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Abstract
Sparse tensor best rank-1 approximation (BR1Approx), which is a sparsity generaliza-
tion of the dense tensor BR1Approx, and is a higher-order extension of the sparse matrix
BR1Approx, is one of the most important problems in sparse tensor decomposition and
related problems arising from statistics and machine learning. By exploiting the multilin-
earity as well as the sparsity structure of the problem, four polynomial-time approximation
algorithms are proposed, which are easily implemented, of low computational complexity,
and can serve as initial procedures for iterative algorithms. In addition, theoretically guaran-
teed approximation lower bounds are derived for all the algorithms. We provide numerical
experiments on synthetic and real data to illustrate the efficiency and effectiveness of the
proposed algorithms; in particular, serving as initialization procedures, the approximation
algorithms can help in improving the solution quality of iterative algorithms while reducing
the computational time.

Keywords Tensor · Sparse · Rank-1 approximation · Approximation algorithm ·
Approximation bound

1 Introduction

In the big data era, people often face intrinsically multi-dimensional, multi-modal and multi-
view data-sets that are too complex to be processed and analyzed by traditional data mining
tools based on vectors or matrices. Higher-order tensors (hypermatrices) naturally can rep-
resent such complex data sets. Tensor decomposition tools, developed for understanding
tensor-based data sets, have shown the power in various fields such as signal processing,
image processing, statistics, and machine learning; see the surveys [4–6, 8, 16, 29].

In high dimensional data-sets, another structure that cannot be ignored is the sparsity.
Sparsity tensor examples come from clustering problems, online advertising, web link anal-
ysis, ranking of authors based on citations [17, 24, 26, 31, 32], and so on. Therefore, recent
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advances incorporate sparsity into tensor decomposition models and tensor-based statistics
and machine learning problems [1, 3, 21, 26, 30, 32, 35, 38]; just to name a few. As pointed
out by Allen [1], introducing sparsity into tensor problems is desirable for feature selection,
for compression, for statistical consistency, and for better visualization and interpretation of
the data analysis results.

In (dense) tensor decomposition and related tensor models and problems, the best rank-1
approximation (BR1Approx) is one of the most important and fundamental problems [10,
28]. Just as the dense counterpart, the sparse tensor BR1Approx serves as a keystone in the
computation of sparse tensor decomposition and related sparse tensor models [1, 26, 30,
32, 35]. Roughly speaking, the sparse tensor BR1Approx is to find a projection of a given
data tensor onto the set of sparse rank-1 tensors in the sense of Euclidean distance. This is
equivalent to maximizing a multilinear function over both unit sphere and �0 constraints;
mathematical models will be detailed in Section 2. Such a problem also closely connects to
the sparse tensor spectral norm defined in [30, 32].

For (dense) tensor BR1Approx, several methods have been proposed; e.g., power methods
[10, 18], approximation algorithms [12, 13, 39], and convex relaxations [15, 25, 37]. For
sparse matrix BR1Approx, solution methods have been studied extensively in the context of
sparse PCA and sparse SVD [36, 40]; see, e.g., iterative methods [20, 36], approximation
algorithms [2, 11], and semidefinite relaxation [9]; just to name a few. For sparse tensor
BR1Approx, in the context of sparse tensor decomposition, Allen [1] first studied models
and iterative algorithms based on �1 regularization in the literature, whereas Sun et al. [32]
developed �0-based models and algorithms, and analyzed their statistical performance.Wang
et al. [35] considered another �1 regularized model and algorithm, which is different from
[1]. In the study of co-clustering, Papalexakis et al. [26] proposed alternating minimization
methods for nonnegative sparse tensor BR1Approx.

For nonconvex andNP-hard problems, approximation algorithms are nevertheless encour-
aged. However, in the context of sparse tensor BR1Approx problems, little attention was paid
to this type of algorithms. To fill this gap, by fully exploiting the multilinearity and sparsity
of the model, we develop four polynomial-time approximation algorithms, some extending
their matrix or dense tensor counterparts; in particular, the last algorithm, which is the most
efficient one, is even new when reducing to the matrix or dense tensor cases. The proposed
algorithms are easily implemented, and the computational complexity is not high: the most
expensive execution is, if necessary, to only compute the largest singular vector pairs of certain
matrices. Therefore, the algorithms are able to serve as initialization procedures for iterative
algorithms. Moreover, for each algorithm, we derive theoretically guaranteed approxima-
tion lower bounds. Experiments on synthetic as well as real data show the usefulness of the
introduced algorithms.

The rest of this work is organized as follows. Sect. 2 introduces the sparse tensor
BR1Approx model. Approximation algorithms are presented in Sect. 3. Numerical results
are illustrated in Sect. 4. Section 5 draws some conclusions.

2 Sparse tensor best rank-1 approximation

Throughout this work, vectors are written as (x, y, . . .), matrices correspond to (A, B, . . .),
and tensors are written as (A,B, · · · ). Rn1×···×nd denotes the space of n1 × · · · × nd real
tensors. For two tensorsA,B of the same size, their inner product 〈A,B〉 is given by the sum
of entry-wise product. The Frobenius norm ofA is defined by ‖A‖F = 〈A,A〉1/2. ◦ denotes
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the outer product; in particular, for x j ∈ R
n j , j = 1, . . . , d , x1 ◦ · · · ◦ xd denotes a rank-1

tensor in Rn1×···×nd . ‖x‖0 represents the number of nonzero entries of a vector x.
Given A ∈ R

n1×···×nd with d ≥ 3, the tensor BR1Approx consists of finding a set of
vectors x1, . . . , xd , such that

min
λ∈R,x j∈Rn j ,1≤ j≤d

‖λ · x1 ◦ · · · ◦ xd − A‖2F s.t.
∥
∥x j

∥
∥ = 1, 1 ≤ j ≤ d, (2.1)

WhenA is sparse, it may be necessary to also investigate the sparsity of the latent factors x j ,
1 ≤ j ≤ d . Assume that the true sparsity level of each latent factors is known a prior, or can
be estimated; then the sparse tensor BR1Approx can be modeled as follows [32]:

min
λ∈R,x j∈Rn j ,1≤ j≤d

‖λ · x1 ◦ · · · ◦ xd − A‖2F s.t.
∥
∥x j

∥
∥ = 1,

∥
∥x j

∥
∥
0 ≤ r j , 1 ≤ j ≤ d, (2.2)

where 1 ≤ r j ≤ n j are positive integers standing for the sparsity level. Allen [1] and Wang
et al. [35] proposed �1 regularized models for sparse tensor BR1Approx problems.

Since x j ’s are normalized in (2.2), we have

‖λx1 ◦ · · · ◦ xd − A‖2F = ‖A‖2F − 2λ 〈A, x1 ◦ · · · ◦ xd〉 + λ2
∏d

j=1

∥
∥x j

∥
∥2

= ‖A‖2F − 2λ 〈A, x1 ◦ · · · ◦ xd〉 + λ2,

minimizing which with respect to λ gives λ = 〈A, x1 ◦ · · · ◦ xd〉, and so
‖λx1 ◦ · · · xd − A‖2F = ‖A‖2F − 〈A, x1 ◦ · · · ◦ xd〉2 .

Due to the multilinearity of 〈A, x1 ◦ · · · ◦ xd〉, 〈A, x1 ◦ · · · ◦ xd〉2 is maximized if and only
if 〈A, x1 ◦ · · · ◦ xd〉 is maximized. Thus (2.2) can be equivalently recast as

maxx j ,1≤ j≤d 〈A, x1 ◦ · · · ◦ xd〉 s.t.
∥
∥x j

∥
∥ = 1,

∥
∥x j

∥
∥
0 ≤ r j , 1 ≤ j ≤ d. (2.3)

This is the main model to be focused on. When r j = n j , (2.3) boils down exactly to the
tensor singular value problem [19]. Thus (2.2) can be regarded as a sparse tensor singular
value problem.

When r j = n j , (2.3) is already NP-hard in general [14]; on the other hand, when d = 2
and x1 = x2, it is also NP-hard [22]. Therefore, we may deduce that (2.3) is also NP-hard,
whoseNP-hardness comes from two folds: themultilinearity of the objective function, and the
sparsity constraints. In view of this, approximation algorithms for solving (2.3) are necessary.

In the rest of this work, to simplify notations, we denote

Ax1 · · · xd := 〈A, x1 ◦ · · · ◦ xd〉 .

In addition, we also use the following notation to denote the partial gradients of Ax1 · · · xd
with respect to x j :

Ax1 · · · x j−1x j+1 · · · xd = ∇x jAx1 · · · xd ∈ R
n j , 1 ≤ j ≤ d.

For example, (Ax2 · · · xd)i1 = ∑n2,...,nd
i2=1,...,id=1 Ai1i2···id x2,i2 · · · xd,id , where we write x j :=

[x j,1, . . . , x j,n j ]
. The partial Hessian of Ax1 · · · xd with respect to xd−1 and xd is denoted
as:

Ax1 · · · xd−2 = ∇xd−1,xdAx1 · · · xd ∈ R
nd−1×nd ,

with (Ax1 · · · xd−2)id−1,id = ∑n1,...,nd−2
i1=1,...,id−2=1 Ai1···id−1id x1,i1 · · · xd−2,id−2 .
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3 Approximation algorithms and approximation bounds

Four approximation algorithms are proposed in this section, all of which admit theoretical
lower bounds. We first present some preparations used in this section. For any nonzero
a ∈ R

n , 1 ≤ r ≤ n, denote [a]↓,r ∈ R
n as a truncation of a as

[a]↓,r
i =

{

ai , if |ai | is one of the r largest (in magnitude) entries of a,

0, otherwise.

In particular, if ai1 , ai2 , ai3 , . . . are respectively the r -, (r + 1)-, (r + 2)-, . . . largest entries
(in magnitude) with i1 < i2 < i3 < · · · , and |ai1 | = |ai2 | = |ai3 | = · · · , then we set
[a]↓,r

i1
= ai1 and [a]

↓,r
i2

= [a]↓,r
i3

= · · · = 0. Thus [a]↓,r is uniquely defined. We can see that

[a]↓,r is a best r -approximation to a [20, Proposition 4.3], i.e.,

[a]↓,r ∈ arg min‖x‖0≤r
‖x − a‖ ⇔ [a]↓,r

‖ [a]↓,r ‖ ∈ arg max‖x‖=1,‖x‖0≤r
a
x. (3.4)

It is not hard to see that the following proposition holds.

Proposition 3.1 Let a ∈ R
n, a 
= 0 and let a0 = [a]↓,r /‖ [a]↓,r ‖ with 1 ≤ r ≤ n. Then

〈

a, a0
〉 ≥

√

r

n
‖a‖ .

Let λmax(·) denote the largest singular value of a given matrix. The following lemma is
important.

Lemma 3.1 Given a nonzero A ∈ R
m×n, with (y, z) being the normalized singular vector

pair corresponding to λmax(A). Let z0 = [z]↓,r /‖ [z]↓,r ‖ with 1 ≤ r ≤ n. Then there holds

∥
∥Az0

∥
∥ ≥

√

r

n
λmax(A).

Proof From the definition of z, we see that ‖Az‖ = λmax(A) and A
Az = λ2max(A)z.
Therefore,

λmax(A)
∥
∥Az0

∥
∥ = ∥

∥Az0
∥
∥ · ‖Az‖

≥ 〈

Az0, Az
〉

= λmax(A) · 〈Az0, y
〉 = λ2max(A) · 〈z0, z

〉

≥
√

r

n
λ2max(A),

where the last inequality follows from Proposition 3.1, the definition of z0, and that ‖z‖ = 1.
This completes the proof. ��

3.1 The first algorithm

To illustrate the first algorithm, we denote e
i j
j ∈ R

n j , 1 ≤ i j ≤ n j , j = 1, . . . , d , as standard

basis vectors in Rn j . For example, e12 is a vector in R
n2 with the first entry being one and the

remaining ones being zero. Denote r := (r1, . . . , rd); without loss of generality, we assume
that r1 ≤ · · · ≤ rd .
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Algorithm (x01, . . . , x0d ) = approx_alg(A, r) (A)

1. For each i j = 1, . . . , n j , j = 1, . . . , d − 1, compute
[

Aei11 · · · e
id−1
d−1

]↓,rd ∈ R
nd .

2. Let (ī1, . . . , īd−1) be a tuple of indices such that

∥
∥
∥
∥
∥

[

Aeī11 · · · e
īd−1
d−1

]↓,rd
∥
∥
∥
∥
∥

= max
1≤i j≤n j ,1≤ j≤d−1

∥
∥
∥
∥

[

Aei11 · · · e
id−1
d−1

]↓,rd
∥
∥
∥
∥

;

denote x̄0d :=
[

Aeī11 · · · e
īd−1
d−1

]↓,rd
and x0d := x̄0d/‖x̄0d‖.

3. Sequentially update

x̄0d−1 =
[

Aeī11 · · · e
īd−2
d−2 x0d

]↓,rd−1
, x0d−1 = x̄0d−1/

∥
∥
∥x̄0d−1

∥
∥
∥ ,

x̄0d−2 =
[

Aeī11 · · · e
īd−3
d−3 x0d−1x0d

]↓,rd−2
, x0d−2 = x̄0d−2/

∥
∥
∥x̄0d−2

∥
∥
∥ ,

.

.

.

x̄01 =
[

Ax02 · · · x0d

]↓,r1
, x01 = x̄01/

∥
∥
∥x̄01

∥
∥
∥ .

4. Return (x01, . . . , x0d ).

It is clear that Aei11 · · · eid−1
d−1’s are mode-d fibers of A. For the definition of fibers, one

can refer to [16]; following the Matlab notation we haveA(i1, . . . , id−1, :) = Aei11 · · · eid−1
d−1.

Algorithm A is a straightforward extension of [2, Algorithm 1] for sparse symmetric matrix
PCA to higher-order tensor cases. Intuitively, the first two steps of Algorithm A enumerate
all the mode-d fibers of A, such that the select one admits the largest length with respect to
its largest rd entries (in magnitude). x0d is then given by the normalization of this fiber. Then,
according to (3.4), the remaining x0j are in fact obtained by sequentially updated as

x0j ∈ arg max‖y‖=1,‖y‖0≤r j
Aeī11 · · · e

ī j−1
j−1yx0j+1 · · · x0d , j = d − 1, . . . , 1. (3.5)

We consider the computational complexity of Algorithm A. Computing Aei11 · · · eid−1
d−1

takes O(nd) flops, while it takes O(nd log(nd)) flops to compute
[

Aei11 · · · eid−1
d−1

]↓,r
by using

quick-sort. Thus the first two steps take O(n1 · · · nd log(nd)+nd log(nd)) flops. Computing
x0j , j = 1, . . . , d − 1 respectively takes O(

∏ j
k=1 nk · nd + n j log(n j )) flops. Thus the total

complexity can be roughly estimated as O(
∏d

j=1 n j · log(nd) +∑d
j=1 n j log(n j )).

We first show that Algorithm A is well-defined.

Proposition 3.2 If A 
= 0 and (x01, . . . , x0d) is generated by Algorithm A, then x0j 
= 0,
1 ≤ j ≤ d.

Proof Since A is a nonzeros tensor, there exists at least one fiber that is not identically
zero. Therefore, the definition of x̄0d shows that x̄0d is not identically zero, and hence x0d . We

also observe that
〈

Aeī11 · · · eīd−2
d−2x0d , eīd−1

d−1

〉

= Aeī11 · · · eīd−1
d−1x0d = ‖Aeī11 · · · eīd−1

d−1‖ > 0, which
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implies that Aeī11 · · · eīd−2
d−2x0d 
= 0, and so x0d−1 
= 0. (3.5) shows that Aeī11 · · · eīd−2

d−2x0d−1x0d ≥
Aeī11 · · · eīd−1

d−1x0d > 0. Similarly, we can show that x0d−2 
= 0, . . . , x01 
= 0. ��
We next first present the approximation bound when d = 3. The bound extends that of

[2] to higher-order cases.

Theorem 3.1 Denote vopt as the optimal value of (2.3) when d = 3.
Let (x01, x02, x03) be generated by Algorithm A. Then it holds that

Ax01x02x03 ≥ vopt√
r1r2

.

Proof Denote (x∗
1, x∗

2, x∗
3) as a maximizer of (2.3). By noticing that

∥
∥x∗

1

∥
∥
0 ≤ r1 and

Ax∗
1x∗

2x∗
3 = ∑n1

{i1:x∗
1,i1


=0} x
∗
1,i1

·
(

Aei11 x∗
2x∗

3

)

; recalling that wewrite x j := [x j,1, . . . , x j,n j ]
,
we have

vopt = Ax∗
1x∗

2x∗
3 =

∑n1

{i1:x∗
1,i1


=0} x
∗
1,i1

(

Aei11 x∗
2x∗

3

)

≤
√

∑n1

{i1:x∗
1,i1


=0}
(

x∗
1,i1

)2
√

∑n1

{i1:x∗
1,i1


=0}
(

Aei11 x∗
2x∗

3

)2

≤ ∥
∥x∗

1

∥
∥ · √

r1 max
i1

∣
∣
∣Aei11 x∗

2x∗
3

∣
∣
∣ = √

r1 max
i1

∣
∣
∣Aei11 x∗

2x∗
3

∣
∣
∣ , (3.6)

where the first inequality uses the Cauchy-Schwartz inequality, and the last equality follows
from

∥
∥x∗

1

∥
∥ = 1. In the same vein, we have

vopt ≤ √
r1 max

i1

∣
∣
∣Aei11 x∗

2x∗
3

∣
∣
∣ ≤ √

r1r2 max
i1,i2

∣
∣
∣Aei11 ei22 x∗

3

∣
∣
∣ .

Assume that
∣
∣
∣Aeî11 eî22 x∗

3

∣
∣
∣ = maxi1,i2

∣
∣
∣Aei11 ei22 x∗

3

∣
∣
∣; denote

x̂3 :=
[

Aeî11 eî22
]↓,r3 /

∥
∥
∥
∥

[

Aeî11 eî22
]↓,r3

∥
∥
∥
∥

.

(3.4) shows that
∣
∣
∣Aeî11 eî22 x∗

3

∣
∣
∣ ≤

∣
∣
∣Aeî11 eî22 x̂3

∣
∣
∣. By noticing the definition of x03, we then have

∣
∣
∣Aeî11 eî22 x∗

3

∣
∣
∣ ≤

∣
∣
∣Aeî11 eî22 x̂3

∣
∣
∣ =

∥
∥
∥
∥

[

Aeî11 eî22
]↓,r3

∥
∥
∥
∥

≤ max
i1,i2

∥
∥
∥
∥

[

Aei11 ei22
]↓,r3

∥
∥
∥
∥

= Aeī11 eī22 x03.

Finally, recalling the definitions of x01 and x02 and combining the above pieces, we arrive at

vopt ≤ √
r1r2Aeī11 eī22 x03 ≤ √

r1r2Aeī11 x02x03 ≤ √
r1r2Ax01x02x03,

as desired. ��
In the same spirit of the proof of Theorem 3.1, for general d ≥ 3, one can show that

vopt ≤ √
r1 maxi1

∣
∣
∣Aei11 x∗

2 · · · x∗
d

∣
∣
∣ ≤ · · · ≤

√
∏d−1

j=1
r j max

i1,...,id−1

∣
∣
∣Aei11 · · · e

id−1
d−1 x∗

d

∣
∣
∣

≤
√
∏d−1

j=1
r j max

i1,...,id−1
Ax01 · · · x0d .
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Theorem 3.2 Denote vopt as the optimal value of the problem (2.3).
Let (x01, . . . , x0d) be generated by Algorithm A for a general d-th order tensor A. Then it

holds that

Ax01 · · · x0d ≥ vopt
√
∏d−1

j=1 r j
.

3.2 The second algorithm

The second algorithm is presented as follows.

Algorithm (x01, . . . , x0d ) = approx_alg(A, r) (B)

1. For each tuple (i1, . . . , id−2), i j = 1, . . . , n j , 1 ≤ j ≤ d − 2, solve the matrix singular value

problem max‖xd−1‖=‖xd‖=1Aei11 · · · e
id−2
d−2 xd−1xd .

2. Let (ī1, . . . , īd−2) be the optimal tuple of indices with (x̄d−1, x̄d ) being the optimal solution
pair, i.e.,

Aeī11 · · · e
īd−2
d−2 x̄d−1x̄d = max

1≤i j≤n j ,1≤ j≤d−2,‖xd−1‖=‖xd‖=1
Aei11 · · · e

id−2
d−2 xd−1xd ;

denote x0d := [

x̄d
]↓,rd /‖ [x̄d

]↓,rd ‖.
3. Sequentially update x0d−1, . . . , x01 as Step 3 of Algorithm A.

4. Return (x01, . . . , x0d ).

The main difference from Algorithm A mainly lies in the first step, where Algorithm
A requires to find the fiber with the largest length with respect to the largest r3 entries (in

magnitude), while the first step of AlgorithmB looks for thematrixAeī11 · · · eīd−2
d−2 ∈ R

nd−1×nd

with the largest spectral radius among all Aei11 · · · eid−2
d−2. Algorithm B combines the ideas of

both Algorithms 1 and 2 of [2] and extends them to higher-order tensors. When reducing
to the matrix case, our algorithm here is still different from [2], as we find sparse singular
vector pairs, while [2] pursues sparse eigenvectors of a symmetric matrix.

The computational complexity of Algorithm B is as follows. Computing the largest singu-
lar value ofAei11 · · · eid−2

d−2 takesO(min{n2d−1nd , nd−1n2d})flops in theory. Computing x0d takes
O(nd log(nd)) flops. Thus the first two steps take O(n1 · · · nd−2 min{n2d−1nd , nd−1n2d} +
nd log(nd)) flops. The flops of the third step are the same as those of Algorithm A.
As a result, the total complexity is dominated by O(n1 · · · nd−2 min{n2d−1nd , nd−1n2d} +
∑d

j=1 n j log(n j )).
Algorithm B is also well-defined as follow.

Proposition 3.3 If A 
= 0 and (x01, . . . , x0d) is generated by Algorithm B, then x0j 
= 0,
1 ≤ j ≤ d.

Proof The definition of (ī1, . . . , īd−2) shows that the matrix Aeī11 · · · eīd−2
d−2 
= 0, and hence

x̄d 
= 0 and x0d 
= 0. We also observe from step 2 that x̄d = Aeī11 · · · eīd−2
d−2x̄d−1/‖Aeī11 · · ·

eīd−2
d−2x̄d−1‖, and so
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〈

Aeī11 · · · eīd−2
d−2x0d , x̄d−1

〉

=
〈

Aeī11 · · · eīd−2
d−2x̄d−1, x0d

〉

= 〈

x̄d , x0d
〉 ‖Aeī11 · · · eīd−2

d−2x̄d−1‖ > 0,

implying that Aeī11 · · · eīd−2
d−2x0d 
= 0, and so x0d−1 =

[

Aeī11 · · · eīd−2
d−2x0d

]↓,rd−1 
= 0. Similar

arguments apply to show that x0d−2 
= 0, . . . , x01 
= 0 then. ��
To analyze the approximation bound, we need the following proposition.

Proposition 3.4 Let ī1, . . . , īd−2 and (x̄d−1, x̄d) be defined in Algorithm B. Then it holds
that

Aeī11 · · · eīd−2
d−2x̄d−1x̄d ≥ max

i1,...,id−2,‖y‖=‖z‖=1,‖y‖0≤rd−1,‖z‖0≤rd

∣
∣
∣Aei11 · · · eid−2

d−2yz
∣
∣
∣ .

Proof The result holds by noticing the definition of (eī11 , . . . , eīd−2
d−2, x̄d−1, x̄d), and the addi-

tional sparsity constraints in the right-hand side of the inequality. ��
We first derive the approximation bound with d = 3 as an illustration.

Theorem 3.3 Let vopt be defined as that in Theorem 3.1 when d = 3, and let (x01, x02, x03) be
generated by Algorithm B. Then it holds that

Ax01x02x03 ≥
√

r2r3
n2n3r1

vopt.

Proof Denote (x∗
1, x∗

2, x∗
3) as a maximizer to (2.3). We have

vopt ≤ √
r1 max

i1

∣
∣
∣Aei11 x∗

2x∗
3

∣
∣
∣

≤ √
r1 max

i1,‖y‖=‖z‖=1,‖y‖0≤r2,‖z‖0≤r3

∣
∣
∣Aei11 yz

∣
∣
∣

≤ √
r1Aeī11 x̄2x̄3, (3.7)

where the first inequality is the same as (3.6), while Proposition 3.4 gives the last one. Now

denote A := Aeī11 ∈ R
n2×n3 . Our remaining task is to show that

(x02)

Ax03 ≥

√
r2r3
n2n3

x̄

2 Ax̄3. (3.8)

Recalling the definition of (x̄2, x̄3), we have λmax(A) = x̄

2 Ax̄3. Lemma 3.1 tells us that

∥
∥Ax03

∥
∥ ≥

√
r3
n3

λmax(A) =
√

r3
n3

x̄

2 Ax̄3; (3.9)

on the other hand, since

x̄02 =
[

Aeī11 x03
]↓,r2 = [

Ax03
]↓,r2

, x02 = x̄02/
∥
∥x̄02

∥
∥ ,

it follows from Proposition 3.1 that
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〈

Ax03, x02
〉 ≥

√
r2
n2

∥
∥Ax03

∥
∥ ,

combining which with (3.9) gives (3.8). Finally, (3.8) together with (3.7) and the definition
of x01 yields

Ax01x02x03 ≥ Aeī11 x02x03 = 〈

Ax03, x02
〉 ≥

√
r2r3
n2n3

x̄

2 Ax̄3 =

√
r2r3
n2n3

Aeī11 x̄2x̄3

≥
√

r2r3
n2n3r1

vopt,

as desired. ��

The following approximation bound is presented for general order d ≥ 3.

Theorem 3.4 Let (x01, . . . , x0d) be generated by Algorithm B. Then it holds that

Ax01 · · · x0d ≥
√

rd−1rd

nd−1nd
∏d−2

j=1 r j
vopt.

Proof Similar to (3.7), we have

vopt ≤ √
r1 max

i1
|Aei11 x∗

2 · · · x∗
d | ≤ · · ·

≤
√
∏d−2

j=1
r j maxi1,...,id−2 |Aei11 · · · eid−2

d−2x∗
d−1x∗

d |

≤
√
∏d−2

j=1
r jAeī11 · · · eīd−2

d−2x̄d−1x̄d .

Similar to the proof of (3.8), we can obtain

vopt ≤
√
∏d−2

j=1
r jAeī11 · · · eīd−2

d−2x̄d−1x̄d

≤
√

nd−1nd
∏d−2

j=1 r j

rd−1rd
Aeī11 · · · eīd−2

d−2x0d−1x0d

≤
√

nd−1nd
∏d−2

j=1 r j

rd−1rd
Ax01 · · · x0d .

��

3.3 The third algorithm

We begin with the illustration from third-order tensors. We will employ the Matlab function
reshape to denote tensor folding/unfolding operations. For instance, givenA ∈ R

n1×···×nd ,

a = reshape(A,
∏d

j=1 n j , 1) means the unfolding of A to a vector a in R

∏d
j=1 n j , while

A = reshape(a, n1, . . . , nd) means the folding of a back to A.
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Algorithm (x01, x02, x03) = approx_alg(A, r1, r2, r3) (C0)

1. Unfold A to A1 := reshape(A, n1, n2n3) ∈ R
n1×n2n3 ; solve the matrix singular value

problem

(x̄1, w̄1) ∈ argmax‖x‖=‖w‖=1 x
A1w;

denote x01 := [x̄1]↓,r1 /

∥
∥
∥[x̄1]↓,r1

∥
∥
∥.

2. Let A2 := reshape(A

1 x01, n2, n3) ∈ R

n2×n3 ; solve the matrix singular value problem

(x̄2, w̄2) ∈ argmax‖y‖=‖w‖=1 y
A2w;

denote x02 := [x̄2]↓,r2 /

∥
∥
∥[x̄2]↓,r2

∥
∥
∥.

3. Compute x̄03 :=
[

A

2 x02

]↓,r3
, x03 := x̄03/

∥
∥
∥x̄03

∥
∥
∥.

4. Return (x01, x02, x03).

Different from Algorithm B, Algorithm C0 is mainly based on a series of computing
leading singular vector pairs of certainmatrices. In fact, AlgorithmC0generalizes the approx-
imation algorithm for dense tensor BR1Approx [13, Algorithm 1 with DR 2] to our sparse
setting; the main difference lies in the truncation of x̄ j to obtain the sparse solution x0j . In
particular, if no sparsity is required, i.e., r j = n j , j = 1, 2, 3, then Algorithm C0 boils down
essentially to [13, Algorithm 1 with DR 2]. The next proposition shows that Algorithm C0
is well-defined.

Proposition 3.5 If A 
= 0 and (x01, . . . , x0d) is generated by Algorithm C0, then x0j 
= 0,
1 ≤ j ≤ 3.

Proof It is clear that x̄1 
= 0, x01 
= 0, and w̄1 
= 0 due to that A1 
= 0. We have
〈

x01, A1w̄1
〉 =

〈

x01, x̄1
〉 ‖A1w̄1‖ > 0, and so A


1 x01 
= 0, and A2 
= 0. Similar argument shows that x02 
= 0
and x03 
= 0. ��

Due to the presence of the truncation, deriving the approximation bound is different from
that of [13]. In particular, we need Lemma 3.1 to build bridges in the analysis. The following
relation

Ax01x02x03 =
〈

A

1 x01, x03 ⊗ x02

〉

=
〈

A2, x02(x
0
3)


〉 =
〈

A

2 x02, x03

〉

(3.10)

is also helpful in the analysis, where ⊗ denotes the Kronecker product [16].

Theorem 3.5 Let vopt be defined as that in Theorem 3.1 when d = 3, and let (x01, x02, x03) be
generated by Algorithm C0. Then it holds that

Ax01x02x03 ≥
√

r1r2r3
n1n2n3n2

λmax(A1) ≥
√

r1r2r3
n1n2n3n2

vopt.

Proof From the definition of A1, x̄1 and w̄1, we see that

λmax(A1) = x̄

1 A1w̄1 ≥ max‖x‖=‖y‖=‖z‖=1

Axyz ≥ vopt.

123



Journal of Global Optimization (2022) 84:229–253 239

Therefore, to prove the approximation bound, it suffices to show that

Ax01x02x03 ≥
√

r1r2r3
n1n2n3n2

λmax(A1). (3.11)

To this end, recalling Lemma 3.1 and the definition of x01 (which is a truncation of the leading
left singular vector of A1), we obtain

∥
∥
∥A


1 x01
∥
∥
∥ ≥

√
r1
n1

λmax(A1). (3.12)

Since A2 = reshape(A

1 x01, n2, n3), it holds that ‖A2‖F = ∥

∥A

1 x01

∥
∥. Using again Lemma

3.1 and recalling the definition of x02 (which is a truncation of the leading left singular vector
of A2), we get

∥
∥
∥A


2 x02
∥
∥
∥ ≥

√
r2
n2

λmax(A2) ≥
√

r2
n22

‖A2‖F =
√

r2
n22

∥
∥
∥A


1 x01
∥
∥
∥ , (3.13)

where the second inequality follows from the relation between the spectral norm and the
Frobenius norm of a matrix. Finally, Proposition 3.1 and the definition of x03 gives that

Ax01x02x03 =
〈

A

2 x02, x03

〉

≥
√

r3
n3

∥
∥
∥A


2 x02
∥
∥
∥ , (3.14)

where the equality follows from (3.10). Combining the above relation with (3.12) and (3.13)
gives (3.11). This completes the proof. ��

When extending to d-th order tensors, the algorithm is presented as follows.

Algorithm (x01, . . . , x0d ) = approx_alg(A, r) (C)

1. Unfold A to A1 = reshape(A, n1,
∏d

j=2 n j ) ∈ R
n1×

∏d
j=2 n j ; solve the matrix singular

value problem

(x̄1, w̄1) ∈ argmax‖x1‖=‖w1‖=1 x

1 A1w1;

denote x01 := [x̄1]↓,r1 /

∥
∥
∥[x̄1]↓,r1

∥
∥
∥.

2. For j = 2, . . . , d − 1, denote A j := reshape(A

j−1x0j−1, n j ,

∏d
k= j+1 nk ) ∈

R
n j×

∏d
k= j+1 nk ; solve the matrix singular value problem

(x̄ j , w̄ j ) ∈ argmax∥∥x j
∥
∥=∥∥w j

∥
∥=1 x


j A jw j ;

denote x0j := [

x̄ j
]↓,r j /

∥
∥
∥

[

x̄ j
]↓,r j

∥
∥
∥.

3. Compute x̄0d :=
[

A

d−1x0d−1

]↓,rd
, x0d := x̄0d/

∥
∥
∥x̄0d

∥
∥
∥.

4. Return (x01, . . . , x0d ).
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Remark 3.1 In step 2, by noticing the recursive definition of A j , one can check that A j is in
fact the same asreshape(Ax01 · · · x0j−1, n j ,

∏d
k= j+1 nk), whereAx01 · · · x0j−1 is regarded as

a tensor of size n j ×· · ·×nd with
(

Ax01 · · · x0j−1

)

i j ···id
= ∑n1,...,n j−1

i1=1,...,i j−1=1 Ai1···i j−1i j ···id (x01)i1
· · · (x0j−1)i j−1 .

The computational complexity of the first step is O(n21n2 · · · nd + n1 log(n1)), where
O(n21n2 · · · nd) comes from solving the singular value problem of an n1 ×∏d

j=2 n j matrix.

In the second step, for each j , computing A

j−1x0j−1 requires O(n j−1 · · · nd) flops; com-

puting the singular value problem requires O(n2j n j+1 · · · nd) flops; thus the complexity is

O(n j−1 · · · nd + n2j n j+1 · · · nd + n j log(n j )). The third step is O(nd−1nd + nd log(nd)).

Thus the total complexity is dominated by O(n1
∏d

j=1 n j +∑d
j=1 n j log(n j )), which is the

same as Algorithm B in theory.
Similar to Proposition 3.5, we can show that Algorithm C is well-defined, i.e., if A 
= 0,

then x0j 
= 0, 1 ≤ j ≤ d . The proof is omitted.
Concerning the approximation bound, similar to (3.14), one has

Ax01 · · · x0d = 〈

Ax01 · · · x0d−1, x0d
〉 = 〈A


d−1x0d−1, x0d〉 ≥
√

rd
nd

‖A

d−1x0d−1‖,

where the second equality comes from Remark 3.1 that Ax01 · · · x0d−2 = Ad−1 (up to a
reshaping) and the inequality is due to Proposition 3.1. Analogous to (3.13), one can prove
the following relation:

∥
∥
∥A


j x0j
∥
∥
∥ ≥

√

r j
n2j

∥
∥
∥A


j−1x0j−1

∥
∥
∥ , 2 ≤ j ≤ d − 1.

Based on the above relations and (3.12), for order d ≥ 3, we present the approximation
bound without proof.

Theorem 3.6 Let (x01, . . . , x0d) be generated by Algorithm C. Then it holds that

Ax01 · · · x0d ≥
√
√
√
√

∏d
j=1 r j

∏d
j=1 n j

λmax(A1)
√
∏d−1

j=2 n j

≥
√
√
√
√

∏d
j=1 r j

∏d
j=1 n j

vopt
√
∏d−1

j=2 n j

.

3.4 The fourth algorithm

Algorithm C computes x̄ j from A j via solving singular value problems. When the size of
the tensor is huge, this might be time-consuming. To further accelerate the algorithm, we
propose the following algorithm, which is similar to Algorithm C, while it obtains x̄ j without
solving singular value problems. Denote Ak as the k-th row of a matrix A. The algorithm is
presented as follows:
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Algorithm (x01, . . . , x0d ) = approx_alg(A, r) (D)

1. Unfold A to A1 = reshape(A, n1,
∏d

j=2 n j ); let Ak̃1 be the row of A1 with the largest

magnitude, i.e., ‖Ak̃1‖ = max1≤k≤n1

∥
∥
∥Ak1

∥
∥
∥
F
. Denote w1 := (Ak̃1)


/‖(Ak̃1)
‖ and let

x̄1 = A1w1;

denote x01 := [x̄1]↓,r1 /

∥
∥
∥[x̄1]↓,r1

∥
∥
∥.

2. For j = 2, . . . , d−1, denote A j := reshape(A

j−1x0j−1, n j ,

∏d
k= j+1 nk ); let A

k̃
j be the row

of A j with the largest magnitude. Denote w j := (Ak̃j )

/‖(Ak̃j )
‖ and let

x̄ j = A jw j ;

denote x0j := [

x̄ j
]↓,r j /

∥
∥
∥

[

x̄ j
]↓,r j

∥
∥
∥.

3. Compute x̄0d :=
[

A

d−1x0d−1

]↓,rd
, x0d := x̄0d/

∥
∥
∥x̄0d

∥
∥
∥.

4. Return (x01, . . . , x0d ).

It is clear from the above algorithm that computing x̄ j only requires some matrix-vector
productions, which has lower computational complexity than computing singular vectors.
Numerical results presented in the next section will show the efficiency and effectiveness of
this simple modification.

In Algorithm D, the first step needs O(n1 · · · nd + n1 log(n1)) flops; in the second step,
for each j , the complexity is O(n j−1 · · · nd + n j log(n j )); the third step is O(nd−1nd +
nd log(nd)). Thus the total complexity is dominated by O(n1 · · · nd + ∑d

j=1 n j log(n j )),
which is lower than that of Algorithm C, due to the SVD-free computation of x̄ j ’s.

Reducing to the dense tensor setting, i.e., r j = n j for each j , Algorithm D is even new
for dense tensor BR1Approx problems; when d = 2, similar ideas have not been applied to
approximation algorithms for sparse matrix PCA/SVD yet.

The next proposition shows that Algorithm D is well-defined, whose proof is quite similar
to that of Proposition 3.5 and is omitted.

Proposition 3.6 If A 
= 0 and (x01, . . . , x0d) is generated by Algorithm D, then x0j 
= 0,
1 ≤ j ≤ d.

The approximation bound analysis essentially relies on the following lemma.

Lemma 3.2 Given A ∈ R
m×n, with Ak̃ being the row of A having the largest magnitude. Let

w = (Ak̃)
/‖(Ak̃)
‖, x = Aw, and x0 = [x]↓,r /‖ [x]↓,r ‖ with 1 ≤ r ≤ m. Then there
holds

∥
∥
∥A
x0

∥
∥
∥ ≥

√

r

m2
‖A‖F .

Proof We have
∥
∥
∥A
x0

∥
∥
∥ = max‖z‖=1

〈

A
x0, z
〉

≥
〈

A
x0, w
〉

= 〈

x, x0
〉

≥
√

r

m
‖x‖,

123



242 Journal of Global Optimization (2022) 84:229–253

Table 1 Comparisons of the proposed approximation algorithms on the approximation bound and computa-
tional complexity

Algorithm Approximation bound Computational complexity

Algorithm A vopt√
rd−1

O(nd log(n) + dn log(n))

Algorithm B

√

r2

n2
vopt√
rd−2

O(nd+1 + dn log(n))

Algorithm C

√

rd

nd
λmax(A1)√

nd−2
O(nd+1 + dn log(n))

Algorithm D

√

rd

nd
‖A‖F√
nd−1

O(nd + dn log(n))

where the second inequality follows from that w is normalized, and the last one comes from
Proposition 3.1. We also have from the definition of x that

‖x‖2 =
m
∑

k=1

(Akw)2 ≥ (Ak̃w)2

=
〈

Ak̃,
Ak̃

‖Ak̃‖

〉2

=
∥
∥
∥Ak̃

∥
∥
∥

2

≥ 1

m
‖A‖2F ,

where the last inequality comes from the definition of Ak̃ . Combining the above analysis
gives the desired result. ��
Theorem 3.7 Let (x01, . . . , x0d) be generated by Algorithm D. Then it holds that

Ax01 · · · x0d ≥
√
√
√
√

∏d
j=1 r j

∏d
j=1 n j

‖A‖F
√
∏d−1

j=1 n j

≥
√
√
√
√

∏d
j=1 r j

∏d
j=1 n j

vopt
√
∏d−1

j=1 n j

.

Proof As the discussions above Theorem 3.6 we getAx01 · · · x0d ≥
√

rd
nd

∥
∥A


d−1x0d−1

∥
∥. Using

Lemma 3.2, for 2 ≤ j ≤ d − 1, we have

∥
∥
∥A


j x0j
∥
∥
∥ ≥

√

r j
n2j

∥
∥A j

∥
∥
F =

√

r j
n2j

∥
∥
∥A


j−1x0j−1

∥
∥
∥ .

In particular, from step 1 of the algorithm,
∥
∥A


1 x01
∥
∥ ≥ √

r1
n21

‖A1‖F = √
r1
n21

‖A‖F . It is clear
that ‖A‖F ≥ λmax(A1) ≥ vopt. Combining the analysis gives the desired results. ��

Before ending this section, we summarize the approximation ratio and computational
complexity of the proposed algorithms in Table 1. For convenience we set r1 = · · · = rd and
n1 = · · · = nd .

Concerning the approximation ratio Ax01 · · · x0d/v
opt, we see that if r is a constant, then

the ratio of Algorithm A is also a constant, while those of other algorithms rely on n. This
is the advantage of Algorithm A, compared with other algorithms. When d = 2, the ratios
of Algorithms A and B are respectively 1/

√
r and r/n, which coincide with their matrix
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counterparts; see, [2, Algorithms 1 and 2]. We also observe that Algorithm B generalizes the
approximation algorithm and bound for dense tensor BR1Approx in [39, Theorem 5.1]: If
sparsity is not required, i.e., r = n, the bound of Algorithm B boils down to those of [39,
Theorem 5.1]. For Algorithm C, when r = n, or r is proportional to n up to a constant, the
ratio reduces to O(1/

√
nd−2), which recovers that of [13, Algorithm 1]. Although the ratio of

Algorithm D is worse than that of Algorithm C with an additional factor 1/
√
n, we shall also

observe that the numerator of the bound of AlgorithmD is ‖A‖F , while that of AlgorithmC is
λmax(A1) (see Algorithm C for the definition of A1), where the latter is usually much smaller
than the former. Note that two randomized approximation algorithms as initializations were
proposed in [32, Algorithms 3 and 4] (see its arXiv version), where the performance analysis
was considered on structured tensors. It would be also interesting to study their approximation
bound for general tensors. Concerning the computational complexity, we see that Algorithm
D admits the lowest one in theory. This is also confirmed by our numerical observations that
will be presented in the next section. Note that if the involved singular value problems in
Algorithm C are solved by the Lanczos algorithm at k steps [7] where k is a user-defined
parameter, then the computational complexity is O(knd + dn log(n)).

Finally,We discuss that whether the approximation bounds are achieved.We only consider
the cases that r j < n j . We first consider Algorithm C and take d = 3 as an example. In
(3.13), achieving λmax(A2) = ‖A2‖F√

n2
requires that rank(A2) = n2 (assuming that n2 ≤ n3)

and all the singular values are the same. If these are true, then ‖A

2 x02‖ >

√
r2
n2

λmax(A2).1

Thus the bound of Algorithm C may not be tight. The approximation ratio of Algorithm
D relies on Lemma 3.2. However, there do not exist matrices achieving the approximation

ratio
√

r
m2 in Lemma 3.2, implying that the bound of Algorithm D may not be tight. For

Algorithm A, if step 3 is not executed (use eī11 , . . . , eīd−1
d−1, x0d obtained in step 2 as the output),

then the bound is tight: Consider A ∈ R
n1×n2×n3 with n1 = n2 = n3 = n as an all-one

tensor and let 1 < r1 = r2 = r3 = r < n; then vopt = r
3
2 . The generated feasible point

is x0j = e1j , j = 1, 2, and x03 is the vector whose first r entries are 1√
r
and the remaining

ones are zero. Then Ax01x02x03/v
opt = 1

r , achieving the bound. For Algorithm B, in case

that d = 3 and if x01 is not updated by step 3 (use eī11 obtained in step 2 as the output),

then the bound can be tight: Consider A ∈ R
4×4×4, with A(i, :, :) = A :=

[ 0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

]

,

i = 1, . . . , 4, and let r1 = r2 = r3 = 2. Then vopt = 2
√
2.2 Applying Algorithm B to A

yields ī1 = 1, with x̄3 = [1 1 1 1]
/2; then x03 = [1 1 0 0]
/
√
2, and x02 = x03. Finally,

Ae11x02x03/v
opt = 1

2
√
2

=
√

r2

n2r
. In summary, the reason that why the bounds cannot be

achieved is that although we derive the worst-case inequalities in every step of the analysis,
after putting them together, thefinal approximation boundsmight not be tight.How to improve
them still need further research.

1 Otherwise, from the analysis of Lemma 3.1, ‖A

2 x02‖ =

√
r2
n2

λmax(A2) if and only if 1) A

2 x̄2 = αA


2 x02

for some α ∈ R, and 2)
〈

x̄2, x02

〉

=
√

r2
n2

. 2) holds if and only if every entry of x̄2 takes the same value, which

together with r2 < n2 implies that x̄2 − αx02 
= 0; however, this and 1) lead to rank(A2) < n2, deducing a
contradiction.
2 Due to the structure ofA,Ax1x2x3 = 〈e, x1〉·x


2 Ax3 with e = [1 1 1 1]
. It is clear that x∗
1 = 1√

2
[1 1 0 0]
.

Denote x∗
2 := x∗

1, and x∗
3 := 1√

2
[0 1 0 1]
. Since (x∗

2)

Ax∗

3 = λmax(A) = 2, (x∗
2, x∗

3) is a maximizer to

max‖xi ‖=1,‖xi ‖0≤2,i=2,3 x

2 Ax3, and so (x∗

1, x∗
2, x∗

3) is a maximizer to (2.3), with Ax∗
1x∗

2x∗
3 = 2

√
2.
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4 Numerical experiments

We evaluate the proposed algorithms in this section on synthetic and real data. All the com-
putations are conducted on an Intel i7 CPU desktop computer with 16 GB of RAM. The
supporting software is Matlab R2019a. Tensorlab [33] is employed for basic tensor opera-
tions.

Performance of approximation algorithms We first compare Algorithms A, B, C, and D
on solving (2.3). The tensor is given by

A =
∑R

i=1
x1,i ◦ · · · ◦ xd,i ∈ R

n1×···×nd , (4.15)

where x j,i ∈ R
n j , i = 1, . . . , R, j = 1, . . . , d , and we let R = 10. Here the vectors are

first randomly drawn from the normal distribution, and then sr = 70% of the entries are
randomly set to be zero. We set d = 3, 4, and let n1 = · · · = nd = n with n varying from
5 to 100. For each case, we randomly generated 50 instances, and the averaged results are
presented. r j = �(1 − sr)n j� for each j in (2.3). As a baseline, we also randomly generate
feasible points (xrandom1 , . . . , xrandomd ) and evaluate its performance. On the other hand, we
easily see that

vub := min{λmax(A(1)), . . . , λmax(A(d))} (4.16)

is an upper bound for problem (2.3), where A( j) = reshape(A, n j ,
∏d

k 
= j nk) denotes

the j-mode unfolding of A. Thus we also evaluate vub. The results are depicted in Fig. 1,
where the left panels show the curves of the objective valuesAx01 · · · x0d versus n of different
algorithms, whose colors are respectively cyan (Algorithm A), magenta (Algorithm B), blue
(Algorithm C), and red (Algorithm D); the curves of the random value Axrandom1 · · · xrandomd
is in black with hexagram markers, while the curve of the upper bounds vub is in black with
diamond markers. The right ones plot the curve of CPU time versus n.

From the left panels, we observe that the objective values generated by Algorithms A, B,
C, and D are similar, where Algorithm C performs better; Algorithm D performs the second
when d = 4, and it is comparablewithAlgorithmBwhen d = 3; AlgorithmAgives theworst
results, whichmay be that AlgorithmA does not explore the structure of the problem asmuch
as possible. We also observe that the objective values of all the algorithms are quite close
to the upper bound (4.16), which demonstrates the effectiveness of the proposed algorithms.

In fact, the ratio of
Ax01 ···x0d

vub
is in (0.7, 1), which is far better than the approximation ratios

presented in Sect. 3. This implies that at least for this kind of tensors, the approximation ratios
might be independent of the size of the tensor. The valueAxrandom1 · · · xrandomd is close to zero
(the curve almost coincides with the x-axis). Concerning the computational time, Algorithms
D is the most efficient one, confirming the theoretical results in Table 1. Algorithm C is the
second efficient one. Algorithms A and B do not perform well compared with Algorithms
C and D, although their computational complexity is similar in theory. The reason may be
because the first two algorithms require for-loop operations, which is time-consuming in
Matlab.

We then consider fix n = 100 and vary the sparsity ratio sr from 10 to 90% of A in
(4.15), and compare the performance of the four proposed algorithms. r j in (2.3) is set to
�(1 − sr)n j� correspondingly. The results of the objective values Ax01 · · · x0d together with
the upper bound are depicted in the left panels of Fig. 2, from which we still observe that all
the algorithms are close to the upper bound (4.16); among them, Algorithm C is still slightly
better than the other three, followed by Algorithms B and D. The CPU time is plotted in the
right panels of Fig. 2, which still shows that Algorithm D is the most efficient one. In fact,
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Fig. 1 Comparisons of Algorithms A, B, C, and D for solving (2.3) whereA is given by (4.15). n varies from
5 to 100. Left panels: objective value Ax01 · · · x0d versus n; right panels: CPU time

in average, Algorithm D is 5 times faster than Algorithm C, which ranks the second, and is
about 80 times faster than Algorithm B, which is the slowest one.

Overall, comparing with Algorithms A and B that find the solutions fiber by fiber, or
slide by slide, Algorithm C admits hierarchical structures that take the whole tensor into
account, and so it can explore the structure of the data tensor better. This may be the reason
why Algorithm C is better than Algorithms A and B in terms of the effectiveness. When
compared with Algorithm D, Algorithm C computes each x0j “optimally” via SVD, while

AlgorithmDcomputes x0j “sub-optimally” butmore efficiently; this explainswhyAlgorithms
C performs better than Algorithm D. Concerning the efficiency, Algorithms A and B require
for-loop operations, which is known to be slow in Matlab. This leads to that although the
algorithms have similar computational complexity in theory (Algorithms B and C), after
implementation, their performances are quite different.

Performance of approximation plus iterative algorithms In this part, we first use approx-
imation algorithms to generate (x01, . . . , x0d), and then use it as an initializer for iterative
algorithms. The goal is to see if approximation algorithms can help in improving the solu-
tion quality of iterative algorithms. The iterative algorithm used for solving problem (2.3) is
simply an alternating maximization method (termed AM in the sequel) with the scheme

(AM) xk+1
j ∈ argmax Axk+1

1 · · · xk+1
j−1x jxkj+1 · · · xkd s.t.

∥
∥x j

∥
∥ = 1,

∥
∥x j

∥
∥
0 ≤ r j
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Fig. 2 Comparisons of Algorithms A, B, C, and D for solving (2.3) with fixed n and sparsity ratio varying
from 10 to 90%. Figure 2a:A ∈ R

100×100×100; Fig. 2b:A ∈ R
100×100×100×100. Left panels: the objective

values Ax01 · · · x0d versus sparsity ratio; right panels: CPU time

for j = 1, . . . , d and k = 1, 2, . . .. The stopping criterion used forAMismax j {
∥
∥
∥xk+1

j − xkj

∥
∥
∥}

≤ 10−5, or k ≥ 2000.We employAlgorithms C andD in this part, and denote the approxima-
tion plus iterative algorithms as Algorithm C + AM and D + AM in the sequel. As a baseline,
we also evaluate AM initialized by randomly generated feasible point (xrandom1 , . . . , xrandomd ),
which is generated the same as the previous part. This algorithm is denoted as Random +
AM. The data tensors are also (4.15), where 50 instances are randomly generated for each n.
r j = �0.3n j�. The objective values Axout1 · · · xoutd and CPU time for third- and fourth-order
tensors with n varying from 10 to 100 are plotted in Fig. 3a, b, where (xout1 , . . . , xoutd ) is the
output of AM. Here the CPU time counts both that of approximation algorithms and AM.
Figure 3c depicts the number of iterations of AM initialized by different strategies. Algorithm
C + AM is in blue, D + AM is in red, and Random + AM is in black.

In terms of objective value, we see from Fig. 3a, b that Algorithm C + AM performs the
best, while Algorithm D + AM is slightly worse. Both of them are better than Random +
AM, demonstrating that approximation algorithms can indeed help in improving the solution
quality of iterative algorithms. Considering the efficiency, Algorithm D + AM is the best
among the three, followed by Random + AM. This further demonstrates the advantage of
approximation algorithms. In fact, from Fig. 3c, we can see that both Algorithm C and D
can help in reducing the number of iterations of AM. However, as we have observed in
the previous part, Algorithm C is more time-consuming than Algorithm D, leading to that
Algorithm C + AM is the slowest one.
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Fig. 3 Performances of Algorithm C + AM, Algorithm D + AM and Random + AM for solving (2.3) where
A is given by (4.15). n varies from 10 to 100. The CPU time counts both that of approximation algorithms
and AM

We also try to use Algorithms C and D to initialize AM for �1 regularized model [1]:

max 〈A, x1 ◦ · · · ◦ xd〉 −
∑d

j=1
ρ j‖x j‖1 s.t. ‖x j‖ ≤ 1, 1 ≤ j ≤ d, (4.17)

where ρ j = 0.2 is set in the experiment. The algorithms are denoted as Algorithm C +
AM (�1), Algorithm D + AM (�1) and Random + AM (�1). The results are plotted in Fig.
4, from which we observe similar results as those of Fig. 3; in particular, the efficiency of
approximation algorithms plus AM (�1) is significantly better than Random + AM (�1), and
their number of iterations is much more stable.

Overall, based on the observations of this part, compared with random initializations,
iterative algorithms initialized by approximation solutions generated by approximation algo-
rithms is superior both in terms of the solution quality and the running time.
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Fig. 4 Performances of Algorithm C + AM (�1), Algorithm D + AM (�1) and Random + AM (�1) for solving
(4.17) where A is given by (4.15). n varies from 10 to 100

Sparse tensor clustering Tensor clustering aims to cluster matrix or tensor samples into
their underlying groups: for N samplesAi ∈ R

n1×···×nd , i = 1, . . . , N with d ≥ 2 and given
clusters K ≥ 2, a clustering ψ(·) is defined as a mapping ψ : Rn1×···×nd → {1, . . . , K }.
Several tensor methods have been proposed for tensor clustering; see, e.g., [26, 31, 32].
Usually, one can first perform a dimension reduction to the samples by means of (sparse)
tensor decomposition, and then use classic methods such as K -means to the reduced sam-
ples for clustering. Here, we use a deflation method for tensor decomposition, including the
proposed approximation algorithms as initialization procedures for AM as subroutines. The
whole method for tensor clustering is presented in Algorithm STC, which has some simi-
larities to [31, Algorithm 2]. We respectively use STC (A), STC (B), STC (C), STC (D) to
distinguish AM involved in STC initialized by different approximation algorithms. We also
denote STC (Random) as AM involved in STC with random initializations.
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Algorithm (ψ(A1), . . . , ψ(AN )) = sparse_clustering(A1, . . . ,AN ) (STC)

1. Define T ∈ Rn1×···×nd×N with T (:, . . . , :, i) = Ai , i = 1, . . . , N .
2. Apply a deflation method with rank-R to T , which employs Algorithm A, B, C, or D)+ AM to the
residual tensors T , . . . ,T −∑m

l=1 αlx
l
1 ◦ · · · ◦ xld+1, . . ., with resulting rank-1 terms xm1 ◦ · · · ◦ xmd+1

and weights αm = (T −∑m−1
l=1 αlx

l
1 · · · xld+1)x

m
1 · · · xmd+1, m = 1, . . . , R. Write X j := [x1j , . . . , xRj ],

j = 1, . . . , d + 1 and α := [α1, . . . , αR ]
.
3. Denote X̂d+1 = [α1x1d+1, . . . , αRxRd+1] ∈ R

N×R ; here the i-th row of X̂d+1, denoted as ûi , is

regarded as the reduced sample of Ai . Apply K -means to clustering {û1, . . . , ûN } → ψ̂(û j ), j =
1, . . . , N .
4. Return the cluster assignment of {A1, . . . ,AN }: (ψ(A1), . . . , ψ(AN )) = (ψ̂(û1), . . . , ψ̂(ûN )).

Denote ψ0 as the true clustering mapping and let |S| represent the cardinality of a set S.
The following metric is commonly used to measure clustering performance [34]:

cluster err. := (N
2

)−1|{i, j} : (ψ(Ai ) = ψ(A j )) 
= (ψ0(Ai ) = ψ0(A j )), i < j |.
Synthetic data This experiment is similar to [31, Sect. 5.2]. Consider N sparse matrix

samples {Ai ∈ R
n1×n2 , i = 1, . . . , N } with n1 = n2 = 20 as follows:

A1 = · · · = A N
4

= μ3 ·
⎡

⎣

�

−�

0

⎤

⎦ , A N
4 +1 = · · · = A N

2
= μ3 ·

⎡

⎣

�

�

0

⎤

⎦

A N
2 +1 = · · · = A 3N

4
= μ3 ·

⎡

⎣

−�

�

0

⎤

⎦ , A 3N
4 +1 = · · · = AN = μ3 ·

⎡

⎣

−�

−�

0

⎤

⎦ ,

where� = vv
 ∈ R
4×4 with v = [1,−1, 0.5,−0.5]
, and 0 is a zeromatrix of size 12×12.

We stack these samples into a third order tensor T ∈ R
n1×n2×N with T (:, :, i) = Ai .

We apply STC (A), STC (B), STC (C), STC (D), and the vanilla K -means to the tensor
T ∗ = T

||T ||F + σ E
||E||F where E is a noisy tensor and σ is the noise level. Here vanilla

K -means stands for directly applying K -means to the vectorizations of Ai ’s without tensor
methods. We vary the sample number N = {20, 40} and noise level σ = {0.1, 0.5, 0.9}, and
set μ = 0.5. To select parameters, we apply a similar Bayesian Information Criterion as [1]:
For a set of parameter combinations defined as the cartesian product of the set R of given
ranks and the sets r of tuning parameters, namely,R× r = {(R, r)|R ∈ R, r ∈ r}, we select
(R∗, r∗) = argminR×r BIC(R, r) with

BIC(R, r) := log

(‖T −∑R
l=1 αlx

l
1 ◦ · · · ◦ xld+1‖2F

n1 . . . nd N

)

+
log(

∏d
j=1 n j N )

∏d
j=1 n j N

∑R

l=1

∑d+1

j=1
‖xlj‖0,

(4.18)
where αl and xlj are computed by Algorithm STC.

For tuning procedure, we setR = {4, 6} and r = {(7, 7, N ), (8, 8, N )}. For the number K
of clusters, we employ the widely used evalclusters function in Matlab which evaluate
each proposed number of clusters in a set {K1, · · · , Km} and select the smallest number of
clusters satisfyingGap(K ) ≥ Gap(K +1)−SE(K +1),whereGap(K ) is the gap value for
the clustering solution with K clusters, and SE(K +1) is the standard error of the clustering
solution with K + 1 clusters. The results are reported in Table 2 averaged over 50 instances
in each case, where bold means that the cluster error is the lowest among all the methods.
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Table 3 Sparse tensor clustering via STC (D), STC (Random) and vanilla K -means on COIL-20with different
K

K STC (D) STC (Random) vanilla K -means

Cluster err. Time Cluster err. Time. Cluster err. Time

5 1.36E−01 1.62E+02 1.37E−01 1.70E+02 1.46E−01 2.21E−01

6 1.45E−01 1.90E+02 1.50E−01 2.02E+02 1.51E−01 2.79E−01

7 1.47E−01 2.23E+02 1.49E−01 2.46E+02 1.56E−01 3.53E−01

8 1.48E−01 2.63E+02 1.49E−01 2.84E+02 1.55E−01 3.91E−01

9 1.48E−01 2.93E+02 1.49E−01 2.97E+02 1.57E−01 4.40E−01

10 1.13E−01 3.09E+02 1.11E−01 3.43E+02 1.24E−01 5.39E−01

Table 2 shows that the cluster error of STC with any approximation algorithm is smaller
than that of the vanilla K -means in all cases and is even zero in some casewhen the noise level
is not high, where the best one is STC (C), followed by STC (D). This shows the accuracy
and robustness of our method. Considering the CPU time, among the four tensor methods,
STC (D) is the most efficient one, followed by STC (C), while STC (B) needs more time than
the other three. However, the computational time of tensor methods is not as good as that of
the vectorized K -means, which is because of the increasing cost of the tuning procedure via
(4.18) with a pre-specified set of parameter combinations.

Real dataWe test the clustering performance of STC (D), STC (Random), and the vanilla
K -means on Columbia Object Image Library COIL-20 [23] for image clustering. The data
contains 20 objects viewed from varying angles and each image is of size 128 × 128. The
images are in grayscale, and the background of the objects is black, resulting in that the images
can be seen as sparsematrices. In this experiment, we consider K = {5, 6, 7, 8, 9, 10} objects
and pick up 36 images from each object for clustering, giving T ∈ R

128×128×36K . We still
tune parameters of Algorithm STC via (4.18) and the evalclusters function in Matlab,
and set R = {40, 45} and r = {(75, 75, 36K ), (80, 80, 36K )}. The experiment has been
repeated 20 times for each K , and the averaged results are shown in Table 3.

Table 3 shows that the cluster error of tensor methods is still better than that of the
vanilla K -means, while STC (D) is slightly better than STC (Random). On the other hand,
the computational time of STC (D) is less than that of STC (Random). However, it still
needs more time than that of the vanilla K -means. There are two possible reasons for this
phenomenon: first, it takes more time to tune parameters via (4.18); and second, our approach
deals directly with data tensors instead of reshaping them into vectors, which preserves their
intrinsic structures but naturally increases the computational complexity at the same time.

Overall, tensor methods armed with an approximation algorithm to generate good initial-
izers show its ability to better exploring the data structure for clustering, and it would be
interesting to further improve the efficiency.

5 Conclusions

Sparse tensor BR1Approx problem can be seen as a sparse generalization of the dense tensor
BR1Approx problem and a higher-order extension of the matrix BR1Approx problem. In the
literature, little attention was paid to approximation algorithms for sparse tensor BR1Approx.
To fill this gap, four approximation algorithms were developed in this work, which are of
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low computational complexity, easily implemented, and all admit theoretical guaranteed
approximation bounds. Some of the proposed algorithms and the associated aproximation
bounds generalize their matrix or dense tensor counterparts, while Algorithm D, which is the
most efficient one, is even new when reducing to the matrix or dense tensor cases. Numerical
experiments on synthetic as well as real data showed the effectiveness and efficiency of the
developed algorithms; in particular, we observed that compared with random initializations,
our algorithms can improve the performance of iterative algorithms for solving the problem
in question. Possible future work is to design algorithms with better approximation ratio;

following [12, Theorem 4.3], we conjecture that the best ratio might be O(
√
∏d

j=1
r j
n j

·
√
∏d−2

j=1
ln n j
n j

). On the other hand, Qi defined and studied the best rank-1 approximation ratio
of a tensor space [27]; it would be interesting to extend this notion to the sparse best rank-1
approximation setting and study its bounds.
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