example 1 Consider the bifunctions f , g : [−1, 1] × [−1, 1] → R defined by

f (x, y) = y2 − x, g(x, y) = y − x .

Obviously g is properly quasimonotone and, since

g(y2, x) = x − y2 = − f (x, y),

condition (iii) of Theorem 1 is fulfilled, taking h(x) = x2. Hence, Theorem 1 is applicable.
One can see that x0 = 0 is the unique point that satisfies the conclusion of the theorem. On
the other hand, the bifunction f does not satisfy a standard condition, encountered in many
papers (see, for instance, [1, 12, 14, 20, 24, 25]), namely, f (x, x) ≥ 0 for all x ∈ [−1, 1].
Observe also that f is not properly quasimonotone because, for A = {− 1

2 , 0} and y = − 1
3 ,

we have min{ f (− 1
2 ,− 1

3 ), f (0,− 1
3 )} > 0. Consequently, [10, Proposition 2.2] and [11,

Proposition 2.1] are not useful for this example, because in the mentioned results the proper
quasimonotonicity of f is required.

Taking g = f and h(x) = x for all x ∈ X , Theorem 1 reduces to the following corollary:

Corollary 2 Let X be a convex subset of a Hausdorff topological vector space, f be a real
bifunction defined on X × X, K be a compact subset of X and y0 a point in X. Assume that

(i) − f is pseudomonotone and f is properly quasimonotone;
(ii) for each y ∈ X, the set {x ∈ X : f (x, y) ≥ 0} is compactly closed;
(iii) f (x, y0) < 0, for all x ∈ X \ K .

Then, there exists x0 ∈ K such that f (x0, y) ≥ 0 for all y ∈ X.
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In Corollary 2, the pseudomonotonicity of − f can be replaced by other conditions. To do
this we need to recall two concepts encountered in the literature.

(a) a function h : X → R is said to be semistrictly quasiconvex, if it is quasiconvex and, for
any x, y ∈ X with h(x) �= h(y),

h(λx + (1 − λ)y) < max{h(x), h(y)}, ∀λ ∈]0, 1[.
(b) a bifunction f : X × X → R is said to have the upper sign property if, for any x, y ∈ X

the following implication holds:

f ((1 − λ)x + λy, x) ≤ 0, ∀λ ∈]0, 1[ �⇒ f (x, y) ≥ 0.

Remark 2 It can be seen immediately that if a bifunction f satisfies assumption (i) of Corol-
lary 2, then it vanishes on the diagonal of X × X . For a properly quasimonotone bifunction
f that vanishes on the diagonal of X × X , the pseudomonotonicity of − f is implied (see
[15, Proposition 3.3 and Remark 3]) by any of the following conditions:

• − f (·, y) is semistrictly quasiconvex, for all y ∈ X ;
• f has the upper sign property on X and f (·, y) is quasiconvex for all y ∈ X .

The next corollary extends, to noncompact sets, [16, Corollary 4.2] and [31, Theorem
2.3].

Corollary 3 Let X be a convex subset of a Hausdorff topological vector space, f be a real
bifunction defined on X × X, K be a compact subset of X and y0 a point in X. Suppose that
the following assumptions hold:

(i) for each y ∈ X, the set {x ∈ X : f (x, y) ≥ 0} is compactly closed;
(ii) for every nonempty finite subset A of X and each x ∈ conv A, maxy∈A f (x, y) ≥ 0;
(iii) f (x, y0) < 0, for all x ∈ X \ K .

Then, there exists x0 ∈ K such that f (x0, y) ≥ 0 for all y ∈ X.

Proof Consider the bifunction g : X × X → R defined by

g(x, y) = − f (y, x).

Obviously, −g is pseudomonotone with respect to − f and assumption (ii) is equivalent to
the proper quasimonotonicity of g. Thus, the conclusion follows from Theorem 1.

3 Applications

The origin of the next result goes back to the Ky Fan’s minimax inequality. It can be regarded
as a version of [18, Corollary 2], [35, Corollary 2.5] and [39, Theorem 1].

Theorem 4 Let X be a nonempty convex subset of a Hausdorff topological vector space and
ϕ,ψ : X × X → R two bifunctions that satisfy the following conditions:

(i) for each y ∈ Y , the set {x ∈ X : ϕ(x, y) ≤ supu∈X ψ(u, u)} is compactly closed;
(ii) for any nonempty finite subset A of X and all y ∈ convA, minx∈A ψ(x, y) ≤ ψ(y, y);
(iii) for each y ∈ X, there exists z ∈ X such that

ϕ(x, y) ≤ ψ(z, x), for all x ∈ X satisfying ψ(z, x) ≤ sup
u∈X

ψ(u, u);
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(iv) there exist a nonempty compact subset K of X and a point y0 in X such that for any
x ∈ X \ K, ϕ(x, y0) < supu∈X ψ(u, u).

Then, there exists x0 ∈ K such that ϕ(x0, y) ≤ supu∈X ψ(u, u) for all y ∈ X .

Proof Wemay assume that supu∈X ψ(u, u) < ∞. Consider the bifunctions f , g : X × X →
R defined as follows:

f (x, y) = sup
u∈X

ψ(u, u) − ϕ(x, y),

g(x, y) = ψ(x, y) − sup
u∈X

ψ(u, u).

If A is a nonempty finite subset of X and y ∈ convA, then

min
x∈A

g(x, y) = min
x∈A

ψ(x, y) − sup
u∈X

ψ(u, u) ≤ min
x∈A

ψ(x, y) − ψ(y, y) ≤ 0,

hence g is properly quasimonotone.
Let y ∈ X and z the point associated by assumption (iii). If, for some x ∈ X , g(z, x) ≤ 0,

then ψ(z, x) ≤ sup
u∈X

ψ(u, u). From here, we have

f (x, y) ≥ ψ(z, x) − ϕ(x, y) ≥ 0.

Consequently, −g is generalized pseudomonotone with respect to − f . By Theorem 1, it
follows that there exists x0 ∈ K such that f (x0, y) ≥ 0 for all y ∈ X . Clearly, this means
that the conclusion of the theorem holds.

Remark 3 In our opinion, some comments about the hypotheses of Theorem 4worth be done.
A bifunction ψ satisfying condition (ii) of the previous theorem is often called in the

literature, diagonally quasiconcave in the first variable (see, for instance [40]).
The condition of coercivity (iv) is the same as that from [35, Corollary 2.5 ], but in [35]

it is required the convexity of the sets {x ∈ X : ψ(x, y) > supu∈X ψ(u, u)}, for all y ∈ X .

In all the results mentioned at the beginning of this section, instead of (iii), appears the
condition as ϕ(x, y) ≤ ψ(x, y), for all x, y ∈ X . The two conditions are incomparable.
Indeed, let us consider the real bifunctions ϕ1, ϕ2, ψ defined on [0, 1]× [0, 1] by ϕ1(x, y) =
x − y, ϕ2(x, y) = ψ(x, y) = y − x . It can be verified easily that for ϕ1 and ψ condition
(iii) holds, but ϕ1(x, y) > ψ(x, y) when y < x . On the other hand, ϕ2 and ψ satisfy the
condition ϕ2(x, y) ≤ ψ(x, y) but they don’t satisfy (iii).

The next theorem is closely related by [36, Corollary 2] and [7, Theorem 3.5].

Theorem 5 Let X1, X2 be nonempty convex subsets of two Hausdorff topological vector
spaces, K a compact subset of X1 × X2 and (y01 , y

0
2 ) ∈ X1 × X2. Let ϕ,ψ : X1 × X2 → R

be two bifunctions such that

(i) ϕ is lower semicontinuous in the first variable and upper semicontinuous in the second
variable;

(ii) ψ is convex in the first variable and concave in the second variable;
(iii) for every y1 ∈ X1, there exists z1 ∈ X1 such that

ψ(z1, x2) ≤ ϕ(y1, x2) for all x2 ∈ X2;
(iv) for every y2 ∈ X2, there exists z2 ∈ X2 such that

ϕ(x1, y2) ≤ ψ(x1, z2) for all x1 ∈ X1;
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(v) ϕ(y01 , x2) < ϕ(x1, y02 ), for all (x1, x2) ∈ X1 × X2 \ K.

Then, ϕ has a saddle point, i.e. there is (x01 , x
0
2 ) ∈ K such that ϕ(x01 , y2) ≤ ϕ(x01 , x

0
2 ) ≤

ϕ(y1, x02 ), for all (y1, y2) ∈ X1 × X2.

Proof For each (x1, x2), (y1, y2) ∈ X1 × X2 set

f
(
(x1, x2), (y1, y2)

) = ϕ(y1, x2) − ϕ(x1, y2),

g
(
(x1, x2), (y1, y2)

) = ψ(y1, x2) − ψ(x1, y2).

From (i), it follows easily that for each (y1, y2) ∈ X1 × X2, the set {(x1, x2) ∈ X1 × X2 :
f
(
(x1, x2), (y1, y2)

) ≥ 0} is closed in X1 × X2.
We claim that g is properly quasimonotone. Suppose to the contrary that there exist a

finite subset {(x11 , x12 ) . . . , (xn1 , xn2 )} of X1 × X2 and (y1, y2) in its convex hull, such that

min
1≤i≤n

g
(
(xi1, x

i
2), (y1, y2)

)
> 0.

Consequently:

ψ(y1, x
i
2) > ψ(xi1, y2), for all index i ∈ {1, . . . , n}.

If (y1, y2) = ∑n
i=1 λi (xi1, x

i
2), with

∑n
i=1 λi = 1 and λi ≥ 0, then taking into account

condition (ii) we obtain the following contradiction:

ψ(y1, y2) ≤
n∑

i=1

λiψ(xi1, y2) <

n∑

i=1

λiψ(y1, x
i
2) ≤ ψ(y1, y2).

Let (y1, y2) ∈ X1 × X2 and z1 ∈ X1, z2 ∈ X2 the points associated by conditions (iii)
and (iv). If g((z1, z2), (x1, x2)) ≤ 0, then

ψ(x1, z2) ≤ ψ(z1, x2).

Using conditions (iii) and (iv), we obtain

ϕ(x1, y2) ≤ ψ(x1, z2) ≤ ψ(z1, x2) ≤ ϕ(y1, x2)

whence, f
(
(x1, x2), (y1, y2)

) = ϕ(y1, x2) − ϕ(x1, y2) ≥ 0. Consequently, -g is generalized
pseudomonotone with respect to - f .

We must also note that taking into account assumption (v), the condition of coercivity (ii)
of Theorem 1 is fulfilled. By Theorem 1, there exists (x01 , x

0
2 ) ∈ K such that

f
(
(x01 , x

0
2 ), (y1, y2)

) ≥ 0, for all (y1, y2) ∈ X1 × X2.

Therefore,

ϕ(x01 , y2) ≤ ϕ(y1, x
0
2 ), ∀(y1, y2) ∈ X1 × X2.

Taking in the above inequality, first y2 = x02 and then y1 = x01 , we get ϕ(x01 , x
0
2 ) ≤ ϕ(y1, x02 ),

respectively ϕ(x01 , y2) ≤ ϕ(x01 , x
0
2 ). This means nothing but that (x01 , x

0
2 ) is a saddle point

for f .

Remark 4 If K = K1 × K2, where K1 ⊆ X1, K2 ⊆ X2 are compact sets, then under the
assumptions of Theorem 5, the following minimax inequality of Sion type holds:

min
x1∈K1

sup
y2∈X2

ϕ(x1, y2) ≤ inf
y1∈X1

max
x2∈K2

ϕ(y1, x2).

123



746 Journal of Global Optimization (2022) 84:739–753

4 Vector equilibrium problems, vector variational inequalities

Let E be a locally convex Hausdorff topological vector space and E∗ be its topological dual.
Consider a closed convex cone C ⊂ E with int C �= ∅. For e ∈ E , we define the relations
�, �, �, �, � as follows

e � 0 ⇐⇒ e ∈ C;
e � 0 ⇐⇒ e ∈ int C;
e � 0 ⇐⇒ e /∈ C;
e � 0 ⇐⇒ e /∈ int C;
e � 0 ⇐⇒ e ∈ −C .

Similarly may be defined the order relations ≺, �, ⊀.
Given a nonempty convex subset X of a Hausdorff topological vector space and a vector

bifunction F : X × X → E we can formulate two types of vector equilibrium problems, as
follows:

(VEP-1) find x0 ∈ X such that F(x0, y) � 0, ∀y ∈ X;
and, respectively

(VEP-2) find x0 ∈ X such that F(x0, y) ⊀ 0, ∀y ∈ X .

Actually, in what follows, the solutions of the two problems will be localized in a compact
subset of X . Though in many papers, the cone defining the order in the space E moves along
with the point x , for the sake of simplicity, we preferred the above formats. Any case, as
techniques of proof, there is no major difference. Clearly, when E = R and C = [0,∞[,
both problems reduces to the scalar equilibrium problem.

We will show further that the existence of solutions for problems (VEP-1) and (VEP-2)
can be established by means of Theorem 1. Before moving on, let us recall that the dual cone
of C , denoted by C∗, is defined as follows:

C∗ = {e∗ ∈ E∗ : 〈e∗, e〉 ≥ 0, ∀e ∈ C}.
A subset B of the coneC∗ is called a base ofC∗, if 0 /∈ clB andC∗ = ⋃

λ>0 λB. It is known
(see [26]) that, since C has nonempty interior, the dual cone C∗ has a weak* compact base
B, and

e � 0 ⇔ 〈e∗, e〉 ≥ 0, ∀e∗ ∈ B, (3)

respectively,
e � 0 ⇔ 〈e∗, e〉 > 0, ∀e∗ ∈ B. (4)

Now, we are ready to formulate the first existence result of this section.

Theorem 6 Let X be a convex subset of a Hausdorff topological vector space, C be a closed
convex cone with nonempty interior in a locally convex Hausdorff topological vector space
E and F,G : X × X → E. Assume that:

(i) for each y ∈ X, the set {x ∈ X : F(x, y) � 0} is compactly closed;
(ii) for any nonempty finite subset A of X and all y ∈ conv A, there exists x ∈ A such that

G(x, y) � 0;
(iii) for each y ∈ X, there exists z ∈ X such that

x ∈ X ,G(z, x) � 0 �⇒ F(x, y) � 0;
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(iv) there exist a nonempty compact subset K of X and a point y0 ∈ X such that F(x, y0) � 0
for all x ∈ X \ K.

Then, there exists x0 ∈ K such that F(x0, y) � 0 for all y ∈ X.

Proof Let B be aweak* compact base ofC∗. Ifwe consider the bifunctions f , g : X×X → R

defined by

f (x, y) = min
e∗∈B〈e∗, F(x, y)〉 and g(x, y) = min

e∗∈B〈e∗,G(x, y)〉
then, by (3) and (4) we infer that

f (x, y) ≥ 0 ⇐⇒ F(x, y) � 0, f (x, y) < 0 ⇐⇒ F(x, y) � 0,

g(x, y) ≤ 0 ⇐⇒ G(x, y) � 0.

Based on these equivalences one can easily check that each of the conditions (i)–(iv) is
nothing else than the condition similarly noted in Theorem 1. Applying Theorem 1 we obtain
the desired conclusion.

Theorem 7 Let X, C, F and G as in the previous theorem. Assume that:

(i) for each y ∈ X, the set {x ∈ X : F(x, y) ⊀ 0} is compactly closed;
(ii) for any nonempty finite subset A of X and all y ∈ conv A, there exists x ∈ A such that

G(x, y) � 0;
(iii) for each y ∈ X, there exists z ∈ X such that

x ∈ X ,G(z, x) � 0 �⇒ F(x, y) ⊀ 0;
(iv) there exist a nonempty compact subset K of X and a point y0 ∈ X such that F(x, y0) ≺ 0

for all x ∈ X \ K;

Then, there exists x0 ∈ K such that F(x0, y) ⊀ 0 for all y ∈ X.

Proof Define the bifunctions f , g : X × X → R by

f (x, y) = max
e∗∈B〈e∗, F(x, y)〉 and g(x, y) = max

e∗∈B〈e∗,G(x, y)〉,

where B be a weak* compact base of C∗. From (3) and (4) we can easily establish the
following equivalences

f (x, y) ≥ 0 ⇐⇒ F(x, y) ⊀ 0, f (x, y) < 0 ⇐⇒ F(x, y) ≺ 0,

g(x, y) ≤ 0 ⇐⇒ G(x, y) � 0.

Based on these equivalences, Theorem 7 reduces to Theorem 1.

Example 2 Let X =] − ∞, 1] and C = R
2+ = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0}. Consider the
bifunctions F,G :] − ∞, 1]×] − ∞, 1] → R

2 defined by

F(x, y) = (F1(x, y), F2(x, y)) = (x − y, 2x − y − 1),

G(x, y) = (G1(x, y),G2(x, y)) = (x3 − 3y2 + 3y − 1, x − y).

For each y ∈] − ∞, 1], the set
{x ∈] − ∞, 1] : F(x, y) ⊀ 0} = {x ∈ ] − ∞, 1] : x − y ≥ 0} ∪ {x ∈ ] − ∞, 1] : 2x − y − 1 ≥ 0}
is closed in ] − ∞, 1].
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If A is a nonempty finite subset of ] − ∞, 1] and x0 = min A, one can easily see that for
every y ∈ conv A, G1(x0, y) ≤ 0, G2(x0, y) ≤ 0, hence G(x0, y) � 0.

Since G2(
1+y
2 , x) = − F2(x,y)

2 , we infer that assumption (iii) of Theorem 7 is satisfied, if

we take z = 1+y
2 . Indeed,

G

(
1 + y

2
, x

)
� 0 ⇒ G2

(
1 + y

2
, x

)
≤ 0 ⇒ F2(x, y) ≥ 0 ⇒ F(x, y) ⊀ 0.

The verification of the coercive condition from Theorem 7 is almost trivial. If for a < 1,
arbitrarily chosen, we take K = [a, 1] and y0 any point from [a, 1], then for every x < a we
have

F1(x, y0) < a − y0 ≤ 0 and F2(x, y0) < 2a − y0 − 1 = (a − y0) + (a − 1) < 0,

hence F(x, y0) ≺ 0.
By Theorem 7, problem (VEP-2) has at lest a solution. It can be easily verify that x0 = 1

is the unique solution.
For problem (VEP-2), there are in the literature various existence theorems of solutions,

in which condition (iii) of Theorem 7 is replaced by some conditions of generalized mono-
tonicity. Thus, in [20, Theorem 2.2] the existence of solutions is established when, for all
x, y ∈ X the following implication holds:

F(x, y) � 0 �⇒ G(y, x) ⊀ 0.

Note that this condition is not satisfied in the given example, because F(1, 1
2 ) = ( 12 ,

1
2 ) � 0,

but G( 12 , 1) = (− 7
8 ,− 1

2 ) ≺ 0, hence the mention theorem is not applicable.

As in other papers, some assumptions of Theorems 6 and 7 can be replaced by stronger
conditions that imply certain properties of cone continuity and cone concavity. Recall that
(see [4]) a function ϕ : X → E is said to be:

(i) C-upper semicontinuous at x0 ∈ X , if for any neighborhood V ⊆ E ofϕ(x0) there exists
a neighborhoodU of x0 in X such that ϕ(x) ∈ V −C , for all x ∈ U . Furthermore, ϕ is
said to be C-upper semicontinuous on X if it is C-upper semicontinuous at each x ∈ X ;

(ii) C-concave, if ϕ(λx1 + (1 − λ)x2) ∈ λϕ(x1) + (1 − λ)ϕ(x2) + C , for all x1, x2 ∈ X
and every λ ∈ [0, 1].

(iii) C-quasiconcave, if for every x1, x2 ∈ X and λ ∈ [0, 1] there is an index i ∈ {1, 2} such
that ϕ(λx1 + (1 − λ)x2) ∈ ϕ(xi ) + C .

Let {x1, . . . , xn} be a finite subset of X and λ1, . . . , λn ∈ [0, 1] with ∑n
i=1 λi = 1. By

mathematical induction it is shown that:

(i) if ϕ is C-concave, then ϕ(
∑n

i=1 λi xi ) ∈ ∑n
i=1 λiϕ(xi ) + C;

(ii) if ϕ is C-quasiconcave, then there is an index i ∈ {1, . . . , n} such that ϕ(
∑n

i=1 λi xi ) ∈
ϕ(xi ) + C .

Proposition 8 Each of conditions (i) and (ii) from below implies the assumption similarly
noted in Theorem 6

(i) for every y ∈ X, the function F(·, y) is C -upper semicontinuous on X.
(ii) for every y ∈ X, G(y, y) � 0 and the function G(·, y) is C-concave.
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Proof Let y be an arbitrarily chosen point in X . We want to prove that under condition (i),
the set

M = {x ∈ X : F(x, y) � 0}
is closed in X . Let x ∈ cl M and {xt } be a net in M converging to x . Then, F(xt , y) ∈ C for
all indices t . If V is an arbitrary neighborhood of the origin of E , since F(·, y) is C-upper
semicontinuous, there exists an t0 such that for every t ≥ t0, F(xt , y) ∈ F(x, y) − V − C .
Then, for any such index t ,

F(x, y) ∈ F(xt , y) + V + C ⊆ C + V + C = V + C .

Hence, F(x, y) ∈ cl C = C and thus x ∈ M .
Suppose now that (ii) holds. Let y be a point in the convex set of a finite set {x1, x2, . . . , xn}.

Then, y = ∑n
i=1 λi xi , for some nonnegative λi , with

∑n
i=1 λi = 1. Assume, by way of

contradiction, that for each i ∈ {1, . . . , n}, G(xi , y) � 0, that is, G(xi , y) ∈ int C . As the
function G(·, y) is C-concave, we have

G(y, y) = G(

n∑

i=1

λi xi , y) ∈
n∑

i=1

λi G(x,y) + C ∈ int C + C = int C .

Thus, G(y, y) ≺ 0; a contradiction.

Similarly, one can establish the next proposition.

Proposition 9 Conditions (i) and (ii) of Theorem 7 are fulfilled whenever the following
assumptions hold:

(i) for every y ∈ X, the function F(·, y) is C -upper semicontinuous on X.
(ii) for every y ∈ X, G(y, y) � 0 and the function G(·, y) is C-quasiconcave.

In the last part of this section we study the existence of solutions for a vector variational
inequality problem introduced by Giannessi [22] and subsequently studied by many other
authors (see, for instance, [17, 20, 23, 29]). Let E1 and E2 be two normed vector spaces and
L(E1, E2) the set of all linear continuous operators from E1 into E2. In the sequel, the space
L(E1, E2) will be endowed with the strong operator topology (recall that this is the weakest
topology for which the functions L(E1, E2) � A → A(x) ∈ E2 are continuous for every
x ∈ E1.)

In order to formulate the studied problem, we need to consider:

• a nonempty convex subset X of E1;
• a set-valued mapping T : X ⇒ L(E1, E2) with nonempty values;
• a convex closed cone C in E2, with nonempty interior.

The vector variational inequality problem read as follows:

find x0 ∈ X such that ∀y ∈ X , ∃A ∈ T (x0) : A(y − x0) ⊀ 0.

In the proving of Theorem 11 we need the following lemma, due to Berge [8, p. 116]:

Lemma 10 Let X and Y be topological spaces. If φ : X ×Y → R is a upper semicontinuous
bifunction and � : X ⇒ Y is a upper semicontinuous set-valued mapping, with nonempty
compact values, then the function M : X → R defined by

M(x) = sup{φ(x, y) : y ∈ �(x)}
is upper semicontinuous.
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As we already mentioned, in the next theorem, L(E1, E2) is endowed with the strong
operator topology.

Theorem 11 Assume that

(i) T is upper semicontinuous with compact values;
(ii) there exist a nonempty compact subset K of X and a point y0 ∈ X such that A(y0−x) ≺

0 for all x ∈ X \ K and A ∈ T (x).

Then, there exists x0 ∈ K such that

∀y ∈ X , ∃A ∈ T (x0) : A(y − x0) ⊀ 0.

Proof We intend to apply Corollary 3, when the bifunction f : X × X → R is defined by

f (x, y) = max
e∗∈B

A∗∈T (x)

〈e∗, A(y − x)〉

where, as above, B is a weak* compact base of C∗. From (4), it follows easily the following
equivalence:

f (x, y) ≥ 0 ⇐⇒ ∃A ∈ T (x) : A(y − x) ⊀ 0.

Fix an y ∈ X and consider the bifunction φ : X × (B × L(E1, E2)) → R, the set-valued
mapping � : X ⇒ B × L(E1, E2) and the function M : X → R defined by

φ(x, (e∗, A)) = 〈e∗, A(y − x)〉,
�(x) = B × T (x) = {(e∗, A) : e∗ ∈ B, A ∈ T (x)},
M(x) = max

(e∗,A)∈�(x)
φ(x, (e∗, A)).

Since B is weak* compact, by Alaoglu’s theorem [3, Theorem 6.21], it is a norm bounded
subset of E∗

2 . Then, according to [5, Lemma 4.3] (or [3, Corrolary 6.40]), the duality pairing
〈·, ·〉 restricted to B × E2 is jointly continuous, when B is endowed with its weak* topology
and E2 has its norm topology. Consequently, φ is continuous and � is compact-valued and
upper semicontinuous, if X , B and L(E1, E2) are equipped with the norm topology, the
weak* topology and the strong operator topology, respectively. By Lemma 10, the function
M is upper semicontinuous, and consequently the set

{x ∈ X : M(x) ≥ 0} = {x ∈ X : f (x, y) ≥ 0}
is closed in X .

Let {y1, . . . , yn} be a finite subset of X and x a point in its convex hull, say x = ∑n
i=1 λi yi ,

(λi ≥ 0,
∑n

i=1 λi = 1.) Take an arbitrary pair (e∗
0, A0) ∈ B × T (x). Since

0 =
n∑

i=1

λi 〈e∗
0, A0(yi − x)〉,

there is i0 ∈ {1, . . . , n} such that 〈e∗
0, A0(yi0 − x)〉 ≥ 0. Then,

max
1≤i≤n

f (x, yi ) ≥ f (x, yi0) ≥ 〈e∗
0, A0(yi0 − x)〉 ≥ 0.

By Corollary 3, there exists x0 ∈ K such that for all y ∈ X , f (x0, y) ≥ 0, that is, exactly
the conclusion of the theorem.

123



Journal of Global Optimization (2022) 84:739–753 751

Remark 5 (i) In view of [2, Proposition 2.4], T is upper semicontinuous on each compact
subset of X if and only if, the lower inverse of every closed subset F of L(E1, E2) by T (that
is the set T−(F) = {x ∈ X : T (x) ∩ F �= ∅}) is compactly closed.

(ii) It is worthwhile noticing that unlike other existence results encountered in the lit-
erature (as, [17, Theorem 1], [23, Theorem 4.1], [29, Theorem 3.1]), in Theorem 11, the
pseudomonotonicity (with respect to C) of the set-valued mapping T is not required.

When E2 = R, the strong operator topology reduces to the weak* topology on the dual
E∗
1 . If in addition, C = R+, from Theorem 11 we obtain the following corollary:

Corollary 12 Let X be a convex subset of a normed space E, T : X ⇒ E∗ be a set-valued
mapping with nonempty weak* compact values. Assume that:

(i) for every compact subset C of X, T is norm-to-weak* upper semicontinuous on C;
(ii) there exist a compact subset K of X and y0 ∈ X such that for any x ∈ X \ K,

max
x∗∈T (x)

〈x∗, y − x〉 < 0.

Then, there exists x0 ∈ K such that

max
x∗∈T (x0)

〈x∗, y − x0〉 ≥ 0, for all y ∈ X .

Moreover, if T (x0) is a convex set, then there exists x∗
0 ∈ T (x0) such that

〈x∗
0 , y − x0〉 ≥ 0, for all y ∈ X .

Proof The fist part follows from Theorem 11.
If T (x0) is convex, Kneser minimax theorem [28] applied to the bifunction X × T (x0) �

(y, x∗) → 〈x∗, x0 − y〉, leads to the following relation

0 ≥ sup
y∈X

min
x∗∈T (x0)

〈x∗, x0 − y〉 = min
x∗∈T (x0)

sup
y∈X

〈x∗, x0 − y〉,

whence it follows the desired conclusion.

Remark 6 Corollary 12 has some similarities with [38, Theorem 2.3]. But, in [38], the exis-
tence result is established in a reflexive Banach space and the set-valued mapping T is
assumed pseudomonotone.
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