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Abstract
This paper presents a novel technique to compute Lagrangian bounds for nonconvex mixed-
integer quadratically constrained quadratic programming problems presenting a separable
structure (i.e., a separable problems) such as those arising in deterministic equivalent repre-
sentations of two-stage stochastic programmingproblems. In general, the nonconvexnature of
thesemodels still poses a challenge to the available solvers, which do not consistently perform
well for larger-scale instances. Therefore, we propose an appealing alternative algorithm that
allows for overcoming computational performance issues. Our novel technique, named the
p-Lagrangian decomposition, is a decomposition method that combines Lagrangian decom-
position with mixed-integer programming-based relaxations. These relaxations are obtained
using the reformulated normalised multiparametric disaggregation technique and can be
made arbitrarily precise bymeans of a precision parameter p. We provide a technical analysis
showing the convergent behaviour of the approach as the approximation is made increasingly
precise. We observe that the proposed method presents significant reductions in computa-
tional time when compared with a previously proposed techniques in the literature and the
direct employment of a commercial solver. Moreover, our computational experiments show
that the employment of a simple heuristic can recover solutions with small duality gaps.
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1 Introduction

In this paper, we focus on nonconvex mixed-integer quadratically constrained quadratic
programming (MIQCQP) models that can be made separable with the employment of a
Lagrangian relaxation-based approach [16]. Specifically, we focus on problems that possess
a block angular structure that allows for such a separation, as those presented by determin-
istic equivalent formulations of two-stage stochastic programming models (DEM) [10]. To
introduce the notation used hereinafter, let us define the problem DEM as

DEM : max.
∑

j∈V I

I 0j x j +
∑

s∈S

Ps

⎛

⎝
∑

i∈V C

∑

j∈V C

Qs,0
i, j ys

i ys
j +

∑

i∈V C

Cs,0
i,s ys

i

⎞

⎠

s.t.:
∑

i∈V C

∑

j∈V C

Qs,r
i, j ys

i ys
j +

∑

i∈V C

Cs,r
i ys

i +
∑

j∈V I

I s,r
j x j + K s,r ≤ 0, (1)

∀s ∈ S,∀r ∈ R (2)

ys
i ∈ [Y L,s

i , Y U ,s
i ],∀s ∈ S,∀i ∈ V C (3)

x j ∈ {X L
j , . . . , XU

j },∀ j ∈ V I , (4)

where S is the set of scenarios, Ps is the probability of the scenario s ∈ S, R is the set of
the constraint indices for each scenario, V I (V C) is the set of integer (continuous) variables
indices, Qs,r are symmetric matrices for all s ∈ S, r ∈ {0} ∪ R. The parameters I s,r

j (Cs,r
i )

correspond to linear coefficients associated with the integer (continuous) variables and K s,r

represent constants. Variables x j , ∀ j ∈ V I , can assume any integer value between its bounds
X L

j and XU
j and variables ys

i , i ∈ V C and s ∈ S, assume any continuous value between

Y L,s
i and Y U ,s

i . Note that this boundedness assumption, which is indeed satisfied in many
applications, will become essential in our developments.

The range of useful applications of MIQCQP models is noticeably broad, comprising of
sectors such as finance, engineering, and the process industry, permeating several applica-
tions arising in management science and operations research [21]. Recent papers utilising
MIQCQP models include problems such as planning optimal battery management for the
reduction of power losses [41], the enhanced index-tracking problem formulation [59], the
operational planning of refineries [2], profit maximisation in a three-level supply chain [39],
storage investment planning [63] and solution approaches for a gas flow problemwith general
setups [57], to mention only a few of the potential applications that could benefit from the
developments presented in this paper.

AMIQCQPmodel is defined as convex if its continuous relaxation is convex, regardless of
the nonconvexity introduced by the integrality requirements. Therefore, the DEM is convex
if Qs,r is positive semidefinite for all s ∈ S and r ∈ {0} ∪ R, being nonconvex otherwise.
The latter (nonconvex) is the case addressed in this paper.

In principle, MIQCQP models can be solved by available open-source and commercial
solvers such as recent releases of Gurobi [34], Couenne [26] or Baron [61]. However, these
solvers still lack performance robustness when facing larger-scale instances, such as those
arising as DEM from two-stage stochastic programs.

Due to the challenging nature of MIQCQP problems, several solution approaches have
been developed [14]. These can be generally divided into exact and heuristic methods. While
the former can guarantee the convergence to the global optimum, the latter can generally only
offer local optimality guarantee of the solutions obtained. Furthermore, almost all methods
involve the employment of relaxation techniques as a subroutine. The approximation of
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the original MIQCQP problem with mixed-integer linear programs (MILP) [1, 46] is the
most typical relaxation strategy employed in this setting. However, this type of relaxation
can significantly increase the number of variables and constraints compared to the original
(primal) model, thus deteriorating computational performance.

One of the most widely used exact algorithms to solve a MIQCQP problem is the branch-
and-bound (BnB) method and its variants. If the problem is convex, BnB is capable of
providing globally optimal solutions by relaxing the integrality constraints to obtain bounds.
In the case of nonconvex MIQCQP models, a spatial BnB is typically used, employing (con-
vex) relaxations of the nonconvex terms that are the source of the nonlinearity. Pursuing this
standpoint, Castro [19] presented a spatial BnB with relaxations relying on normalised mul-
tiparametric disaggregation technique for solving nonconvexMIQCQP problems. Ding et al.
[29] presented an integration of spatial BnB and standardBnBmethod named bi-level branch-
and-bound technique capable of solving MIQCQP problems with superior solution quality
and convergence characteristics. Berthold et al. [6] developed MIQCQP problem solver
based on the combination of constraint programming and branch-and-cut algorithm exploit-
ing cutting planes to tighten the relaxations. Billionnet et al. [9] developed the mixed-integer
quadratic convex reformulation (MIQCR) method, which consists of a (convex) reformu-
lation approach for nonconvex mixed-integer quadratic programming problems with linear
constraints, which is also embedded within a BnB framework.

Another conceptually different approach to solve MIQCQP problems is the employment
of decomposition, which is one of the main focuses of this paper. The key concept of this
method is to split the problem into several smaller subproblems that are more tractable and
can be solved independently, possibly in parallel.

By making explicit the non-anticipativity conditions (NAC) of the first-stage variables
x in the DEM problem, the reformulated deterministic equivalent model (RDEM) can be
represented as

RDEM : max.
∑

s∈S

Ps

⎛

⎝
∑

j∈V I

I 0j xs
j +

∑

i∈V C

∑

j∈V C

Qs,0
i, j ys

i ys
j +

∑

i∈V C

Cs,0
i ys

i

⎞

⎠

s.t.:
∑

i∈V C

∑

j∈V C

Qs,r
i, j ys

i ys
j +

∑

i∈V C

Cs,r
i ys

i +
∑

j∈V I

I s,r
j xs

j + K s,r ≤ 0, (5)

∀s ∈ S,∀r ∈ R (6)

xs
j ∈ {X L

j , . . . , XU
j },∀s ∈ S,∀ j ∈ V I (7)

xs′
j − xs

j = 0,∀s ∈ S \ {s′},∀ j ∈ V I (8)

and (3),

where s′ ∈ S is a reference scenario.
The introduction of the NAC in the above RDEM problem results in an explicit nearly-

decomposable equivalent of the original DEM problem with an exposed block-angular
structure [10, 11]. Consequently, one can obtain |S| essentially independent MIQCQP
subproblems where (8) is the only set of linear constraints that relates variables from dis-
tinct subproblems. These constraints are referred to as linking or complicating constraints.
Therefore, if one could remove these constraints, each of the subproblems could be solved
independently. Hereinafter, we will use the term subproblems when referring to each element
of the block-angular structure of the RDEM problem. It is important to highlight that there
are multiple alternative ways in which the NAC could be represented. In what follows, we use
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the representation presented by Oliveira et al. [48], as the authors report better computational
results in a similar context. Nonetheless, the developments presented are not dependent on
the specific choice for representing NACs.

In classical linear programming, the three most common decomposition frameworks
are Dantzig–Wolfe decomposition (DWD), Benders decomposition (BD) and Lagrangian
decomposition (LD), of which the last is explored in this paper. It should be noted that LD
is not only limited to be considered in a decomposition framework, but it can also be used to
devise easier-to-solve (i.e., typically smaller in scale due to separability) equivalent problems,
which is often referred to as Lagrangian relaxation (LR). On the other hand, LD involves cre-
ating copies of the complicating variables—i.e., the first stage variables x-for each scenario
and introducing NAC to ensure primal feasibility (the reformulation used to obtain RDEM).
LD would then be the employment of LR to remove the generated complicating constraints
(NAC). There is a well-known connection between these decomposition approaches, in that
if the LD is solved using the cutting-planes algorithm, it can be viewed as a BD. Furthermore,
BD can be stated as the dual of DWD.

The decision onwhich decompositionmethod is themost appropriate depends on the prob-
lem structure, such as the presence of complicating constraints. Furthermore, the BD (and
DWD) in its classical form cannot be applied to general nonlinear programming problems.
Addressing this shortcoming, Geoffrion [32] proposed the generalised Benders decomposi-
tion (GBD) based on BD to decompose convex nonlinear programming problems. Later, Li,
Tomasgard, and Barton [43] improved the GBD through the nonconvex generalised Benders
decomposition (NGBD) to decompose nonconvex nonlinear programming. In contrast, the
advantage of the LD is that it can be directly applied to a nonconvex problem. However, it
should be noted that the nonconvex subproblems in this context must be solved to global
optimality, as it will be discussed in further details in Sect. 2. This can be challenging, since
one would still have to solve nonconvex MIQCQP subproblems.

This paper presents a new class of relaxations called p-Lagrangian. The p-Lagrangian is
a composition of mixed-integer programming (MIP)-based relaxation method named refor-
mulated normalised multiparametric disaggregation technique (RNMDT) [1] and LD. The
idea of employing RNMDT to devise a MIP approximation of the resulting LD problem is
inspired by the approach used to expand the GBD to the NGBD. Therefore, the p-Lagrangian
relaxation allows one to use the same decomposition strategies as the classic LD, but with
subproblems that can be solved to global optimality using more robust MILP technology.

This paper is structured as follows. Section 2 reviews the fundamental concepts of the LD.
Section 3 describes the RNMDT relaxation. The p-Lagrangian relaxation of the MIQCQP
problem is presented in Sect. 4, followed by technical results that describe its convergence
behaviour. An iterative algorithm for solving p-Lagrangian relaxation problems is described
in Sect. 5. Furthermore, numerical experiments are presented in Sect. 6, where the contribu-
tions of this paper are tested on randomly generated instances. Finally, in Sect. 7 we draw
conclusions and provide directions for further research.

2 Background

Lagrangian relaxation is a bounding technique for solving a given arbitrary optimisation
problem that has important applications for nonconvex problems such as MILP problems
[16, 33]. However, methods based on Lagrangian duality cannot be straightforwardly applied
to nonconvex problems, as discussed in what follows.
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First, let us formally provide a definition for a relaxation which, although rather
restrictive, will suffice for the developments hereinafter. Consider the following prob-
lem P : max.{ f (x) : x ∈ C} where f : R

n → R and C ⊆ R
n and the problem

PR : max.{ fR(x) : x ∈ CR} where fR : Rn → R and CR ⊆ R
n .

Definition 1 The problem PR is a relaxation of P if and only if:

1. fR(x) ≥ f (x), ∀x ∈ C
2. C ⊆ CR .

Let f s : R|V I |+|V C | → R and gs,r : R|V I |+|V C | → R, ∀s ∈ S and ∀r ∈ R, be continuous
twice differentiable functions. Suppose that we are interested in solving the (primal) problem
(9), which is introduced to ease the notation in our later developments.

f = max.x,y

∑

s∈S

f s(xs, ys)

s.t.: gs,r (xs, ys) ≤ 0,∀s ∈ S,∀r ∈ R

xs′ − xs = 0,∀s ∈ S \ {s′}
xs ∈ X ,∀s ∈ S,

ys ∈ Y s,∀s ∈ S.

(9)

As can be noticed, (9) is equivalent to the RDEM problem, by making

f s(xs, ys) = Ps

⎛

⎝
∑

j∈V I

I 0j xs
j +

∑

i∈V C

∑

j∈V C

Qs,0
i, j ys

i ys
j +

∑

i∈V C

Cs,0
i ys

i

⎞

⎠ ,

gs,r (xs, ys) =
∑

i∈V C

∑

j∈V C

Qs,r
i, j ys

i ys
j +

∑

i∈V C

Cs,r
i ys

i +
∑

j∈V I

I s,r
j xs

j + K s,r ,

while X , Y s in (9) represents the variable bounds (7, 3) for integer and continuous variables,
respectively.

Let Ds = {xs, ys | xs ∈ X , ys ∈ Y s, gs,r (xs, ys) ≤ 0, ∀r ∈ R} be a feasibility set,
∀s ∈ S, and let D = ×s∈S Ds , that is D is the Cartesian products of the sets Ds , ∀s ∈ S.
With this definition in mind, the Lagrangian dual function φ : R(|S|−1)×|V I | → R can be
defined as

φ(λ) = sup
(x,y)∈D

∑

s∈S

f s(xs, ys) +
∑

s∈S\s′
(λs)
(xs′ − xs), (10)

where the components of λ ∈ R
(|S|−1)×|V I | are the Lagrangian multipliers and x, y =

{xs, ys}s∈S . In this setting, it is common to say that the NAC are being relaxed [12]. In what
follows, we present important and widely known properties of the Lagrangian dual function
φ, which we formally state as Propositions 2 and 3 for reference later on.

Proposition 2 [5, Theorem 6.3.1] The Lagrangian dual function φ is convex.

For any value of the Lagrangian multiplier λ, the Lagrangian dual function φ provides an
upper bound (UB) for the primal problem (9). Our objective is to obtain the tightest (i.e., the
lowest) UB. Therefore, we are interested in solving the following Lagrangian dual problem
(LDP)

φ = inf
λ

φ(λ) (11)
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Even though the function φ is convex, evaluating φ(λ) for a given λ may require solving a
nonconvex problem if either f s or gs,r are nonconvex for some s ∈ S and r ∈ R. Thus,
evaluating φ may be as hard to solve to global optimality as the primal problem. We refer
to this later on as Issue 1. Proposition 3 describes how one can use the LDP (11) to obtain
bounds for (9), a property generally referred to as weak duality.

Proposition 3 [5, Theorem 6.2.1] Let f s : R|V I |+|V C | → R and gs,r : R|V I |+|V C | → R,
∀s ∈ S and ∀r ∈ R, be continuous twice-differentiable functions and suppose we consider
the primal problem (9). Let φ : R(|S|−1)×|V I | → R be Lagrangian dual function forming the
Lagrangian dual problem (11). Let f and φ be the optimal values of the primal and dual
problems accordingly. Then, the following statements are true:

1. φ(λ) ≥ ∑
s∈S

f s(xs, ys), ∀λ ∈ R
(|S|−1)×|V I |, x, y ∈ D such that x ∈ XNAC, where

XNAC = {x | (xs′ − xs) = 0,∀s ∈ S \ {s′}}.
2. φ ≥ f .

It is important to highlight that, for problems including integer decision variables or
nonconvex functions, a duality gap might exist (i.e., only weak duality is valid). This will
hereinafter be called Issue 2. Nevertheless, the LDP can still be used to obtain bounds for
the primal problem (9), as stated in Proposition 3.

Therefore, if the primal problem is nonconvex, there are two main issues to be addressed
when using the Lagrangian duality to devise a solutionmethod, i.e., wemust solve nonconvex
subproblems (Issue 1), and only weak duality holds (Issue 2).

The second issue is traditionally addressed by modifying the Lagrangian function to
include penalty terms. Linear penalty terms were introduced by Pietrzykowski [50] and
Zangwill [65] and quadratic penalty expressions by Courant [24]. Penalty expressions with
both linear and quadratic pieces were proposed by Rockafellar [53]. A generalised approach
called the augmented Lagrangian, also known as the methods of multipliers, was first stud-
ied by Hestenes [37] and Powell [51]. Two disadvantages of the augmented Lagrangian is
that it usually ruins the problem’s separable structure when it exists, thus, compromising
decomposition strategies [60], and it also adds nonlinearities to the problem. The progres-
sive hedging (PH) method, proposed by Rockafellar and Wets [54] overcomes the former
obstacle. Santos et al. [56] evaluated the application of PH for solving hydrothermal systems
short-term operational planning problems comparing to the Nested Decomposition. Veliz et
al. [62] demonstrated that PH is competitive with a direct solution when applied to solve the
mixed-integer problem of medium-term forest planning. Lokketangen and Woodruff [44]
combined the tabu search method with PH to solve multistage, stochastic mixed-integer (0,
1) programming problems. Boland et al. [12] enhanced the PH convergence characteristics
by introducing a Frank-Wolfe-based method to compute primal updates in PH and Boland
et al. [13] presented how it could be further improved under a bundle method setting. In a
similar vein, although not directly related to PH, de Oliveira et al. [28] proposed an inex-
act proximal bundle method decomposition for solving two-stage stochastic programming
problems, which allows for the consideration of subsets of scenarios, ultimately yielding per-
formance improvements. The p-Lagrangian decomposition method proposed in this paper
can be potentially generalised to those settings as well. However, in this study, we only con-
centrate on Issue 1 for the nonconvex MIQCQP problems. As it will become clear, all of
these developments could also be incorporated within the framework of the p-Lagrangian
relaxation in an attempt to address Issue 2 and is left for future research.

A common approach to solve decomposable QCQP problems is to relax all quadratic
constraints to obtain a subproblem that is equivalent to a semidefinite programming problem
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that can be solved to global optimality using appropriate interior-point methods [3]. On the
other hand, the formulation of the LDP is not trivial to find, especially if not all constraints are
relaxed. Another issue with this approach is that the quality of the dual bounds is dependent
on the subset of constraints to be relaxed. Dentcheva and Römisch [25] proposed a frame-
work to estimate how large the duality gap will be when a specific subset of constraints is
relaxed. The framework was then applied to decide which constraints to relax to generate the
smallest duality gap. In this paper, only complicating constraints (8) are considered for being
relaxed, as we focus on problems with block-angular separable structure, such as two-stage
stochastic programming problems. It is worth highlighting that the framework presented here
is, however, general enough to be employed to any other MIQCQP problem with a similar
separable structure.

In what follows, we concentrate on addressing Issue 1 by developing a new class of
dual problems replacing the nonconvex MIQCQP subproblems with MIP-based relax-
ations obtained using the reformulated normalised multiparametric disaggregation technique
(RNMDT). Even though MIP problems might also be computationally challenging, there
are more reliable techniques available for solving MIP problems that are efficient in many
cases (e.g., branch-and-cut) and widely available off-the-shelf commercial implementations
in solvers such as Gurobi [34] and CPLEX [23].

2.1 Motivating example

The following motivating example illustrates that, even in simple cases, solving the LDP
might not provide a valid dual bound if theLagrangian dual functionφ cannot be appropriately
evaluated. That will be the case if (xs, ys),∀s ∈ S, is not a global maximiser for φ(λ) for a
given λ. Consider the following problem.

max.x1,x2 x1x2

s.t.:x1 + 2x2 = 1

x1, x2 ∈ [0, 1.75].
(12)

For a fixed Lagrangian multiplier λ ∈ R, the evaluation of the Lagrangian dual function φ

corresponding to the problem (12) is

max.x1,x2 x1x2 + λ(x1 + 2x2 − 1)

s.t.:x1, x2 ∈ [0, 1.75]. (13)

Solving (12) with the global solver Gurobi (version 9.0.0), we obtain the optimal value 0.125.
Since the primal problem and its LDP have a (weak) dual relationship, Problem (13) should
provide an UB as its optimal value for all fixed values of the Lagrangian multiplier λ f , i.e., a
value greater or equal than 0.125.However, ifwe solve for a fixed value ofλ f = −0.100 using
the local solver Ipopt [64], it returns a solution which is zero for all variables, corresponding
to the objective function value equal to 0.100. This is not a validUB since the feasible solution
(x1, x2) = (0.500, 0.250) has a greater value than that.

We could improve the solution for this problem by using another local solver that utilises
alternative methods, by providing a warm start, or even by applying a multi-start strategy.
However, if one cannot guarantee that the solutions obtained for (13) are global maxima, one
cannot be sure about the validity of the resulting bounds, which, in turn, compromises the
validity of solutions methods that rely on Lagrangian relaxation. In Sect. 4.2, we revisit this
example to demonstrate how to address the issue of generating valid Lagrangian bounds for
nonconvex problems using RNMDT, thereby addressing Issue 1.
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3 Reformulated normalisedmultiparametric disaggregation

The reformulated normalised multiparametric disaggregation technique (RNMDT) [1] is
an enhanced version of the normalised multiparametric disaggregation technique (NMDT),
originally proposed in [40] and further developed in [17, 18]. RNMDTallows for the develop-
ment of mixed-integer based relaxations for MIQCQPmodels that can be set to be arbitrarily
precise, at the expense of trading off precision and the total of additional auxiliary (binary
and continuous) variables required. The enhancement of the original framework is due to (i)
a significant reduction in the number of auxiliary variables and constraints and (ii) a dynamic
procedure for selecting variables to have their discretised representation made more precise.

Suppose that we seek to solve the following problem,which is the same as RDEMproblem
but without the separable structure (i.e., scenarios), to ease the notation.

max.
∑

i∈V C

∑

j∈V C

Q0
i, j yi y j +

∑

j∈V I

I 0j x j +
∑

i∈V C

C0
i yi (14)

s.t.:
∑

i∈V C

∑

j∈V C

Qr
i, j yi y j +

∑

j∈V I

I r
j x j +

∑

i∈V C

Cr
i yi + K r ≤ 0,∀r ∈ R (15)

yi ∈ [Y L
i , Y U

i ],∀i ∈ V C (16)

x j ∈ {X L
j , . . . , XU

j },∀ j ∈ V I , (17)

where the parameters Qr , I r , Cr , and K r are as in Sect. 1.
Let

QT = {(i, j) ∈ V C × V C | j ≥ i, ∃r ∈ R ∪ {0}, |Qr
i, j | > 0}

and

DS = { j ∈ V C | ∃i ∈ V C, (i, j) ∈ QT }.
The set QT comprises the indices of variables that appear in at least one quadratic term,
while DS corresponds to the set of variables that will be discretised. In this context, the
discretisation of the variables y j , ∀ j ∈ DS, can be achieved by introducing the following
constraints:

y j = (Y U
j − Y L

j )

⎛

⎝
∑

l∈Z p,−1

2l z j,l + Δy j

⎞

⎠+ Y L
j ,∀ j ∈ DS (18)

0 ≤ Δy j ≤ 2p,∀ j ∈ DS (19)

z j,l ∈ {0, 1},∀ j ∈ DS, l ∈ Z p,−1, (20)

where Za,b = {a, . . . , b} is the subset of integer numbers ranging from a to b (inclusive),
(18) is used to normalise decision variables y j and the term

⎧
⎨

⎩
∑

l∈Z p,−1

2l z j,l + Δy j

⎫
⎬

⎭ ∈ [0, 1]

is discretised in partitions of the size 2p each, where the integer parameter p < 0 corresponds
to a precision factor. The auxiliary variables Δy j are added to allow the term to attain all
values in the interval [0, 1]. Notice that, if the discretisation would have used the partitions
of the size 10p instead, the absolute value of the precision factor p would be equivalent to
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the number of digits used when normalising the integer variables. However, we use a basis
2 instead, since it allows for more compact relaxations in terms of the number of auxiliary
variables, as demonstrated in [1].

For each bilinear term yi y j , only one of the variables needs to be discretised, as the
resulting product between continuous and binary variables can be linearised by a standard
equivalent reformulation.Multiplying both sides of (18) by yi ,∀i ∈ V C , gives the constraints

yi y j = (Y U
j − Y L

j )

⎛

⎝
∑

l∈Z p,−1

2l yi z j,l + yiΔy j

⎞

⎠+ yi Y
L
j ,∀i, j ∈ QT . (21)

Next, we introduce the auxiliary variables wi, j , ŷi, j,l and Δwi, j to represent the products
yi y j , yi z j,l and yiΔy j , respectively. The resulting set of constraints obtained is then

wi, j = (Y U
j − Y L

j )

⎛

⎝
∑

l∈Z p,−1

2l ŷi, j,l + Δwi, j

⎞

⎠+ yi Y
L
j ,∀i, j ∈ QT

(22)

Y L
i z j,l ≤ ŷi, j,l ≤ Y U

i z j,l ,∀i, j ∈ QT , l ∈ Z p,−1 (23)

Y L
i (1 − z j,l) ≤ yi − ŷi, j,l ≤ Y U

i (1 − z j,l),∀i, j ∈ QT , l ∈ Z p,−1 (24)

2p(yi − Y U
i ) + Y U

i Δy j ≤ Δwi, j ≤ 2p(yi − Y L
i ) + Y L

i Δy j ,∀i, j | (i, j) ∈ QT (25)

Y L
i Δy j ≤ Δwi, j ≤ Y U

i Δy j ,∀i, j | (i, j) ∈ QT , (26)

where constraints (23) and (24) form an exact linearisation of the product between binary
and a continuous variable. The constraints (25) and (26) provide a relaxation of the product
of two continuous variables and are known as McCormick envelopes [17].

Furthermore, using the previously defined variable wi, j , the objective function (14) and
the original constraints (15) are replaced by (27) and (28), respectively.

max.
∑

i |(i,i)∈QT

Q0
i,iwi,i + 2

∑

(i, j)∈QT | j>i

Q0
i, jwi, j +

∑

j

I 0j x j +
∑

i

C0
i yi (27)

∑

i |(i,i)∈QT

Qr
i,iwi,i + 2

∑

(i, j)∈QT | j>i

Qr
i, jwi, j +

∑

j

I r
j x j +

∑

i

Cr
i yi + K r ≤ 0,

∀r ∈ R. (28)

Note that we use the assumption that the matrices Qr are symmetric for all r ∈ R ∪ {0} to
replace the terms

∑

i∈V C

∑

j∈V C

Qr
i, j yi y j

with
∑

i |(i,i)∈QT

Qr
i,iwi,i + 2

∑

(i, j)∈QT | j>i

Qr
i, jwi, j , ∀r ∈ R ∪ {0}.

Summarising the above, we can define the RNMDT relaxation as follows.

Definition 4 For every integer p < 0, the RNMDT relaxation of the problem (14)–(17) is
defined as the problem of maximising the objective function (27), subject to the constraints
(16)–(17), (18)–(20), (22)–(26) and (28).
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Hereinafter, we will refer to the relaxation obtained using RNMDT with an arbitrary
parameter p as to RNMDTp . The following results allow for describing the relationship
between the problem (14)–(17) and the RNMDTp , which will be useful in the remaining of
the paper.

With Definition 1 in mind, the following theorem defines the relationship between the
original problem (14)–(17) and its RNMDTp for any p < 0. An equivalent version of
Theorem 5 has been proved in [1], but is formally stated for reference in the developments
to follow.

Theorem 5 Suppose we consider MIQCQP problem (14)–(17) and correspondent RNMDTp

problems, ∀p < 0, introduced in Definition 4. Then, RNMDTp is a relaxation to the problem
(14)–(17) for every p < 0. Moreover, for any pair of (p1, p2) with p1 < p2 < 0, the
RNMDTp2 is a relaxation of the problem RNMDTp1 . Consequently, for any pair of (p1, p2)
with p1 < p2 < 0, the RNMDTp1 is a tighter (or equal) relaxation of the problem (14)–(17)
than RNMDTp2 .

Proof The proof readily follows from [1, Proposition 6 and Theorem 6]. �


4 The p-Lagrangian relaxation

The combination of Lagrangian relaxation with the RNMDT makes it possible to construct
separable mixed-integer problems that retain a weak dual relationship with the original
MIQCQP problem. More specifically, it means that one can formulate the Lagrangian relax-
ation to theMIQCQP and subsequently employ RNMDT to the relaxedMIQCQP probelm to
obtain aMIP-based relaxation for a given arbitrary value of the precision factor p. Hence, for
each fixed p, we obtain a mixed-integer approximation of the LDP, which will be hereinafter
called p-Lagrangian dual problem (p-LDP). The procedure to relax one or more constraints
with this method is what we refer to as the p-Lagrangian relaxation, and the framework
analogous to the Lagrangian decomposition is p-Lagrangian decomposition (p-LD). It is
worth highlighting that one can alternatively employ the RNMDT to obtain the RNMDTp

reformulation of the primal problem and then employ Lagrangian relaxation to relax the set
of constraints (8), which would lead to an identical formulation of the p-LDP.

The p-LDP of the primal RDEM problem can be constructed by employing RNMDT to
discretise the variables y j in the LDP represented by the Problem (11). Therefore, this results
in a p-LDP that is decomposable by s ∈ S. Each scenario subproblem can, thus, be stated as

φ̂s
p(λ) =

max. Ps

⎛

⎝
∑

j∈V I

I 0j xs
j +

∑

i |(i,i)∈QT

Qr
i,iwi,i + 2

∑

(i, j)∈QT | j>i

Qr
i, jwi, j

+
∑

i∈V C

Cs,0
i ys

i +
∑

j∈V I

Ls(λ) j xs
j

⎞

⎠ (29)

s.t.:
∑

i |(i,i)∈QT

Qr
i,iwi,i + 2

∑

(i, j)∈QT | j>i

Qr
i, jwi, j

+
∑

i∈V C

Cs,r
i ys

i +
∑

j∈V I

I s,r
j xs

j + K s,r ≤ 0,∀r ∈ R
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ys
j = (Y U ,s

j − Y L,s
j )

( ∑

l∈Z p,−1

2l zs
j,l + Δys

j

)
+ Y L,s

j ,∀ j ∈ DS

ωs
i, j = (Y U ,s

j − Y L,s
j )

( ∑

l∈Z p,−1

2l ŷs
i, j,l + Δωs

i, j

)
+ ys

i Y L,s
j ,∀i, j | (i, j) ∈ QT

0 ≤ Δys
j ≤ 2p,∀ j ∈ DS

2p(ys
i − Y U ,s

i ) + Y U ,s
i Δys

j ≤ Δωs
i, j ,∀i, j | (i, j) ∈ QT

Δωs
i, j ≤ 2p(ys

i − Y L,s
i ) + Y L,s

i Δys
j ,∀i, j | (i, j) ∈ QT

Y L,s
i Δys

j ≤ Δws
i, j ≤ Y U ,s

i Δys
j ,∀i, j | (i, j) ∈ QT

Y L,s
i zs

j,l ≤ ŷs
i, j,l ≤ Y U ,s

i zs
j,l ,∀i, j | (i, j) ∈ QT , l ∈ Z p,−1

Y L,s
i (1 − zs

j,l) ≤ ys
i − ŷs

i, j,l ≤ Y U ,s
i (1 − zs

j,l),∀i, j | (i, j) ∈ QT , l ∈ Z p,−1

ys
i ∈ [Y L,s

i , Y U ,s
i ],∀i ∈ V C

xs
j ∈ {X L

j , . . . , XU
j },∀ j ∈ V I

zs
j,l ∈ {0, 1},∀ j ∈ DS, l ∈ Z p,−1, (30)

where φ̂p(λ) = ∑
s

φ̂s
p(λ) and Ls(λ) is given by

Ls(λ) =

⎧
⎪⎪⎨

⎪⎪⎩

vector with elements

[
∑

s∈S{s′}
λs

j

]
,∀ j ∈ V I , if s = {s′}

vector with elements [−λs
j ],∀ j ∈ V I , otherwise.

One appealing feature of the p-LDmethod is the possibility of regulating the precision of the
dual bound by means of the parameter p that controls the precision of the p-LDP. Therefore,
if we solve two p-LDPs setting two different values for p, the one with the smaller parameter
p will provide a better or equal dual bound compared with the one with the larger p (cf.
Theorem 5). The p-LDP is equivalent to constructing RNMDTp of the LDP and consists
of replacing the dual function φ with an over-estimator φ̂p with its respective RNMDT-
associated auxiliary variables and constraints.

4.1 Convergence of the p-Lagrangian relaxation

The following technical results state the convergence of the sequence {φ̂−k}+∞
k=1 of the values

generated by the p-Lagrangian dual function φ̂ to the Lagrangian dual function φ. We start
by referring to epi-convergence [55], which has been shown to be the ideal tool to study the
convergence and approximation of optimisation problems, especially in settings considering
duality as a coordination framework. We refer the reader to [55, Chapter 7] for a detailed
study of the properties of epi-convergence, opting to list only the properties relevant to our
purposes.

4.1.1 Reformulation of DEM

To use this theorical framework, it will be convenient to include an auxiliary set of variables
to the DEM problem along with the framing of the problem as a minimisation. This can be

123



54 Journal of Global Optimization (2022) 84:43–76

achieved by reformulating the DEM as:

P : v
({− f s}

s∈S ,
{
Cs}

s∈S

)

= min.(x,y,w)

[
∑

s∈S

(− f s) (x,
(
ys, ws)) : (x, ys, ws) ∈ Cs

]

where, for s ∈ S,

Cs =
{(

x,
(
ys, ws)) | gs,r (x,

(
ys, ws)) ≤ 0, r ∈ R, ws

i, j = ys
i ys

j , x ∈ X , ys ∈ Y s
}

,

and

f s(x,
(
ys, ws)) = Ps

⎛

⎝
∑

j∈V I

I 0j x j +
∑

i∈V C

∑

j∈V C

Qs,0
i, j w

s
i, j +

∑

i∈V C

Cs,0
i ys

i

⎞

⎠ , (31)

gs,r (x,
(
ys, ws)) =

∑

i∈V C

∑

j∈V C

Qs,r
i, j w

s
i, j +

∑

i∈V C

Cs,r
i ys

i +
∑

j∈V I

I s,r
j x j + K s,r , (32)

while X and Y s represent the box constraints (16) and (17) for integer and continuous
variables, respectively. Denote the convex hull of a set C by convC . In our final result, we
will assume that 0 ∈ int convCs for all s ∈ S. This, without loss of generality, can in turn be
ensured via a translation (and a subsequent change of variable) whenever int convCs �= ∅
for all s ∈ S.

Recall that the constraints (25) and (26) in Definition 4 provide a relaxation of the product
of two continuous variables and are known as McCormick envelopes [17]. Denote these by
SRp , which comprises the variables

(
y, x, ŷ,z,Δy,Δw

)
satisfying the constraints (23) to

(26).
For the purpose of convergence analysis, we would like the relaxation to reside in the

same variable space of (x, (y, w)) ∈ X × Y s × R
|V C |2 ⊆ R

|V I |+|V C |+|V C |2 for s ∈ S. The
current space of variables consists of

(
y, x, ŷ,z,Δy,Δw

)
. Analogously to the derivations in

the proof of Theorem 5, let us define the mapping M : (y, x, ŷ,z,Δy,Δw
) → (

x ′,
(
y′, w′))

to be

x ′ = x and y′
j = (Y U

j − Y L
j )

⎛

⎝
∑

l∈Z p,−1

2l z j,l + Δy j

⎞

⎠+ Y L
j with

w′
i, j = (Y U

j − Y L
j )

⎛

⎝
∑

l∈Z p,−1

2l ŷi, j,l + Δwi, j

⎞

⎠+ yi Y
L
j .

Then, we constrain (x, (y, w)) to the set M
(
SRp

)
. The RNMDTp relaxation of the problem

P for the fixed value of p < 0 can be re-formulated as

PRp : v
({− f s}

s∈S ,
{

Cs
Rp

}

s∈S

)

= min.(x,y,w)

[
∑

s∈S

(− f s) (x,
(
ys, ws)) : (x, ys, ws) ∈ Cs

Rp

]
(33)

where, for s ∈ S,

Cs
Rp

= {(
x,
(
ys, ws)) ∈ M

(
SRp

) | gs,r (x,
(
ys, ws)) ≤ 0, r ∈ R, x ∈ X , ys ∈ Y s} .
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The advantage of framing the approximation in this form is that the additional integer
variables z required to describe the McCormick envelopes are embedded in the constraint
set M(SRp ), as they simply constitute additional variables required for the description of the
McCormick envelopes. Notice that the objective is not perturbed at all in this formulation.
We have the following due to the properties of the McCormick envelopes [17].

Proposition 6 We have PRp a relaxation of PRp−1 and of P as

M
(
SRp−1

) ⊆ M
(
SRp

)

where
{(

x,
(
ys, ws)) | ws

i, j = ys
i ys

j

}
=
⋂

p<0

M
(
SRp

)
.

Proof The proof of the first part is equivalent to that of Theorem 5 in Sect. 3. To prove the
second part, first, notice that PRp , ∀p < 0, is a reformulated equivalent of NMDT relaxation
presented in [18]. As demonstrated in [18, Property 3], the NMDT relaxation converges to
the primal problem P as p → −∞, which in turn implies that lim

p→−∞ ws
i, j = ys

i ys
j . �


4.1.2 Convergence of relaxations of nonconvex optimisation problems

We will be relating the convergence of the RNMDTp relaxations to the notion of epi-
convergence. In the subsection we develop a general theoretical framework applicable to
this context.

Definition 7 Let fk : Rn → R∪ {+∞} be a sequence of extended real-valued functions. We
say that { fk} epi-converges to f and write e-limk fk = f if and only if limk epi fk = epi f ,
where epi fk = {(x, α) | fk(x) ≤ α} and epi f = {(x, α) | f (x) ≤ α}.

The limit of sets in Definition 7 is understood to be in the Kuratowski-Painleve sense.
That is, (i) all accumulation points of the subsequence

(
xkl , αkl

) ∈ epi fkl are in epi f
(i.e.,

(
xkl , αkl

) → (x, α) ∈ epi f ) and (ii) for all (x, α) ∈ epi f there exists a sequence
(xk, αk) ∈ epi fk with (xk, αk) → (x, α). Recall that a function f is lower semi-continuous
if and only if epi f is closed.

One of the reasons that epi-convergence lends itself to the analysis of approximations
is that any optimisation problem of the form v (gk, Ck) = min.{gk(x) | x ∈ Ck} can
be represented as an infimum of an extended real-valued function fk = gk + δCk , where
δCk (x) = 0 if and only if x ∈ Ck , and +∞, otherwise. Thus, the general properties of
approximating optimisation problems can be framed in terms of the behavior of infima of
extended real-valued functions that are fully capable of modelling constraints sets containing
a fixed number of integer variables.

Consider the optimisation problem P : max.{ f (x) | x ∈ C}. Recall that PR2 :
max.{ fR2(x) | x ∈ CR2} is a tighter relaxation (cf. Definition 1) of P than PR1 :
max.{ fR1(x) | x ∈ CR1} if and only if

1. fR1 (x) ≥ fR2 (x) ≥ f (x) for all x ∈ C and
2. C ⊆ CR2 ⊆ CR1 .
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Note that v
(

fR2 , CR2

) = max.
(

fR2 (x) + δCR2
(x)
)

≤ v
(

fR1 , CR1

)
. To place the study

of such relaxations into the framework of epi-convergence, we must consider the equivalent
minimization problem, so

v
(− fR2 , CR2

) = min.
(
− fR2 (x) + δCR2

(x)
)

≥ v
(− fR1 , CR1

)
,

because − fR2 + δCR2
≥ − fR1 + δCR1

. Clearly, a sequence of tighter convex relaxations
PRp with p = −k leads to a non-decreasing sequence of objective and extended real-valued
functions that are associated with a sequences gk = − fRk + δCRk

of optimisation problems
that are monotonically non-decreasing, i.e., gk+1 ≥ gk , for all k. From [55, Propositions
7.4 and 7.15], we know that such sequences epi-converge to the closure of their pointwise
supremum. Moreover, uniformly convergent sequences also epi-converge. This enables epi-
convergence to be invoked to study the convergence of our relaxations. Later, we will show
that the associated sequence of convex dual problems also epi-converges in the strong sense
of uniform convergence on bounded sets.

In what follows, we do not assume that the set C is convex nor connected and, thus,
it could contain integer constraints on variables. In the analysis of integer programming
problems, it is best to posit the integer constraints in the constraint set C and hence also
in the relaxations CRk , in that they do not pose a barrier to convergence, for the theory of
epi-convergence applies to extended real-valued, lower semi-continuous or closed functions,

such as
{
δCRk

}

k
. Although it is natural that the relaxations CRk epi-converge (as they are

monotonically become “tighter” as p decreases, as stated in Proposition 6) but we need to
establish to what problem it converges to. This is stated in Proposition 8. Moreover, notice
the role of Proposition 6 in ensuring that the RNMDTp relaxation satisfies the condition 2
in Proposition 8.

Proposition 8 Consider the optimisation problem P : min. {− f (x) | x ∈ C} involving a
proper, closed, lower semi-continuous function f and a closed set S. Let us denote C as
the closure of the set C. Suppose we have a sequence of tighter relaxations of P, given by
PRk : min.{− fRk (x) | x ∈ CRk } where

1. − fRk (x) ≤ − fRk+1 (x) ≤ − f (x) for all x ∈ C and epi (− f ) = ⋂
k epi (− fk) with

2. C ⊆ CRk+1 ⊆ CRk and
⋂

k CRk = C (which is equivalent to
⋂

k CRk = C when each
CRk is closed) .

Then
{

gk = − fRk + δCRk

}∞
k=1

epi-converges to g = − f + δC .

Proof Let g = − f + δC . Note that we have, for any x , that

gk (x) = − fRk (x) + δCRk
(x) ≤ − f (x) + δC (x) = g (x) .

Let Bδ(x̄) = {x | ||x − x̄ || ≤ δ} where || · || is any norm. Therefore, for any δ > 0 and
x̄ ∈ dom f ∩ C we have (cf. [55, Exercise 7.3])

e- lim sup
k→∞

gk (x̄) = sup
δ>0

lim sup
k→∞

inf
x∈Bδ(x̄)

gk (x)

≤ sup
δ>0

inf
x∈Bδ(x̄)

g (x) ≤ g (x̄) = − f (x̄) + δC (x̄) , (34)

with the last inequality following from inf x∈Bδ(x̄) g (x) ≤ g (x̄) for all δ > 0. By [55,
Theorem 7.46], we always have (for any extended real-valued sequence)

123



Journal of Global Optimization (2022) 84:43–76 57

e- lim inf
k→∞

(− fRk

)
(x̄) + e- lim inf

k→∞ δCRk
(x̄) ≤ e- lim inf

k→∞

(
− fRk + δCRk

)
(x̄)

= e- lim inf
k→∞ gk (x̄) . (35)

Under our assumptions, e- lim infk→∞(− fRk )(x̄) = − f (x̄) and e- lim infk→∞ δCRk
(x̄) =

δC (x̄). This is because C ⊆ CRk+1 ⊆ CRk and
⋂

k CRk = C implies that {δCRk
}∞k=1 is a

monotone non-decreasing sequence of functions with

epi

[
sup

k
δCRk

]
= epi δ∩k CRk

= epi δ∩k CRk
= epi δC .

Hence, (34) and (35) implies

− f (x̄) + δC (x̄) ≤ e- lim inf
k→∞

(
− fRk + δCRk

)
(x̄) = e- lim inf

k→∞ gk (x̄)

≤ e- lim sup
k→∞

gk (x̄) ≤ − f (x̄) + δC (x̄)

and, thus, equality ensues. �


4.1.3 Application to the convergence of the Lagrangian bounds

In this subsection, we will demonstrate the connection between the p-Lagrangian dual func-
tion φ̂p and the Lagrangian dual function φ of the primal RDEM problem, analogously to the
developments presented in Sect. 2. We begin with some elementary observations that will be
useful in the developments hereinafter.

Proposition 9 Let f be the objective function of the primal MIQCQP problem and f̄ be its
optimal value. Let φ be the Lagrangian dual function of the correspondent LDP and the
functions φ̂p : R|S|−1×|V I | → R be the p-Lagrangian dual function of the correspondent
p-LDP, where p ∈ Z

−. Then the following statements are true.

(i) φ̂p is convex, ∀p < 0.
(ii) φ̂p2 ≥ φ̂p1 ∀p1 < p2 < 0.

(iii) φ̂p ≥ φ, ∀ p < 0.
(iv) φ̂p ≥ f , ∀ p < 0.
(v) inf

λ
φ̂p2(λ) ≥ inf

λ
φ̂p1(λ) ≥ inf

λ
φ(λ),∀p1 < p2 < 0.

Proof Statement (i) is analogous to Proposition 2. On the other hand, the statements (ii) and
(iii) are a direct consequence of Theorem 5. In particular, (iii) is also a consequence of the
fact that φp → φ as p → −∞.

From Proposition 3, we know that φ ≥ f . From statement (iii), we have that φ̂p ≥ φ. It
follows by transitivity that φ̂p ≥ f , which proves (iv). Lastly, combining statements (ii) and
(iii) and taking the infimum leads us to the conclusion in statement (v). �


The following results show that the study of perturbations of convex optimisations prob-
lems and how this affects their Lagrangian relaxations is essentially the analysis of the
interaction of epi-convergence with conjugation.

To this end, let f s : R|V I |+|V C |+|V C |2 → R and gs,r : R|V I |+|V C |+|V C |2 → R, ∀s ∈ S
and ∀r ∈ R, be continuous twice-differentiable functions. By x−s′

we denote the vector
reduced by one dimension when removing the s′ component, which, in turn, represents the
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reference scenario in the formulation of the RDEM. The associated Lagrangian relaxations
are given by:

− φ̂p (λ)

= inf
(x,(y,w))

⎡

⎣
∑

s∈S

(− f s) (xs ,
(
ys , ws))+

∑

s∈S\{s′}

(−λs)
 (xs′ − xs
)

: (xs ,
(
ys , ws)) ∈ Cs

Rp

⎤

⎦

= − sup
(x,(y,w))

⎡

⎣
∑

s∈S\{s′}

(
λs)
 (xs′ − xs

)
−
∑

s∈S

((− f s) (xs ,
(
ys , ws))+ δCs

Rp

(
xs ,
(
ys , ws)))

⎤

⎦

= − sup(
x−s′,

(
y−s′ ,w−s′

))

∑

s∈S\{s′}

[(−λs)
 xs −
(
− f s (xs , (ys , ws)

)+ δCs
Rp

(
xs ,
(
ys , ws)))]

− sup(
xs′ ,

(
ys′ ,ws′

))

[(
λs′)

xs′ −
(

− f s′ (
xs′

,
(

ys′
, ws′))+ δCs′

Rp

(
xs′

,
(

ys′
, ws′))

)]

= −
⎛

⎝
∑

s∈S\{s′}

(
− f s + δCs

Rp

)
⎞

⎠
∗ (

−λ−s′
, (0, 0)

)
−
(

− f s′ + δCs′
Rp

)∗ (
λs′

, (0, 0)
)

,

where λs′ = ∑
s∈S\{s′} λs .

We will need to utilise a result that examines epi-convergence considered through the
conjugation operator to obtain a result regarding the convergence of the optimal Lagrangian
bound. The reason for this is that epi-convergence is widely recognised as the primary form
of convergence under which we have convergence of the associated marginal mapping.

From Proposition 9, we have that −φ̂p (λ) ≤ v
(
{− f s}s∈S ,

{
Cs

Rp

}

s∈S

)
, which implies

that infλ φ̂p (λ) ≥ v
(
{ f s}s∈S ,

{
Cs

Rp

}

s∈S

)
, where

inf
λ

φ̂p (λ) = inf
λ−s′

⎛

⎝
∑

s∈S\{s′}

(
− f s + δCs

RP

)
⎞

⎠
∗ (

−λ−s′
, 0
)

+ inf
λs′

(
− f s′ + δCs′

Rp

)∗ (
λs′

, 0
)

.

When we consider this dual form of the problem PRk to obtain the p-LDP with p = −k, we
will denote the corresponding dual function by φ̂−k . In what follows, the functions fk :=
−∑s∈S f s

Rk
+ δCs

Rk
are equi-hypercoercive due to the boundedness assumption on Cs

Rk
and,

thus, we can use the following result to state the epi-convergence of φ̂p as p → −∞. Note
that this result does not assume { fk}∞k=1 is a sequence of convex functions.

Theorem 10 (adapted from [49,Corollary 20]) If the functions { fk} and f : Rn → R∪{+∞}
are proper, lower semi-continuous with f bounded below on bounded sets and { fk} equi-
hypercoercive (in the sense that lim‖x‖→∞ fk (x)

‖x‖ = +∞ uniformly in k) then

e- lim
k

fk = f implies e- lim
k

f ∗
k = f ∗.

This enables us to state the following general result.

Corollary 11 Consider the optimisation problem PS involving a proper-closed, lower semi-
continuous functions { f s}s∈S and a closed sets {Cs}s∈S. Suppose we have a sequence of
increasingly tighter relaxations of the optimisation problem given by

PRk : min.

{
−
∑

s∈S

f s
Rk

(
x, (ys, ws)

) | (x, (ys, ws)
) ∈ Cs

Rk
, s ∈ S

}
.
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We assume

(i) f s
Rk

(x, (ys, ws)) ≥ f s
Rk+1

(x, (ys, ws)) ≥ f s (x, (ys, ws)) for all (x, (ys, ws)) ∈ Cs
Rk

,

s ∈ S and epi (− f s) = ⋂
k epi

(
− f s

Rk

)
with

(ii) for some K > 0 we have Cs ⊆ Cs
Rk+1

⊆ Cs
Rk

⊆ BK (0), s ∈ S and
⋂

k Cs
Rk

= Cs

(which is equivalent to
⋂

k Cs
Rk

= Cs when each Cs
Rk

is closed).

Let
{
φ̂−k (·)

}∞
k=1

be the associated sequence of scenario-wise relaxation of the problems

PRk . Then
{
φ̂−k (·)

}∞
k=1

epi-converges to φ (·) where
{
φ̂−k (·)

}∞
k=1

and φ (·) are all convex,

proper and closed.

Proof As the functions −
∑

s∈S

f s
Rk

+ δCs
Rk

are equi-hypercoercive in the following (due

to the boundedness assumption on Cs
Rk
) we have, from combining Proposition 6 and 8 ,

that

{
−
∑

s∈S

f s
Rk

+ δCs
Rk

}
epi-converges to −

∑

s∈S

f s + δCs and so by Theorem 10, and the

fact that φ̂−k (and φ) are obtained via conjugation, we have
{
φ̂−k (·)

}∞
k=1

epi-converges to

φ (·) .

�

Furthermore, as the Lagrangian dual functions are convex (cf. Proposition 9), we can

finally arrive to the convergence result we were aiming at.

Proposition 12 Consider the optimisation problem P involving a proper-closed, lower semi-
continuous functions { f s}s∈S and a closed sets {Cs}s∈S. Suppose we have a sequence of
increasingly tighter approximations of P given by

PRk : min.

{
−
∑

s∈S

f s
Rk

(
x, (ys, ws)

) | (x, (ys, ws)
) ∈ Cs

Rk
, s ∈ S

}
,

posit the assumption as in Corollary 11. Then
{
φ̂−k (·)

}∞
k=1

converges uniformly on bounded
sets.

Proof Weutilise [55, Theorem7.17], that says thatwhenφ is a convex, lower semi-continuous

function on R
n , and dom φ has nonempty interior, the epi-convergence of

{
φ̂−k (·)

}∞
k=1

to

uniform convergence of φ(·) is equivalent to
{
φ̂−k

}
converges uniformly on all compact

subsets of dom φ that does not contain boundary points of dom φ. As
{

Cs
Rk

}∞
k=1

are contained

in a bounded set then dom φ is the whole space so combining [55, Theorem 7.17] and
Corollary 11 we immediately obtain uniformly convergence on bounded sets. �


We now finish this analysis by verifying that our problem satisfies the assumptions of
Proposition 12 and that this ensure convergence of the optimal Lagrangian bound. We note
that the latter could not be proven without the utilisation of epi-convergence. Denote by int C
the interior of set C and by conv f the convex function whose epigraph is formed by taking
the convex hull of the set epi f . We say that a sequence { fk} of functions is eventually level-
bounded if for each α ∈ R the sequence of sets levα fk := {x | fk(x) ≤ α} is eventually
contained in a bounded set.
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Theorem 13 Consider the problem DEM as formulated as problem (P) in Sect. 4.1.1 along
with its approximation (PRp ). We employ Lagrangian duality to the problem PRk to obtain

the p-LDP with p = −k and denote the corresponding Lagrangian dual function by φ̂−k .

Then,
{
φ̂−k (·)

}∞
k=1

converges uniformly on bounded sets and epi-converges. If, in addition,

0 ∈ int convCs, ∀s ∈ S, then we also have the optimal dual values:

inf
λ

φ̂−k(λ) −−−→
k→∞ inf

λ
φ(λ)

Furthermore if εk ↓ 0 and λk ∈ εk-argmin φ̂−k :=
{
λ | φ̂k (λ) − εk ≤ inf φ̂k

}
, the sequence

{λk} is bounded with all its accumulation points in argmin φ. If argmin φ consists of a unique
point λ̄ then λk → λ̄.

Proof To apply Proposition 12, we note that (PR−k ), as stated in Sect. 4.1.1, has an objective
function that is continuous and that is not dependent on k, hence assumption (i) ofCorollary 11
is satisfied. Assumption (ii) of Corollary 11 follows immediately from Proposition 6 and
the fact that Cs

Rp
are closed and uniformly bounded sets due to the box constraints X and

Y s being bounded. It follows from Proposition 12 that
{
φ̂−k (·)

}∞
k=1

epi-converges (and

uniformly on bounded sets). All other claims follow from applying [55, Theorem 7.33]
combined with [55, Exercise 7.32(c)], once we have established that φ̂−k are eventually
level set bounded. This follows from applying [52, Theorem 4C], once we establish that

0 ∈ int dom conv
∑

s∈S\{s′}

(− f s + δCs
)
and 0 ∈ int dom conv

(
− f s′ + δCs′

)
, noting that

convex conjugate satisfies (conv g)∗ = (g)∗. This, in turn, is true whenever 0 ∈ int convCs ,
∀s ∈ S. �


4.2 Motivating example: part 2

We revisit the motivating example in Sect. 2.1. By employing the p−Lagrangian relaxation
as described before, we obtain the p-LDP formulation

max. w,Δw,z,Δx,x̂,x w1,2 + λ(x1 + 2x2 − 1)

s.t.: w1,2 = 2−1 x̂1,2,−1 + v1,2

x2 = 2−1z2,−1 + Δx2

0 ≤ x̂1,2,−1 ≤ z2,−1

0 ≤ x1 − x̂1,2,−1 ≤ 1 − z2,−1

2−1(x1 − 1) + Δx2 ≤ Δw1,2 ≤ 2−1x1

0 ≤ Δw1,2 ≤ Δx2

z2,−1 ∈ {0, 1}
x1, x2 ∈ [0, 1.75]
Δx2 ∈ [0, 2−1].

(36)

In this example, the variable x2 is discretised with a precision p = −1 and the Lagrangian
multiplier value is fixed to -0.l00. Solving the resulting problem with Gurobi 9.0 [34], we
obtain the p-Lagrangian dual bound φ̂−1(−0.100) = 0.800, which is valid since it is greater
than 0.125. Notice, however, that this is not a tight bound since it was obtained considering
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an arbitrary Lagrangian multiplier. This bound value could be strengthened by solving the
p-Lagrangian dual problem employing a nonsmooth optimisation method. In this example,
employing a subgradient method [36], the optimal Lagrangian multiplier λ = −0.333 and
correspondent value of the dual objective function φ(−0.333) = 0.334 would be obtained.
In the next section, we discuss the solution methods for LDPs. Solving the p-LDP with a
precision p = −1 and Lagrangian multiplier value fixed to -0.333 provides with a bound
φ̂−1(−0.333) = 0.334.

If one was to obtain a tighter bound φ̂p , it would be necessary to choose more carefully
the parameter p. In Sect. 5 we present a solution method for p-LDPs that simultaneously
finds appropriate values for the Lagrangian multipliers and precision factor p.

5 A p-Lagrangian decomposition algorithm

Algorithms to solve a nonconvex problem, such as the MIQCQP being considered, usually
rely on computing (and successively improving) primal and dual bounds. In the proposed
setting, dual bounds - upper (lower) bounds, in a maximisation (minimisation) problem - are
computed by finding the optimal value for p-LDP for a given set of Lagrangian multipliers,
which in turn have their accuracy regulated by the value of the precision factor p. The primal
bound - a lower (upper) bound for a maximisation (minimisation) problem - can be obtained
as the value of the objective function for a primal feasible solution.

The algorithm for solving the p-LDP combines two strategies: (i) search for optimal
Lagrangianmultipliers and (ii) tightening the RNMDTp as the iterations progress by decreas-
ing the parameter p, thus gradually decreasing the UB. However, this method might have a
significant disadvantage associated with a rapid increase in the number of binary variables
that are added to the LDP, since all discretised variables are expanded using the same number
of partitions. This makes it harder to compute the solution for the p-LDP due to the accel-
erated increase in the number of variables and constraints. To mitigate this adverse effect,
the algorithm proposed in this section employs the dynamic precision algorithm in [1]. The
major benefit of this algorithm is that it only increases the precision (and thus the number
of auxiliary variables and constraints) of the variables that will potentially improve (i.e.,
tighten) the relaxation and which are dynamically chosen at each iteration. Concurrently, the
method convergence is ensured by periodically increasing the precision of the variables that
have remained unchanged (that is, that have not been selected in a predefined number of past
iterations).

Therefore, the single precision parameter p is replaced with a vector ps
j ,∀s ∈ S and

j ∈ DS, for each scenario-based p-LDP subproblem (30). Each entry is associated with the
number of partitions that is used to increase the precision of the variable ys

j for all s ∈ S and
j ∈ DS. The procedure for solving p-LDP is summarised in Algorithm 1.

The variables for which the precision will be increased (i.e., ps
j will be decreased) are

chosen by ranking them using the function

frank(s, j) =
∑

r∈R

{
|Qs,r

j, j (w
s
j, j − ys

j
2
)| + 2

∑

(r ,i)|i> j |(i, j)∈QT

|Qs,r
i, j (w

s
i, j − ys

i ys
j )|
}
. (37)

The term N1 is an auxiliary parameter corresponding to the number of ranked variables that
are selected to have their precision increased, while N2 is the period (measured in number
of iterations) of the periodic increase in precision of the variables that remained unchanged
(in the last N2 iterations).
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Algorithm 1 p-LD algorithm
Step 0. Set ps

j = −1, ∀s ∈ S and j ∈ DS. Let U B = +∞, i teration = 0, and assume given starting
Lagrangian multipliers, N1, and N2.
Step 1. Update iteration k = k + 1
Step 2. Compute a dual bound (UB) by finding an optimal value of the p-LDP for the fixed values of the
Lagrangian multipliers and obtain a primal feasible solution (LB) using the Lagrangian-based heuristic.
Step 3. Update the Lagrangian multipliers values using a nonsmooth optimization algorithm.
Step 4.
if a stop condition of type 1 is met then

if i teration + 1 is not a multiple of N2 then
Step 5. Rank the combinations of indexes s, j, ∀s ∈ S and j ∈ DS using frank and for the
first N1 combinations s, j ranked by frank set ps

j = ps
j − 1.

else
Step 5. Let ps

j = maxs, j {ps
j }. Set ps

j = ps
j − 1, ∀ j, s | ps

j = ps
j .

end if
else return to Step 2.
end if
Step 6.
if a stop condition of type 2 is met then stop.
else return to Step 1.
end if

The Lagrangian-based heuristic mentioned in Step 2 of Algorithm 1 can be any method
capable of generating primal feasible solutions. In this study, the heuristic employed at each
iteration of the p-LD algorithm consists of two core elements. First, using the optimal values
of the integer decision variables x̄ s

j for the p-LDP calculated at the iteration k, the averaged
values are computed as follows.

xavg
j =

∑
s∈S

x̄ s
j

|S| ,∀ j ∈ V I .

Then, the optimal value of the variables ȳs
i , calculated at the iteration k, are used to find a

feasible solution of the primal RDEM problem when integer variables xs
j are fixed to the

nearest integer (rounded) values of xavg
j , ∀ j ∈ V I , s ∈ S. This can be achieved by solving to

optimality the primal problemwith fixed integer variables and using the values ȳ j,s as a warm
start for continuous variables. The objective function value of the primal problem is further
used as a lower bound (LB) if the value obtained is higher than the existingLB.Hereinafter,we
refer to this heuristic to obtain primal feasible solutions as the Lagrangian-based heuristic.
It is worth mentioning that the same strategy is also employed in the dynamic-precision
algorithm for solving MIQCQP problems using RNDMT (dp-RNMDT) proposed in [1].
Yet, this strategy is likely to be inefficient in more general settings. Thus, when possible,
appropriate knowledge about the problem structure should be exploited for generating primal
feasible solutions.

The nonsmooth optimisation algorithm mentioned in Step 3 is employed to update the
Lagrangian multipliers values. In this paper, we used the bundle method. For a discussion on
methods for performing the Lagrangian multiplier updates, please refer to the “A”. Notice
that there are two types of stopping criteria in the Algorithm 1. A stop condition of type 1 in
Step 4 is a stop criterion for the p-LDP multipliers update algorithm (i.e., bundle method). A
stop condition of type 2 is a condition to stop the whole algorithm, e.g., time limit, iteration
limit, or a threshold on the relative or absolute gap computed using incumbent primal and
dual bounds.
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Aiming to improve the convergence behaviour of the p-LD algorithm when using the
bundlemethod (in Step 3), wemodified the initialisation of the bundlemethod parameters. As
a starting value for the centre of mass λcentre

0 , we considered the final value of the Lagrangian
multipliers from the previous iteration of the p-LD algorithm, with the expectation that it
would reduce the number of serious steps required until convergence (for details on the
bundle method implementation, please refer to the “A”).

For the sake of completeness, the following theorem formally states the convergence
of Algorithm 1. Notice that optimality gap obtained from Algorithm 1 is not guaranteed to
converge to zero, as,whilewe canprovide convergenceguarantees for the dual bound (UB), no
such guarantee can be provided for the Lagrangian-heuristic generating primal bounds (LB).
Nevertheless, as illustrated in Sect. 6, often Algorithm 1 is capable of obtaining reasonably
good solutions with reasonably small optimality gaps.

Theorem 14 Consider the RDEM problem defined in Sect. 1 and corresponding p-
Lagrangian dual problem p-LDP with the objective function φ̂p for a fixed value p < 0
as defined in Sect. 4. Let f ∗ be the optimal objective value of the RDEM problem and UB∗
(LB∗) be the corresponding dual bound (primal bound) value resulting from applying Algo-
rithm 1 to p-LDP. Then, provided that Step 3 of Algorithm 1 utilises a method guaranteed to
converge to the optimal Lagrangian multipliers λp := arg inf φ̂p, Algorithm 1 converges to
the point UB∗ (LB∗) that provides an upper (lower) estimate of the optimal objective value,
i.e. U B∗ ≥ f ∗ ≥ L B∗.

Proof Note that the employment of the bundle method in Step 4 of Algorithm 1, guarantees
finite convergencewhen solving p-LDP for a given value of p (see for example [7, Proposition
5.3.2]). Moreover, note that Step 4 guarantees that p → −∞ since, at every N2 iterations,
all of the variables that have not had their precision p updated will have their value ps

j
decremented in one unit. Therefore, we have that

U B∗ = lim
p→−∞

{
inf
λ

φ̂p

}
≥ f ∗ ≥ L B∗.

by Proposition 3 and Theorem 13. �


6 Computational experiments

In this section, we present numerical results for randomly generated nonconvex RDEMprob-
lems solved with Algorithm 1 (p-LD).We have generated random instances that replicate
the separable structure of two-stage stochastic programming instances. The computational
efficiency of the p-LD was compared with Gurobi’s (version 9.0.0) spatial branching algo-
rithm (Full-space) [34] and the direct employment of dp-RNMDT. All the experiments were
designed using the Julia (version 1.3.1) language [8] and the commercial solver Gurobi (ver-
sion 9.0.0). All code and instances generated are freely available on the GitHub repository
github.com/gamma-opt/p-Lagrangian_relaxation.jl. The code was run on Triton, Aalto Uni-
versity’s high-performance computing cluster, on a Dell PowerEdge C6420. The node has
two Intel Xeon Gold 6148 20-core processors and 192GB of DDR4-2667 memory.

6.1 Design of the experiments

The three methods were applied to solve the collection of randomly generated instances.
Each set of instances contained the RDEM problems with 5, 10, 15, 20, and 25 scenarios,
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Table 1 Instance problems dimensions (per scenario)

Instance size Number of contin-
uous variables

Number of integer
variables

Number of constraints

Small (S) 20 5 45

Medium (M) 30 10 60

Large (L) 40 15 75

represented in three sizes (small, medium, and large) as described in Table 1. Thus, the
smallest instance has a total of 5 scenarios and therefore 100 continuous variables, 25 integer
variables and 225 constraints, while the largest instance has 1000 continuous variables, 375
integer variables, and 1875 constraints. The quadratic matrices Qs,r

i, j for all s ∈ S, r ∈ {0}∪ R
were randomly generated with approximately 80% density, a number that was arbitrarily
chosen to match that observed in instances from [63]. The generation process of each group
was replicated five times using different random seeds forming a total of 75 instances. In
all experiments, we considered the first scenario as the reference index for formulating the
NAC. More details regarding the instance generation procedure are given in “B”.

The p-LD Algorithm 1 was implemented in two versions utilising sequential and parallel
computing (using multiple threads). The parallelisation was based on the scenario subprob-
lems of the p-LDP and for each instance, the number of processes utilised for parallel
computing was equal to the number of scenarios in the instance.

Table 2 presents the parameter values for p-LD, including the parameter values for the
dynamic precision-based algorithm and for bundle method used for updating the Lagrangian
multipliers within p-LD. The termination tolerance for the dynamic precision-based algo-
rithm was used to control the gap between primal and dual bounds. In turn, the termination
tolerance for the bundlemethodwasbasedon thepairwise differences between theLagrangian
dual function values considering the last three iterations (see Sect. 5 and “A”, respectively,
for more details on the termination criteria; a discussion on setting different values for N1 and
N2 and their impact on the algorithm’s performance is given in [1]). It is worth mentioning
that both methods can be sensitive to the initial parameter values, which were set based on
preliminary experiments on the smaller instances.

6.2 Numerical results

Table 3 presents the average values of the optimality gaps achieved within the predefined
time limit and average running times (i.e., the time required by the algorithms to converge or
if it was terminated). The optimality gaps were calculated as the relative difference between
the UB attained using one of the methods to solve the dual problem and LB obtained by
generating the primal feasible solution using the Lagrangian-based heuristic. In the rows
highlighted with the symbol “*” we discarded the random seeds for which the heuristic
method found a LB providing a relative gap higher than 500% for the p-LD. The values are
shown for all threemethods, i.e., Solver (employingGurobi to solve the RDEMproblem), dp-
RNMDT and p-LD. The p-LD algorithm was executed serially (i.e., with no parallelisation)
and also parallelising the solution of the p-LDP. To highlight the potential improvement that
the parallelisation would provide, we present in the last column the time taken for the parallel
p-LD to perform the same number of iterations observed in the sequential execution of p-LD.
We highlight (with bold font) the cells corresponding to the serial method having superior
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Table 2 Algorithm parameters

dp-RNMDT parameters

Iteration limit 100

Time limit (s) 3600

Termination tolerance (relative) 0.1%

N1 10% of the total number of the continuous
variables

N2 5

p-LD parameters

Iteration limit 100

Termination tolerance (absolute) 100

β 0.7

ck for all k 0.05

Initial values of λs
j , ∀ j ∈ V I and ∀s ∈ S 0

performance in terms of optimality gaps, and running time at convergence (indicated by the
solution time is seconds) or termination due to the time limit of 3600s (indicated by the letter
“T” in the column “Time (s)”).

From the numerical results, one can conclude that the proposed method performed better
than the commercial solver and dp-RNMDT. Solving the full-space problem never converged
within the time limit set and never attained a gap better than roughly 130%, highlighting how
challenging these problems are under a computational standpoint even for relatively small
instances. Comparing the dp-RNMDT and sequential p-LD, one can notice that for most
instances, with exception of those with 5 scenarios, utilising the p-LD method allows for
obtaining relative gaps up to six times smaller, as is the case for the medium instance with
25 scenarios. Moreover, the advantage of the dp-RNMDT considering the gap attained for
the instances with 5 scenarios is partially due to the heuristic method employed for the LB
generation, which happened to be able in some of the experiments to generate better primal
bounds from the solution obtained for dp-RNMDT. Nevertheless, another takeaway is the
superior performance of p-LD in terms of solution time for two-thirds of the instances.
Furthermore, the parallelised version of p-LD yields improvements in solution time of up to
approximately 5 times, as is the case for large instances with 25 scenarios.

Table 4 provides more information on the performance of dp-RNMDT and sequential p-
LD. The numerical results for the generated instances were organised in groups by random
seeds and in each group, two columns are associated with each of the techniques. The first
column “UB” reports the relative difference between the UB generated by the two methods,
which was calculated as

UB − min(UBdp-RNMDT,UBp-LD)

min(UBdp-RNMDT,UBp-LD)
× 100, (38)

where “UBdp-RNMDT” and “UBp-LD” are theUBgenerated by dp-RNMDTand p-LD, respec-
tively, and “UB” is the the UB generated by the method considered in the column. Notice
that, for the same random seed, the entry with value 0.00% indicates that the method found
the best of the UB found for that instance, while the other entries show how much worse
(larger) the other UB obtained are.
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As before, we highlight (with bold font) the cells corresponding to the method having
superior (or equal) performance. The second column “Time (s)” represents the time required
by the method to converge, if the cell contains a number, or if it was terminated due to the
time limit of 3600s, which is indicated with the letter “T”. Analogously, with the bold font,
we emphasise the cases when the correspondent method converged faster. The last row in
both columns summarizes the information, showing the number of cases in which themethod
generated an equal or better bound for the column “UB” and the number of instances for
which the method converged for the column “Time”. The cells in bold font indicate which
method performed better in terms of generating bounds. Similarly, we highlight with bold
font which method converged more frequently. As one can observe from the table, in each
random seed-based group sequential p-LDpresented a superior performance for both criteria.

Figure 1 illustrates the progress of the parallel p-LDwith respect to the duality gap and the
elapsed time for three arbitrarily selected instances of different sizes, each with 15 scenarios.
As can be seen, the plots indicate the existence of a threshold value in the number of iterations
performed by p-LD after which the reduction rate in the duality gap decreases considerably,
while the computational time required per iteration continues to steadily increase (noticeable
by the upward curvature of the time curve). The latter is a consequence of the increase in the
number of binary variables in the p-LDP as the precision of the relaxation increases.

In the experiments conducted, we noticed that the time taken in each iteration is mostly
(roughly 90%)dedicated to solving the (MIP scenario subproblems) p-LDP,while the remain-
der is majorly taken performing the heuristic to obtain primal feasible solutions. Only a
negligible percentage of the iteration time (considerably less than 1%) is taken by the bundle
method to calculate the Lagrangian multipliers. This pattern was observed for all instances,
regardless of the number of scenarios or the size of the scenario subproblems,whichmotivates
the observed benefits arising from parallelisation.

6.2.1 Performance profiles

To provide a structured comparison between the p-LD and dp-RNMDT, we present perfor-
mance profiles based on [30]. Let P be the set of all the problem instances and A be the set
of the algorithms used to solve the problem instances p ∈ P , i.e., dp-RNMDT, p-LD and
parallelised p-LD. Let tp,a be computing time required by the algorithm a ∈ A to solve the
problem p ∈ P . For all p ∈ P and a ∈ A let the time performance ratio be defined as

r t
p,a = tp,a

mina∈A{tp,a} .

Let Pt
τ,a = {p ∈ P : r t

p,a ≤ τ } and, for every a ∈ A, let the overall assessment of the time
performance be defined as

ρt
a(τ ) = |Pt

τ,a |
|A| .

Analogously, let ubp,a be the UB achieved by the algorithm a ∈ A for the problem p ∈ P .
Let the UB performance ratio be defined as

rub
p,a = ubp,a

mina∈A{ubp,a} .
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(a) small

(b) medium

(c) large

Fig. 1 p-LD gap and time plots for instances with 15 scenarios
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Fig. 2 Performance profile based on the upper bounds

Fig. 3 Performance profiles based on the convergence time

Let Pub
τ,a = {p ∈ P : rub

p,a ≤ τ } and let the UB performance assessment be defined as

ρub
a (τ ) = |Pub

τ,a |
|A| .

Figures 2 and 3 present the dual (upper) bound and time performance profiles, respectively.
In Fig. 3, the parallelised version of the p-LD is excluded because the parallelisation did not
considerably affect the quality of the bound generated. In both figures, the horizontal axes
are plotted on a logarithmic scale.

As one can observe from the Figs. 2 and 3 , p-LD demonstrated superior performance
when compared to dp-RNMDT in both bound generated and time performance criteria. In
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addition, Fig. 3 indicates that the computational performance superiority of p-LD can be
reinforced by means of parallelisation techniques.

7 Conclusions

In this paper, we proposed a novel decomposition method named p-Lagrangian decompo-
sition, which consists of an alternative framework to achieve decomposition for nonconvex
MIQCQP problems. The core idea of the p-Lagrangian decomposition is to combine two
techniques: Lagrangian decomposition and RNMDT. Lagrangian decomposition is a broadly
known decomposition framework commonly applied to solving large-scale constrained opti-
misation problems with exploitable structure, which is the case whenever the relaxation
of the complicating constraints results in a decomposable version of the original problem.
Nevertheless, the nonconvex nature of the primal problem may lead to substantial issues, in
specific, the necessity of solving nonconvex problems when evaluating the Lagrangian dual
function. Therefore, we address this issue by applying a mixed-integer based relaxation tech-
nique, named RNMDT. Consequently, the primal problem is converted into a decomposable
mixed-integer problem with significantly easier tractable Lagrangian dual function.

The values of the Lagrangian multipliers along with the value of the precision parameter
p of the RNMDT allow for controlling the quality of the relaxation. Therefore, we proposed
a new algorithm named p-LD inspired by the dynamic-precision based method developed in
[1] combined with the bundle method for updating the Lagrangian multipliers. Additionally,
the decomposable structure of the Lagrangian dual problem is amenable to parallelisation,
which can significantly enhance the computational performance.

The numerical experiments suggest that the p-LD algorithm has considerable advantages
over the commercial solver Gurobi in obtaining dual bounds within the predefined time limit.
The experiments also indicate that significant savings in computational timemay be achieved
when introducing parallel computing.

Despite the promising performance suggested by the numerical results, the p-LD algo-
rithm has two important shortcomings. The first is the dependence on a Lagrangian-based
heuristic for generating primal feasible solutions which are likely to not be able to attain
a desired optimality tolerance. The second issue relates to the duality gap arising from the
mixed-integer nature of the primal problem combined with the imprecision of the RNMDT
relaxation.

Therefore, future research should consider efficient ways to incorporate the p-Lagrangian
decomposition framework within a branch-and-bound setting, which could potentially miti-
gate both issues. In particular, we believe that further advancement of the proposed method
could be achieved by considering augmented Lagrangian instead [22]. Furthermore, the
employment of the p-Lagrangian relaxation for bound generation in a branch-and-bound
framework could bring new light to the classic approach for solving nonconvex mixed-
integer non-linear problems such as a combination of the symbolic reformulation and spatial
branch-and-bound algorithm [58], thus enhancing the computational efficiency of themethod.
Additionally, the p-Lagrangian relaxation could be employed for models arising from equi-
librium problems [63], which naturally yield large-scale MIQCQPs with separable structure.

Moreover, synergies with the alternating direction method of multipliers (or Gauss-Siedel
approaches, such as those explored in [47]) and the employment of inexact variants of bundle
methods (which would allow for controlled imprecision in the solution of the p-Lagrangian
dual problems; see [27, 28]) are interesting avenues to improve the computational perfor-
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mance of the method. Finally, under a theoretical standpoint, it would be interesting to
investigate the convergence rate of the proposed method and whether it could be improved
considering alternative nonsmooth optimisation methods for solving the p-LDPs.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Solutionmethods for Lagrangian dual problems

This section describes the approaches for solving the LDP in Sect. 2. In general, the dual
problem is nonsmooth. Nevertheless, it is convex, and there is extensive literature on how to
solve such problems by updating the Lagrangian multipliers.

Held and Karp [35] and Held et al. [36] proposed the classical approach, which became
known as the subgradient method. Improvements of this method were proposed by Camerini
et al. [15] and Fisher [31]. An alternative method that presents better convergence properties
is the cutting-plane method proposed by Cheney and Goldstein [20] and Kelley [38]. An
improvement of this method is presented by Marsten et al. [45]. Other methods include the
Volume algorithm [4] and the bundle method [42, 66] that typically present more stable
convergence than cutting-planes methods. In this study, we employed the bundle method,
since preliminary experiments showed that it provided a good trade-off between convergence
behaviour and ease of implementation. We highlight the interesting connection this creates
with the works related to inexact bundle methods, such as [27, 28], which could be an
exciting future direction for research. There are multiple variations of the bundle method.
Our implementation followed its classical variant, as presented in [7]. The idea of the bundle
method lies in iterating the argument λk+1 as follows

λk+1 ∈ argmin
λ

{Fk(λ) + pk(λ)}. (39)

The Fk is a cutting-plane approximation to f and is defined as

Fk(λ) = max {φ(λ0) + (λ − λ0)
′φ′(λ0), ..., φ(λk) + (λ − λk)

′φ′(λk)}, (40)

while pk(λ) is given by

pk(λ) = 1

2ck
||λ − λcentre

k ||2, (41)

where λcentre
k ∈ {λi , i ≤ k} is a proximal centre. The computation of the new proximal centre

λcentre
k+1 depends on the results of a specified test indicating whether “sufficient progress” has

been made or not. This serious step condition can be stated as

λcentre
k+1 =

{
λk+1 if φ(λcentre

k ) − φ(λk+1) ≥ βδk (serious step)

λcentre
k if φ(λcentre

k ) − φ(λk+1) < βδk (null step),
(42)

where β ∈ (0, 1), and δk = φ(λcentre
k ) − (Fk(λk+1) + pk(λk+1)).
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As a termination criterion, λk+1 = λcentre
k is used. However, unless φ is polyhedral,

the finite termination is unlikely. Therefore, it is common to stop the algorithm when the
difference between φ(λk+1) and φ(λk) remains within a certain tolerance.

B Instance generation

All parameter values were generated using pseudo-random number generator function with
predefined minimum and maximum values for each parameter. The pseudo-random number
generator was initialised with the random seeds 0,1,2,3, and 4 to ensure the generation of the
same random numbers in multiple executions of the algorithms.

The lower-bound values for the continuous and integer variables were set to 0 while the
upper-bound values were randomly selected as integer numbers between 50 and 100.

All matrices Qr , for all r ∈ R∪{0}were generated using Julia’s (linear algebra) embedded
functions for generating symmetric matrices with predefined densities of approximately 80
%. The lower and upper limits for each of the randomly generated matrix elements were
fixed to 0 and 100, respectively. These bounds were also used to generate the coefficients
of the linear functions and linear parts of the affine functions. The constants appearing in
affine functions were generated using a pseudo-random number generator with lower and
upper bounds set to 0 and 10000000 accordingly. The code used to generate the instances,
as well as the instances in independent files, are available at the GitHub repository github.
com/gamma-opt/p-Lagrangian_relaxation.jl.

C List of acronyms and abbreviations

BD Benders decomposition
BnB Branch and bound
DEM Deterministic equivalent model
DWD Dantzing-Wolfe decomposition
GBD Generalised Benders decomposition
LB Lower bound
LD Lagrangian decomposition
LDP Lagrangian dual problem
LR Lagrangian relaxation
MILP Mixed-integer linear program
MIP Mixed-integer programming
MIQCQP Mixed-integer quadratically constrained quadratic programming
NAC Non-anticipativity conditions
NGBD Nonconvex generalised Benders decomposition
NMDT Normalised multiparametric disaggregation technique
PH Progressive hedging
p-LD p-Lagrangian decomposition
p-LDP p-Lagrangian dual problem
QCQP Quadratically constrained quadratic programming
RDEM Reformulated deterministic equivalent model
RNMDT Reformulated normalised multiparametric disaggregation technique
UB Upper bound
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