
Journal of Global Optimization (2022) 83:639–670
https://doi.org/10.1007/s10898-021-01120-0

Multiple instance classification via quadratic programming
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Abstract
Multiple instance learning (MIL) is a variation of supervised learning, where data consists of
labeled bags and each bag contains a set of instances. Unlike traditional supervised learning,
labels are not known for the instances in MIL. Existing approaches in the literature make use
of certain assumptions regarding the instance labels and proposemixed integer quadratic pro-
grams, which introduce computational difficulties. In this study, we present a novel quadratic
programming (QP)-based approach to classify bags. Solution of our QP formulation links
the instance-level contributions to the bag label estimates, and provides a linear bag classifier
along with a decision threshold. Our approach imposes no additional constraints on relating
instance labels to bag labels and can be adapted to learning applications with different MIL
assumptions. Unlike existing specialized heuristic approaches to solve previous MIL formu-
lations, our QP models can be directly solved to optimality using any commercial QP solver.
Also, kindly confirm Our computational experiments show that proposed QP formulation is
efficient in terms of solution time, overcoming a main drawback of previous optimization
algorithms for MIL. We demonstrate the classification success of our approach compared to
the state-of-the-art methods on a wide range of real world datasets.

Keywords Multiple instance learning · Classification · Quadratic programming

1 Introduction

Most datamining approaches focus on solving classification problemsusingmachine learning
and pattern recognition techniques. Classification tasks require input samples with given
outputs, known as the class labels. In multiple instance learning (MIL), instances are grouped
into bags and a class label is known for each bag, whereas the instance labels are not fully
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Fig. 1 An illustration of MIL setting for image classification. Images on the left with located horses inside
the red rectangles are classified as positive whereas the other images form the negative class

provided. The data representation and learning setup of MIL are in alignment with many real
world applications. Current research areas of MIL include image classification, drug activity
prediction, text mining and many others [5]. In these applications, global descriptions of
the objects are decomposed into multiple parts. When objects are represented by multiple
parts, only some parts may be relevant for classification. In addition, it is expensive and time
consuming to collect true labels of parts individually. MIL paradigm provides an opportunity
to solve classification problem under these circumstances.

For instance, consider sample images from Corel image classification dataset [6] in Fig. 1.
Under MIL scenario, images correspond to bags and patches sampled from the images cor-
respond to the instances. In this example, images are classified either as positive or negative
based on the presence of a horse on its patches as shown in Fig. 1. Only some patches of an
image are informative for classification and it is sufficient to label the whole image instead
of the individual instances.

Unknown instance labels and uncertainty on the bag formations contribute to the difficulty
of MIL problem. Success of the MIL algorithms depends on their capability of capturing the
internal structures of bags. The most common way of relating bag labels to the individual
instance labels is introduced as standard MIL assumption in the first MIL application [8] and
is widely used in several methods. The standard MIL assumption states that label of a bag is
positive if and only if it contains at least one positive instance, otherwise the bag is negatively
labeled. In Fig. 2, a regular input data with 12 instances and 3 features is used to form a MIL
data with 3 bags following the standard MIL assumption.

Although it is embraced bymanymethods, standard assumption is considered to be restric-
tive for someMILapplications. For example, consider a document retrieval application,where
the bags are articles and multiple sections extracted from them are the instances. The aim is
to detect whether an article is about a specific subject (e.g. finance) or not. A section includ-
ing the predetermined words and word combinations makes this section a positive instance.
However, articles that are not relevant may also contain these words in a particular section
(e.g. including financial terms in the introduction). Thus, standard MIL assumption is not
well suited to this problem. Generalized MIL [1,12,34] is formalized to describe MIL sce-
narios other than the standard MIL under various constraints [34]. Under generalized MIL,
collective MIL assumption [12] models equal contribution of instances to the bag label. The
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Fig. 2 Multiple instance data representation of one positive bag and 2 negative bags with 3 features

idea is to derive a bag-level classifier from an instance-level decision function by averaging
the learning results in underlying instance-feature space.

We propose a novel Quadratic Programming-basedMultiple Instance Learning (QP-MIL)
framework. Our proposal is based on the idea of determining a simple linear function for
discriminating positive and negative bag classes. We model MIL problem as a QP problem
using the input data representation. An optimal solution of our QP formulation returns an
instance-level scoring function. For an unlabeled bag, instance-level scores are averaged
to assess the bag-level score. Finally, class label of the bag is determined according to the
predetermined threshold value. Rather than selecting bag representatives as in standard MIL,
QP-MIL regards collectiveMIL assumption because of itsmodeling capability of the standard
assumption and coverage on other MIL assumptions by means of the smooth average of
instance-level decisions [13].

The remainder of the paper is organized as follows: Sect. 2 summarizes the existing
MIL methods and mathematical programming formulations of MIL. Sect. 3 introduces for-
mal description of the MIL problem and provides an existing SVM-based MIL formulation,
MIHLSVMas a background. Sect. 4 describes the proposedQP-MIL framework. Sect. 5 pro-
vides insights resulting from the numerical comparisons of QP-MIL with MIHLSVM and
presents the classification success and computational efficacy of QP-MIL with the experi-
ments on a wide-range of MIL datasets. Conclusions and future extensions are discussed in
Sect. 6.

2 Related work

Previously, various data-mining and machine learning algorithms have been devised to solve
theMIL problem. These approaches are heuristic algorithms and optimality of their solutions
cannot be guaranteed. In this study, we focus on optimization-based approaches to solveMIL
problem, and we refer the reader to comprehensive surveys [1,5] for other categories of MIL
methods.

SVM classification is extended to MIL setting previously [2,20,22,23,25,37]. Table 1
describes and compares the Multiple Instance Support Vector Machine (MISVM) models in
the literature. The level of the formulations indicates whether the misclassification penalties
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Fig. 3 An illustration of witness selection in MISVMmodels. Red circles indicate instances in negative bags.
In positive bags, instances are represented with blue triangles and witness instances are enclosed in dashed
circles

are incurred for bags or not. The assumptions are qualified as weak if only the standard MIL
assumption holds. Otherwise, if there are additional restrictions reflected to the mathematical
model, assumption status is entitled as strong.

In MISVM models, an instance is selected from a positive bag as a witness to represent
that bag. Figure 3 illustrates standard SVM classification in instance space and bag-level
separation. To classify bags, a witness instance is selected from a positive bag as shown in
Fig. 3. Witness instances are considered to be responsible from bag positivity and must be
correctly classified.

In mi-SVM and MI-SVM formulations [2], two types of constraints are added to the
SVM formulation satisfying at least one sample in each positive bag has a label of one in
mi-SVM and a witness instance is present for positive bags in MI-SVM. MissSVM [37] is
formulated upon MI-SVM [2] with additional constraints on the positive bags. Minimizing
the misclassification error at either extreme, an instance of a positive bag is either positively
or negatively labeled. Another method KI-SVM [22] selects witnesses from positive bags as
key instances.

Sparse transductive MIL formulation (stMIL) [4] has an additional constraint that pulls
all the negative instances in the bag closer to the hyperplane. An �1-norm SVM-based
formulation [23] incorporating the assumption “arbitrary convex combination of instances in
the positive bags represents each positive bag” is a linear program with bilinear constraints.

MIL problem is formulated as amixed 0–1 quadratic programming problem in [20], where
MIL is reduced to instance-level learning, disregarding the bag information. Hard margin
and soft margin maximization formulations of MIL, MIHMSVM and MIHLSVM [25] have
additional bag-level misclassification penalties. A penalty is incurred if all instances in a
positive bag are misclassified or at least one instance in the negative bag is misclassified. The
resulting formulations are mixed integer quadratic programs (MIQPs), which are known to
be NP-hard problems [20].

Most of the aforementioned MISVM models are analyzed in a recent survey [9]. It is
emphasized in [9] that local convergence of the heuristic solution approaches for solving
non-convex MISVM formulations leads to a sacrifice from the classification performance.
The authors also discuss scalability of MISVMmethods: Increased number of instances and
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bags affect model dimensionality and therefore increase both hyperparameter selection and
model solution times.

When SVMs are tailored for MIL, specifically devised SVM solvers [11] can only be used
solving subproblems of various heuristic solution algorithms [2,20,22,23,26,37].We propose
a simplifiedQP formulation, which can be directly solved to optimality using any commercial
QP solver. Instead of utilizing an iterative heuristic procedure, we are able to report exact
solutions of each problem instance. Thus, repetition of the performed classification task is
possible and the resulting classifier is reproducible in this way.

Our study explores the utility of QP-MIL compared to the previous state-of-the-art
MIL approaches. Leading methods in MIL literature are various machine learning-based
approaches. We select several MIL algorithms as baseline methods to demonstrate success
of the MIL classifiers. We carry out another comparison of QP-MIL considering SVM-based
MIL, in terms of model building and classifier testing. We experimented direct solution of a
mixed integer quadratic programming (MIQP) formulation proposed in [25] for comparison.

3 Background

3.1 Problem statement

Let xi be a d-dimensional feature vector of instance i and X = {xi : i = 1, . . . , n} be a set
of instances. Also let yi be a single, discrete-valued feature, specifically the label of instance
i . Then, instance set X = {xi : i = 1, . . . , n} forms the training set. This set can be labeled
with yi , i = 1, . . . , n or can be unlabeled. A bag Bj consists of a set of instances I j formed
by xi ’s and n j is the number of the instances in Bj . Therefore, χ = {(Bj , l j ) : j = 1, . . . ,m}
is a training bag set containing instances and a label l j of each bag. Let an instance-based
classifier be a function from instances to labels f (xi ) → yi , and let g(Bj ) → l j be the
function of a bag-based single classifier. Concisely, given a training set of bags with given
label information χ = {(Bj , l j ) : j = 1, . . . ,m}, our MIL task is to learn a classifier g(Bj )

to predict the labels of input bags.
The sets, parameters and decision variables used in models are given as follows.

Indices:

i = 1, 2, . . . , n: index for the instances
j = 1, 2, . . . ,m: index for the bags

Sets:

I j : set of instances in bag
J+ = { j : l j = 1}: set of positive bags
J− = { j : l j = −1}: set of negative bags
I+ = {i : i ∈ I j ∧ j ∈ J+}: set of instances in positive bags
I− = {i : i ∈ I j ∧ j ∈ J−}: set of instances in negative bags
I = I+ ∪ I−: set of all instances

Parameters:

xi ∈ �d , i = 1, 2, . . . , n: instance vectors
l j : bag labels
C : trade-off parameter

Decision variables of QP-MIL:
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w: d-dimensional feature weight vector
mi , i = 1, 2, . . . , n: instance pseudo class memberships
β j , j = 1, 2, . . . ,m: bag class memberships
δ+
j , δ−

j : slack variables for the positive and negative bag deviations
τ : decision threshold for bag classification

Decision variables of MIHLSVM [25]:

w: d-dimensional feature weight vector
b: bias term
β j , j = 1, 2, . . . ,m: bag class memberships
ηi , i = 1, 2, . . . , n: variables identifying witness instances
zi , i = 1, 2, . . . , n: auxiliary variables replacing ξiηi , i = 1, 2, . . . , n.

3.2 A previous MIQP formulation: MIHLSVM [25]

Multiple InstanceHingeLoss SupportVectorMachines (MIHLSVM) [25] extends traditional
SVM for MIL. Unlike earlier SVM-based approaches to MIL, MIHLSVM defines bag-level
hinge loss to penalize bag misclassifications. The proposed model handles the situation of
nonlinearly seperable classes and the resulting formulation is a MIQP. The authors propose
direct solution ofMIHLSVM in [25] and do not present a heuristic algorithm as those in other
MISVM studies [2,20,22,23,37]. Still, it is difficult to get an exact solution to a MIHLSVM
problem instance. We present our comparisons with MIHLSVM in Sect. 5.4.1.

A MIQP formulation of the described problem [25] is given as below

(MIHLSVM) min
w,b,ξ ,ξ+,ξ−,η,z

1

2
||w||2 + C

⎛
⎝ ∑

j∈J−
ξ−
j +

∑
j∈J+

ξ+
j

⎞
⎠ (1a)

st − (〈w, xi 〉 + b) ≥ 1 − ξi ∀i ∈ I− (1b)

〈w, xi 〉 + b ≥ 1 − ξi ∀i ∈ I+ (1c)∑
i∈I j

ηi = 1 ∀ j ∈ J+ (1d)

ξi ≤ ξ−
j ∀ j ∈ J−,∀i ∈ I j (1e)

ξ+
j =

∑
i∈I j

zi ∀ j ∈ J+ (1f)

zi ≥ ξi − M(1 − ηi ) ∀i ∈ I+ (1g)

zi ≤ ξi ∀i ∈ I+ (1h)

zi ≤ Mηi ∀i ∈ I+ (1i)

zi ≥ 0 ∀i ∈ I+ (1j)

ξi ≥ 0 ∀i ∈ I (1k)

ηi ∈ {0, 1} ∀i ∈ I+. (1l)

In addition to maximization of the margin between bag classes, the objective function
(1a) also minimizes bag misclassifications where a selected constant C controls the trade-off
between two objectives. Constraints (1b) and (1c) are margin constraints enabling penaliza-
tion ofmisclassification using slack variables ξi formisclassified instances. Theweight vector
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w and the offset parameter b defines the instance-level separating hyperplane. Constraint (1d)
forces a positive bag to have a positive instance as a witness. Negative bag misclassifications
are represented by constraint (1e) using slack variables ξ−

j ,∀ j ∈ J−. It is assumed that a
negative bag is misclassified if all of its instances are misclassified.

Constraints (1g)–(1i) with the auxiliary variables zi ≥ 0,∀i ∈ I+ determine misclassifi-
cation of a witness instance in a positive bag. Constraint (1f) assesses the misclassification
of a positive bag as misclassification of its selected witness instance. Constraint (1l) imposes
binary restrictions on witness variables and nonnegativity restrictions on slack variables are
introduced by constraint (1k).

After solvingMIQP formulation, the following classifier can be used for bag classification

sgn

(
max
i∈I j

(〈w, xi 〉 + b)

)
, j ∈ J . (2)

We know that the MIHLSVM formulation given in (1) is a mixed integer quadratic pro-
gram, and therefore, can be solved directly by commercial MIQP solvers. The efficiency
of this approach along with QP-MIL is compared in Sect. 5.4.1 to verify the modeling and
solution quality of the proposed MIL framework.

4 Quadratic programming for multiple instance learning

A bag classification rule can be found by solving the following optimization model:

(QP) min
w,β,m,τ,δ+,δ−

1

2
||w||2 − C

⎛
⎝ 1

m+
∑
j∈J+

δ+
j + 1

m−
∑
j∈J−

δ−
j

⎞
⎠ (3a)

s.t. 〈w, xi 〉 = mi ∀i ∈ I (3b)

β j = 1

n j

∑
i∈I j

mi ∀ j ∈ J (3c)

β j ≥ τ + δ+
j ∀ j ∈ J+ (3d)

β j ≤ τ − δ−
j − ε ∀ j ∈ J− (3e)

0 ≤mi ≤ 1 ∀i ∈ I (3f)

0 ≤δ+
j ≤ 1 ∀ j ∈ J+ (3g)

0 ≤δ−
j ≤ 1 ∀ j ∈ J− (3h)

0 ≤τ ≤ 1 (3i)

Regularization processes are introduced to supervised learning problems for recovering the
important features and for satisfyingmodel generalizability. The quadratic objective function
(3a) performsmaximization of bag classmembershipmargin togetherwith a regularization of
feature weights. In the first term of the objective function (3a), standard �2-norm of theweight
coefficients w are minimized. Therefore, effect of redundant or uninformative features can
also be controlled. The second term of the objective function (3a) maximizes the margin of
bag class estimates formed by the threshold variable τ . In order to handle potential problems
due to class imbalances, summations of the nonzero slack variables δ+

j , ∀ j ∈ J+ and δ−
j ,

∀ j ∈ J− in the objective function (3a) are normalized with the number of positive bags m+,
and the number of negative bags m−, respectively. The hyperparameter C in the objective
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function (3a) tunes the trade-off between regularization of w and maximization of bag class
membership estimate margin.

For each instance, an estimate of the class label is obtained as a pseudo class membership
value. Constraint (3b) determines instance pseudo class memberships mi ,∀i = 1, . . . , n
using the coefficient vector w entry of which corresponds to the weight assigned to a feature
of the input data. For each instance, Constraint (3c) maps bag-level class estimates β j ,∀ j =
1, . . . ,m onto the [0, 1] interval by averaging instance-level scores, which are forced to be
between 0 and 1 by Constraint (3f). Constraints (3d) and (3e) ensure that absolute difference
between class membership estimate β j and the threshold τ are maximized in the objective
function for both positive and negative bags. Constraint (3i) restricts the decision threshold τ

to be between 0 and 1. Similarly, slack variables δ+
j , ∀ j ∈ J+ and δ−

j , ∀ j ∈ J− are restricted
to be between 0 and 1 by Constraints (3g) and (3h). We set ε in Equation (3e) to a small
positive value (10−6) so that class membership value of a negative bag is strictly below the
threshold τ .

QP-MIL models the contributions of all instances in a bag to the bag label collectively.
Averages of pseudo-class membership estimates for instances determine the class member-
ship estimates for the bags. A bag is positively labeled if its class membership value is above
decision threshold τ , and negatively labeled otherwise. An optimal value of τ is adaptively
identified in QP-MIL during the optimization process. This threshold is also applicable to
the test bags. After solving the QP formulation in (3) on the training set, instance scores are
calculated by Equation (3b) for each instance in a test bag and simply averaged in Equa-
tion (3c) to compute the bag-level score. If the output is below the optimal value of τ , the
classifier produces a negative label, else a positive label.

The resulting bag-level classifier can be defined as

g(Bj ) =
{
1 if β j ≥ τ,

−1 otherwise,

where

β j = 1

n j

∑
i∈I j

mi ,

and

mi = 〈w, xi 〉 ∀i ∈ I j .

Our proposed MIL framework is independent of the underlying MIL assumptions. We
seek to model bag structures by taking into account the reflection of instance scores to the
bag labels. Since all instances contribute to the bag-level scoring, this paradigm resembles
the collective MIL assumption [12]. It is shown in [13] that if an instance level separation
can be performed in an embedding space H with a classifier f in a standard MIL problem,
then the bags can also be separated in another embedding space H′, which has a higher
dimensionality than H, by scoring each bag with the average of its instance-level estimates
as g(Bj ) = 1

n j

∑
i∈I j f (xi ). Therefore, various MIL assumptions can be handled with a

proper data representation and collective modeling of the bag structures.
In order to perform class separation by correct classification, having class membership

values above the threshold for positive bags and below the threshold for negative bags is
desirable. Therefore, we maximize summation of the absolute differences between bag class
membership estimates. This paradigm defines the margin between positive and negative
class membership estimates, as well. Thus, optimal value of decision threshold τ leaves the
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Fig. 4 An illustration of a
solution to QP model (3).
Instance level scores are
symbolized with red circles and
blue triangles, for negative and
positive bags, respectively. The
vertical green line indicates the
decision threshold and each
dashed line maps bag class
membership of a bag. For a
positive and a negative bag, class
membership margins are
indicated with horizontal arrows

maximum margin between bag class membership estimates. Figure 4 illustrates a possible
solution to the QPmodel (3). The selected value for decision threshold τ is 0.55 and the class
memberships estimates for 3 positive and 3 negative bags are consistent with this threshold.

5 Experiments

5.1 Data representation

In MIL, a specific data region representing the positive instance class is named as a concept.
The concept instances are informative for class discrimination. Based on this idea, represen-
tative sets can be derived in many ways as prototypes to capture the informative instance
relationships. Several MIL methods benefit from the dissimilarities to selected prototypes to
represent the bags [6,7,10,14,21]. Moreover, a number of similar algorithms [31,38] utilize
clustering to learn a target concept in MIL problems. Inspired by success of aforementioned
methods, we attempt to perform MIL classification in a newly represented feature space. QP
model (3) produces a linear classifier and success of this classifier is limited only to linearly
separable data.

In QP-MIL, the relationships between instances can be implicitly modeled by preprocess-
ing the input data. Instead of building a classifier in the original instance feature space, we
attempt to represent the instances using dissimilarities to the selected prototypes. Aim of the
representation is building a linear classifier, which is capable of class separation in a different
space. We pool instances in bags and then group them by k-means clustering algorithm into
an appropriate number of clusters. Then, the cluster centers are taken as the prototypes. The
new features are simply constructed by calculating the Euclidean distances of each instance
to these cluster centers. This way, protoypes are derived as a summarized representation of
the original data and the linear classifier becomes applicable to the new features.

5.2 Multiple instance datasets

We evaluate our approach in image classification, molecular activity prediction, text cate-
gorization and audio classification tasks. The datasets are categorized in Table 2 based on
their application domain and the dataset characteristics are also provided. The first cate-
gory includes famous drug activity prediction tasks on Musks and Mutagenesis’ datasets
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and a protein identification task. Image classification datasets constitute the second category
containing the Corel image datasets, UCSB breast cancer dataset and other smaller sized
benchmarks Elephant, Fox and Tiger. Positive class is considered as the target images and
the remaining images determine the negative bag class.

Another dataset category covers web mining tasks on Newsgroups and Web recommen-
dation datasets. In Newsgroups, blog posts are categorized into 20 groups based on their
subjects where a bag is formed by a collection of multiple posts (i.e. the instances). In the
positive class, the terms about a specific subject appears in a number of posts, and the bags
with posts about other subjects constitute the negative bags. In Web recommendation, a web
page in the user history is a bag and the web pages linked to that web page are the instances.
Recommendations of a specific user form the positive class and the bags constituted by the
remaining eight users are negatively labeled.

The last category is the bird song recordings from 13 different classes of birds, where
a recording is bag and segments of recording are the instances. The target bird class is
considered as positive, whereas the bags from the other classes are labeled as negative. We
follow an effective experimentation strategy. Cross validation folds are generated by splitting
the original dataset into the training set and the test set. We utilize the same splitting indices
across both our proposed and the state-of-the-art methods from the literature to perform a
comprehensive comparison. All the datasets and cross validation indices are available online
at [19].

5.3 Experimental setting and performance criteria

Our experiments use a Windows 10 PC with 16 GB RAM, dual core CPU (Intel Core i7-
7700HQ 2.8 GHz). For each dataset, a stratified cross validation scheme is conducted to
assess the generalizability of the classifiers. Initially, we scale each feature to zero mean and
unit variance. We obtain data representations in QP-MIL via the implementation in Python
that uses scikit-learn [24] library. We model QP formulations using Gurobi Python interface
and solve using barrier QP solver of Gurobi 8.0 [15]. The default parameters are accepted
for the barrier algorithm except for the convergence tolerance, which is set to 0.01. QP-MIL
has two parameters: number of clusters, κ in data representation and cost parameter C of QP
model (3). In k-means clustering, necessarily enough number of clusters, κ is determined by
using elbow approach [18]. Briefly, within cluster variance after k-means clustering is plotted
along with increasing values of κ and the position of the elbow is identified to assign the
corresponding value to κ .We run a nested cross-validationwith an inner cross-validation loop
to choose hyperparameter C from the set {0.01, 0.1, 1, 10, 100, 1000}. All of the instances
of MIHLSVM formulation are also executed using Gurobi 8.0 [15].

The baseline MIL approaches selected for comparison are MILES [6], MInD [7] with bag
dissimilarity representationDmeanmin andmiFV [33].MILES iterativelymeasures similarities
of bags to the training instances, and builds a linear SVM classifier along with �1-norm
regularization at the same time. MInD defines a bag-level feature representation by using
the bag-to-bag dissimilarity measure Dmeanmin. miFV benefits from Fisher vectorial coding
to map each bag to a single vector. Both MInD and miFV build a linear SVM classifier to
classify bag vectors. We execute MILES [6] and MInD [7] using the MIL toolbox [29], and
use a MATLAB [32] implementation to run miFV [33]. We accept the default parameters in
the original paper for MILES [6]. We use the parameter setting proposed in [7] for MInD
[7]. Following the authors’ advice, we employ an inner ten-fold cross-validation to select the
three parameters of miFV [33], which are enumerated as PCA energy, number of components
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and cost parameter of linear SVM. PCA energy attains values from the set {0.8, 0.9, 1}. The
alternatives for the number of Gaussian components is selected from {1, 2, 3, 4, 5}. The cost
parameter of the linear SVM classifier are {0.05, 1, 10}.

A receiver operation characteristics (ROC) curve visualizes the trade-off between per-
centage of true positive predictions and percentage of false positive predictions. Area under
the ROC curve (AUC) is asserted to be a reliable metric for classification [16]. Larger AUC
values indicate a better classifier. Another measure for classifier performance in MIL prob-
lems is classification accuracy. For a specific decision threshold value, such as the value
of τ in QP-MIL after optimization, the bag classes are predicted and the accuracy of the
classifier is computed. The class imbalance problem is seen in MIL tasks such as Corel,
Web recommendation and Birds benchmarks. The value of τ is optimized on the training
bags, and suffers from misleading accuracy when the bag classes are imbalanced. AUC is
more effective under class imbalance since all possible thresholds are evaluated to report
the classifier performance. Additionally, given the consistent performance of AUC on MIL
datasets [30], we qualify AUC as a primary comparison metric in our study.

5.4 Experimental results

5.4.1 Comparison of QP-MIL with MIHLSVM

In this section, we present a comparison betweenQP-MIL andMIHLSVM formulation given
in Sect. 1 in terms of computational efficiency and other indicators related to classification
performance of the derived solutions. The clustering-based data representation described in
Sect. 5.1 is considered as the input of all compared formulations.

Table 3 presents the overview of problem sizes on four moderate sized MIL datasets. All
datasets aremodelled usingQP-MIL formulation in (3) and theMIHLSVMformulation in (1).
For each dataset in Table 3, ten separate models of QP-MIL and MIHLSVM are built, where
ten different partitioning of the original dataset form the input in each model. The averages of
problem dimension properties for ten models are reported in Table 3. Formulations in (3) and
(1) have quadratic objective functions and number of the quadratic terms are equal for both.
Since we solve the formulations on a cluster center-based data representation, the number of
quadratic terms is equal to the dimensionality of this representation.

In Table 4, we compare the performance of QP-MIL with the MIHLSVM. MIHLSVM
is an MIQP and can be directly solved by standard MIQP solvers. We solve the MIHLSVM
formulation in (1) and set the cost parameter C in the objective function (1a) to 1. It is
plausible to tune up the appropriate value for C by a cross-validation procedure. However,
the computation time of parameter selection in MIHLSVM is a limitation [25].

We are unable to report overall results for MIHLSVM since each cross-validation fold
lasts longer than one day for relatively small datasets such as Elephant and Fox. Therefore,
we do not carry out a cross-validation loop, and manifest only the model solution time for
C = 1. In contrast with the described procedure in Sect. 4, we do not embed parameter
selection into QP-MIL during comparisons of this section and the predetermined value of
C is 1. The results in Table 4 are based on one repeat of a ten-fold cross validation. All
methods are executed within a time limit of 1800 seconds. First column is the number of
problem instance from each dataset that is solved to optimality until the time limit is reached.
The mean percentage optimality gap [(upper bound- lower bound)/upper bound] is reported
for each algorithm and the corresponding average model solution time in seconds is also
presented. To observe generalizability of the learner, we evaluate obtained solutions on the
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Table 4 Comparison of QP-MIL
and MIHLSVM on problem
instances of 4 datasets. 10 models
of each formulation are built for
each dataset, and the average
values are reported

Dataset Solved Gap Time AUC Accuracy

QP-MIL

Elephant 10 0 1.6 93.7 83.5

Fox 10 0 1.5 70.3 65.0

Musk 1 10 0 0.3 96.5 89.0

Musk 2 10 0 3.0 94.7 88.3

MIHLSVM

Elephant 0 97.6 1800 87.3 63.5

Fox 0 98.6 1800 64.9 55.0

Musk 1 1 37.1 1721.4 89.3 71.7

Musk 2 0 91.0 1800 90.8 74.4

test bags. Average accuracy and AUC values over ten experiments are reported for all three
approaches.

Computational study demonstrates that QP-MIL is significantly more efficient and pro-
vides accurate solutions compared to the MIHLSVM formulation. All instances of QP-MIL
can be solved exactly without a sacrifice in classification success as demonstrated by AUC
and accuracy results in Table 4. Being the largest dataset in this comparison, Musk 2 requires
an average solution time of 3 seconds to solve QPmodel (3) to optimality. On the other hand,
only one MIHLSVM instance of Musk 1 dataset can be solved to optimality within the time
limit. Except for Musk 1, Gurobi is unable to reduce the optimality gap below 90%. For the
sake of fairness, we do not includeMIHLSVM in the overall comparison results in Sect. 5.4.2
due to the requirements of a higher runtime even for small/moderate sized datasets.

5.4.2 Comparison to baseline methods

Table 5 summarizes the performance of our proposed QP-MIL approach with MILES [6],
MInD [7] with bag dissimilarity representation Dmeanmin and miFV [33] on four different
MIL application categories. Their descriptions and implementation details are provided in
Sect. 5.3.

AUC and accuracy results of MIL classifiers in Table 5 are the averages of a ten-fold
cross validation repeated for five times. The best result for each dataset is in boldface. In
molecular activity prediction, the highest AUC results are obtained by QP-MIL in Musk 1,
and by Dmeanmin in Musk 2. Fisher vector based bag representation suits on Mutagenesis 1
dataset, where second best AUC and accuracy results are obtained by QP-MIL and miFV,
respectively. In Protein, the leading method is MILES, which is followed by QP-MIL.

QP-MIL has the best image classification success in Elephant, Tiger and USCB Breast
cancer datasets. The implicit instance selection mechanism of MILES is effective on Fox
dataset and QP-MIL follows MILES on this dataset. In Corel image datasets, Dmeanmin has
the highest average performance, and QP-MIL performs very close to Dmeanmin. Results of
QP-MIL andDmeanmin are very close to each other on the average on 20Newsgroups datasets.
InWeb recommendation, performance of QP-MIL falls behind miFV and Dmeanmin. QP-MIL
has the highest AUC and accuracy results in almost all Birds datasets.

The average testing results based on problem categories are reported in Table 6. For each
problem category, results of the best method are in boldface. Average AUC and accuracy
results in Table 6 demonstrate that QP-MIL is competitive with other algorithms across all
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application categories and provides the best classification results on some datasets. QP-MIL
achieves the best or the second best average AUC and accuracy performance on molecular
activity prediction datasets.

Image classification results in Table 6 reveal that QP-MIL is broadly comparable with the
competitors in all benchmarks. In text categorization, performance of QP-MIL is competitive
in Newsgroups datasets and miFV is the leading method in Web recommendation datasets.
QP-MIL yields the best average AUC and accuracy results in audio recording classification
as verified by the reported results on Birds competition. Finally, QP-MIL has the best overall
average AUC and accuracy results.

Both miFV and Dmeanmin are bag-level methods and they are mostly tuned for computer
vision and bioinformatics applications ofMIL. However, QP-MIL is not tailored for a certain
MIL application and overall results of this section confirm generalizability of our approach
to various application domains. Without forcing the standard MIL assumption, QP-MIL
matches or outperforms the state-of-the-art algorithms on a broad range of applications.

Table 7 shows the time taken up by experiments ofQP-MIL on 71 datasets. Again, reported
results are the averages after 5 repeats of a ten-fold cross validation. We divide the total time
spent by QP-MIL into three main parts: representation learning (RL) time, inner cross-
validation (CV) time and model solution time. At first, we obtain clustering-based data
representation. We determine the required number of clusters on the training instances and
use the resulting cluster centers to represent the training bags. Compared to the computational
time on the training instances, RL time for the test bags is negligible. Therefore,we only report
the RL time consumed on the training set. As described in Sect. 5.3, we report classification
results after a nested cross-validation procedure. The time spent for inner cross-validation
loop is the CV time. After parameter selection, we solve QP model and record execution
time of barrier algorithm as the model solution time.

Table 7 reveals that QPmodels are solved efficiently regardless of the dataset dimensional-
ity. Due to the repeated solution of the QPmodel within each inner fold, significant amount of
time is spent on parameter selection. However, RL times are considerably longer compared
to CV times in Web datasets since large number of features complicates the dissimilarity
calculations in data representation phase. In Mutagenesis datasets, predetermined value of
the threshold controlling parameter ε may cause infeasibility in QP models. If infeasibility is
detected, we solve an auxiliary optimization problem to deal with this situation. Specifically,
by keeping the original constraints of (3), we convert ε into a decision variable and maximize
its value. This way, a suitable value of ε is derived. Then, QP model (3) is solved after stating
the selected ε value. This process increases both the CV time and model solution time on
these datasets as seen in Table 7. QP-MIL provides an efficient learning approach concern-
ing different MIL application categories. In the light of parameter sensitivity discussions
in Sect. 5.4.4, QP-MIL can be implemented without parameter selection to gain from the
execution time.

5.4.3 Contribution of threshold selection to model robustness

To make classification more robust, QP-MIL selects the decision threshold automatically.
After each experiment, optimal decision threshold is returned with the QP solution as the
value of variable τ . To observe the robustness of accuracy results of QP-MIL, we conduct a
comparison via solving an extra alternative formulation.We describe another QP, QPwithout
τ , where only variable τ is excluded and the remaining variables and constraints are the same
with the original QP. After solving QP without τ , optimal decision threshold is selected on
the training set. Then, testing accuracy is calculated using this threshold value.
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Table 8 Comparison of the
testing accuracy results on 3
datasets computed with two
different QP solutions depending
on whether threshold parameter τ

is included in the model or not

Dataset Accuracy

QP-MIL with τ QP-MIL without τ

Musk 1 88.4 88.4

Elephant 85.0 84.7

Fox 64.1 63.4

Fig. 5 Boxplots of pairwise accuracy comparison of QP solution with a threshold variable τ , and QP solution
without τ on 3 datasets

Table 8 shows the testing accuracy results after solving both formulations for 3 different
datasets. These results imply that including τ as a variable in QP elicits only negligible
differences on accuracy and hence the resulting classifier. We also compare solutions of the
original QP formulation and QP without τ in terms of variance. In Fig. 5, the boxplots of
testing accuracies on 3 datasets are provided. Figure 5 demonstrates that QP solutions with a
threshold have lower variance compared to QP solutions without τ . Namely, QP-MIL results
with similar accuracy and lower variance than QP without τ . Overall, QP with τ generates
robust results and the embedded threshold selection is a particular advantage of the proposed
method.
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5.4.4 Parameter sensitivity

In this section, we conduct experiments on four real-world datasets to examine the sensi-
tivity of QP-MIL to C setting. Six different values of C are tested with 50 replicates of
the experiments. We select the tuning set of C as {0.01, 0.1, 1, 10, 100, 1000}. We execute
data representation and model solving as described in Sect. 5.3 except for the inner cross
validation. For each level of C , we solve QP model (3) and record the classification results
for the test bags. Figure 6 presents the behavior of the QP-MIL classifier on four datasets.
For each dataset, boxplots show the AUC values for different levels of C . For Musk 2, value
of C does not have a significant effect on the AUC performance. Corresponding boxplots
in Fig. 6 show that smaller C values yield slightly better AUC results in Elephant dataset.
Finally, analysis with the boxplots in Fig. 6 demonstrates that changing value of C does not
significantly affect the AUC performance for other datasets.

The reported results of the comparisons with baseline approaches are provided after a
cross-validation procedure in Sect. 5.4.2. The trade-off between maximization of bag class
membership margin and sparsity of the weighting vector can be considered as a practi-
cally dispensable criterion for learning. Since most of the computation time is consumed by
parameter selection as reported in Table 4, value of C can be fixed initially for run-time con-
siderations. Setting a higher value of C introduces potential risk of overfitting, and therefore
may reduce generalization to unknown objects. As shown in the boxplots of Fig. 6, small C
values yield higher AUC values in both Musk 2 and Elephant. Therefore, if the parameter
selection phase is skipped, we suggest to use small values of C to obtain satisfactory results.

6 Conclusions

In this paper, we propose an optimization-based method, QP-MIL, to solve multiple instance
classification problem, where a bag of instances are classified instead of single instances. Our
algorithm is based on a quadratic programming (QP) formulation, which performs classifi-
cation without imposing additional constraints on relating instance labels to the bag labels.
Solving QP problem produces a decision function, which computes a bag class membership
score by aggregating instance-level scores. Instance-level scores are obtained by a linear
function of feature values. This way, all instances contribute to the bag label and their con-
tributions are modeled by specifying the feature weights. The optimization process outputs
a bag-level decision threshold to classify new bags together with the decision function. Dis-
tances of bag class memberships to the threshold value are maximized and the sparseness of
feature weight vector is controlled by a cost parameter.

We have tested our approach on a wide range of datasets from various categories such as
drug activity prediction, image categorization, text mining and audio recording classification.
In order to support further research on this area, we serve the used datasets, codes and
configurations on our supporting page [19].We compared the performance of our approach to
state-of-the-art machine learning based approaches. To model instance relationships, cluster
centers are selected as prototypes and input features are the instance-to-prototype distances.
For each dataset, generated problem instances can be easily solved to optimality in seconds.
Our experiments on 71datasets indicate thatQP-MIL is competitivewith the recent successful
heuristic algorithms, and provides the best classification results on a variety of datasets.

Since this study focuses on optimization-basedMIL, we also performed comparisons with
a recent method MIHLSVM in terms of problem size and computation time. MIHLSVM
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Fig. 6 Sensitivity of the QP-MIL to different values for C on 4 real-world datasets

solves mixed integer quadratic programs to learn a bag classifier. Our comparisons between
QP-MIL and MIHLSVM indicate that MIHLSVM problem instances have difficulties to
scale to large datasets. Our computational results show that direct solution of MIHLSVM is
not able to retrieve satisfactory solutions toMIL problemwithin a reasonable amount of time.
Finally, we examined the effect of the cost parameter and illustrated that the classification
performance does not excessively depend on adjustment of the cost parameter. Our MIL
approach offers an efficient solution to MIL problem in terms of classification accuracy and
model solution time, and can be extended to large real-world challenges as a future work.

Acknowledgements Z. Caner Taşkın’s researchwas partially supported by Turkish ScienceAcademyBAGEP
award.

References

1. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201,
81–105 (2013)

2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning.
In: Advances in Neural Information Processing Systems 15, pp. 561–568. MIT Press (2003)

123



Journal of Global Optimization (2022) 83:639–670 669

3. Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J., Hadley, A.S., Betts, M.G.:
Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. J
Acoust. Soc. Am. 131(6), 4640–4650 (2012)

4. Bunescu, R.C., Mooney, R.J.: Multiple instance learning for sparse positive bags. In: Proceedings of the
24th International Conference on Machine Learning, pp. 105–112. ACM (2007)

5. Carbonneau, M.A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance learning: a survey of
problem characteristics and applications. Pattern Recognit 77, 329–353 (2018)

6. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selection. Pattern
Anal. Mach. Intell., IEEE Trans. 28(12), 1931–1947 (2006)

7. Cheplygina,V., Tax,D.M., Loog,M.:Multiple instance learningwith bag dissimilarities. PatternRecognit.
48(1), 264–275 (2015)

8. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving themultiple instance problemwith axis-parallel
rectangles. Artif. intell. 89(1), 31–71 (1997)

9. Doran, G., Ray, S.: A theoretical and empirical analysis of support vector machine methods for multiple-
instance classification. Mach. Learn. 97(1–2), 79–102 (2014)

10. Erdem,A., Erdem, E.:Multiple-instance learningwith instance selection via dominant sets. In: Similarity-
Based Pattern Recognition, pp. 177–191. Springer (2011)

11. Fischetti, M.: Fast training of support vector machines with gaussian kernel. Discr Optim. 22, 183–194
(2016)

12. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl. Eng. Rev. 25(01), 1–25
(2010)

13. Fu, Z., Lu, G., Ting, K.M., Zhang, D.: Learning sparse kernel classifiers for multi-instance classification.
IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1377–1389 (2013)

14. Fu, Z., Robles-Kelly, A., Zhou, J.: MILIS: multiple instance learning with instance selection. Pattern
Anal. Mach. Intell., IEEE Trans. 33(5), 958–977 (2011)

15. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2018). http://www.gurobi.com
16. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl.

Data Eng. 17(3), 299–310 (2005)
17. Kandemir, M., Zhang, C., Hamprecht, F.A.: Empowering multiple instance histopathology cancer diag-

nosis by cell graphs. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014,
pp. 228–235. Springer (2014)

18. Ketchen, D.J., Jr., Shook, C.L.: The application of cluster analysis in strategic management research: an
analysis and critique. Strateg. Manage. J. 17(6), 441–458 (1996)

19. Kucukasci, E.S., Baydogan, M.G.: Bag-level representations for multiple instance learning (2018). http://
ww3.ticaret.edu.tr/eskucukasci/multiple-instance-learning/

20. Kundakcioglu, O.E., Seref, O., Pardalos, P.M.:Multiple instance learning viamarginmaximization. Appl.
Numer. Math. 60(4), 358–369 (2010)

21. Li, W.J., Yeung, D.Y.: MILD: multiple-instance learning via disambiguation. Knowl. Data Eng., IEEE
Trans. 22(1), 76–89 (2010)

22. Li, Y.F., Kwok, J., Tsang, I., Zhou, Z.H.: A convex method for locating regions of interest with multi-
instance learning. In: Machine Learning and Knowledge Discovery in Databases pp. 15–30 (2009)

23. Mangasarian, O.L., Wild, E.W.: Multiple instance classification via successive linear programming. J.
Optim. Theor. Appl. 137(3), 555–568 (2008)

24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct),
2825–2830 (2011)

25. Poursaeidi, M.H., Kundakcioglu, O.E.: Robust support vector machines for multiple instance learning.
Ann. Oper. Res. 216(1), 205–227 (2014)

26. Şeref, O., Chaovalitwongse, W.A., Brooks, J.P.: Relaxing support vectors for classification. Ann. Oper.
Res. 216(1), 229–255 (2014)

27. Srinivasan, A., Muggleton, S., King, R.: Comparing the use of background knowledge by inductive logic
programming systems. In: Proceedings of the 5th International Workshop on Inductive Logic Program-
ming, pp. 199–230. Department of Computer Science, Katholieke Universiteit Leuven (1995)

28. Tao, Q., Scott, S., Vinodchandran, N., Osugi, T.T.: SVM-based generalized multiple-instance learning
via approximate box counting. In: Proceedings of the Twenty-First International Conference on Machine
Learning, p. 101. ACM (2004)

29. Tax David M. J., C.V.: MIL, A Matlab toolbox for multiple instance learning (2015). http://prlab.tudelft.
nl/david-tax/mil.html. Version 1.1.0

30. Tax, D.M., Duin, R.P.: Learning curves for the analysis of multiple instance classifiers. In: Structural,
Syntactic, and Statistical Pattern Recognition, pp. 724–733. Springer (2008)

123

http://www.gurobi.com
http://ww3.ticaret.edu.tr/eskucukasci/multiple-instance-learning/
http://ww3.ticaret.edu.tr/eskucukasci/multiple-instance-learning/
http://prlab.tudelft.nl/david-tax/mil.html
http://prlab.tudelft.nl/david-tax/mil.html


670 Journal of Global Optimization (2022) 83:639–670

31. Tax, D.M., Hendriks, E., Valstar, M.F., Pantic, M.: The detection of concept frames using clusteringmulti-
instance learning. In: Pattern Recognition (ICPR), 2010 20th International Conference on, pp. 2917–2920.
IEEE (2010)

32. The Mathworks, I.: MATLAB version 8.5.0.197613 (R2015a). Natick, Massachusetts (2015)
33. Wei, X.S., Wu, J., Zhou, Z.H.: Scalable algorithms for multi-instance learning. IEEE Trans. Neural Netw.

Learn. Syst. 28(4), 975–987 (2017)
34. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-instance

problems. In: Machine Learning: ECML 2003, pp. 468–479. Springer (2003)
35. Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2), 135–147

(2005)
36. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-iid samples. In:

Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1249–1256. ACM
(2009)

37. Zhou, Z.H., Xu, J.M.: On the relation between multi-instance learning and semi-supervised learning. In:
Proceedings of the 24th International Conference on Machine Learning, pp. 1167–1174. ACM (2007)

38. Zhou, Z.H., Zhang,M.L.: Solvingmulti-instance problems with classifier ensemble based on constructive
clustering. Knowl. Inf. Syst. 11(2), 155–170 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Multiple instance classification via quadratic programming
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Problem statement
	3.2 A previous MIQP formulation: MIHLSVM poursaeidi2014robust

	4 Quadratic programming for multiple instance learning
	5 Experiments
	5.1 Data representation
	5.2 Multiple instance datasets
	5.3 Experimental setting and performance criteria
	5.4 Experimental results
	5.4.1 Comparison of QP-MIL with MIHLSVM
	5.4.2 Comparison to baseline methods
	5.4.3 Contribution of threshold selection to model robustness
	5.4.4 Parameter sensitivity


	6 Conclusions
	Acknowledgements
	References




