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Abstract
In this paper, we develop an interactive algorithm to support a decision maker to find a most
preferred lightly robust efficient solution when solving uncertain multiobjective optimiza-
tion problems. It extends the interactive NIMBUS method. The main idea underlying the
designed algorithm, called LR-NIMBUS, is to ask the decision maker for a most acceptable
(typical) scenario, find an efficient solution for this scenario satisfying the decision maker,
and then apply the derived efficient solution to generate a lightly robust efficient solution.
The preferences of the decision maker are incorporated through classifying the objective
functions. A lightly robust efficient solution is generated by solving an augmented weighted
achievement scalarizing function. We establish the tractability of the algorithm for important
classes of objective functions and uncertainty sets. As an illustrative example, we model and
solve a robust optimization problem in stock investment (portfolio selection).

Keywords Uncertain multiple criteria optimization · Robust optimization · Interactive
methods · Light robust efficiency · Portfolio selection

1 Introduction

There are many real-world optimization problems in which we need to maximize/minimize
more than one objective function, simultaneously. Usually these objective functions are in
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conflict. This kind of problems are called Multiobjective Optimization Problems (MOPs).
One cannot define the optimal solution (in the classic sense) for them, because of the conflict
of the objective functions. Various solution concepts for MOPs have been introduced and
different approaches for solving them have been provided [21,36]. Optimality can be defined
with the concept of efficiency. Efficient solutions are feasible points in which improvement
of some objective function without deterioration of at least one other objective function is
impossible [12,27].

Solving MOPs usually requires the participation of a Decision Maker (DM) who is
supposed to have insight into the problem and can express preference relations between
alternative solutions and/or objective functions [27,31]. The methods addressed in the litera-
ture for solving MOPs can be divided into four classes according to the role of the DM in the
solution process [21,27]. If the DM is not involved, the procedure is called a no-preference
one [40,42,43]. If the DM expresses preference information after (resp. before) the solution
process, we have a posteriori (resp. a priori) methods [15,23,38,43]. The most extensive
and practical class of algorithms is that of interactive methods, in which the DM specifies
preference information progressively during the solution process.

A general interactive method works as an iterative procedure starting from an initial
solution given by the solver. This solution is presented to the DM. If (s)he is satisfied with
(the objective values at) the solution, it is considered as the best (most preferred) solution
and the procedure is terminated. Otherwise, the DM expresses her/his preferences. Then the
solver finds a solution or few solutions taking the preferences into account, and presents it
or them to the DM. Again, if the DM is satisfied with the solution, then the procedure stops
and the current solution is the final (most preferred) one. Otherwise, the process is repeated,
following a similar manner, until satisfying the DM.

In addition to the interactive tools, other important issues in our work are uncertainty
and robustness. There are many real-world optimization problems involving uncertainty in
which the optimal/efficient solution depends on different possible realizations of parameters,
called scenarios. These scenarios are the elements of a deterministic set, called uncertainty set
[4,6,17]. The set of optimal/efficient solutions may change when the scenario changes. For
example, in transportation problem, the optimal pathmay changewhen the fuel price changes.
As another example, efficient agricultural activities may depend on the climate (weather)
situation. There are several ways for dealing with uncertainty in the literature, including
robust optimization, sensitivity analysis, and stochastic programming; see, e.g., [4,6,19,22].
In the present work, we assume uncertainty in the objective functions, and concentrate on
the robustness. We assume no distributions on uncertainty are available.

Various robust solution notions have been introduced in the literature, including set-based
minmax robust efficient solution [13], highly robust efficient solution [24], flimsily robust
efficient solution [24], and lightly robust efficient solution [22]. Each of these concepts has its
strengths andweaknesses, however there are some interesting connections between them [22].
In the present study, assuming uncertainty in the objective functions, we work with lightly
robust efficient solutions. These solutions have been introduced by Fischetti andMonaci [16]
for the single-objective case, and then have been extended to multiobjective problems by Ide
and Schöbel [22].

In the current paper, we sketch an interactive method which is able to find a lightly robust
efficient solution of an uncertainmultiobjective optimization problem satisfying theDM.This
method, which is called LR-NIMBUS, is built by extending the NIMBUS method (devel-
oped for deterministic problems) [20,27,28,35], especially particular versions of this method,
called synchronousNIMBUS [28] andMuRO-NIMBUS [45]. TheMuRO-NIMBUSmethod,
developed by Zhou-Kangas, Miettinen and Sindhya [45], works utilizing an achievement
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scalarizing function, and generates a set-basedminmax robust efficient solution incorporating
the DM’s preferences. Minmax robust efficient solutions, which are obtained by optimizing
the objective functions in the worst case over all scenarios, could be highly conservative
[6,7]. Due to the conservatism of minmax robustness, the objective function at a minmax
robust efficient solutionmay not be that good in other scenarios. Furthermore, minmax robust
efficient solutions are not always easy to compute [44].

Our method, called LR-NIMBUS, supports the DM by finding a most preferred lightly
robust efficient solution. A lightly robust efficient solution is produced by using a tolerance
parameter which controls the closeness of the value of the objective function at the generated
robust efficient solution to the objective function values in the nominal scenario [16,22].
Indeed, light robust efficiency leads to a robust efficient solution with tolerable degradation
in the objective function values in the nominal scenario; see [16,22,44]. On the other hand,
in LR-NIMBUS, the DM takes part in the whole method and her/his preferences are applied
from beginning, while MuRO-NIMBUS performs two stages, the pre-decision making and
the decision making, and the DM intervenes only in the second stage.

Themain idea underlying LR-NIMBUS, as an extension of the NIMBUSmethod, is to ask
the DM for most acceptable (typical) scenario, called nominal scenario. Then the procedure
finds an efficient solution for the nominal scenario, satisfying theDM.Thementioned efficient
solution is applied to generate a lightly robust efficient solution, taking the DM’s preferences
into account. If the DM is satisfied with the generated lightly robust efficient solution, then
the procedure is terminated; otherwise (s)he provides new preferences through classifying
the objective functions. A new lightly robust efficient solution, w.r.t. the new preferences,
is generated and the algorithm iterated following a similar manner. In LR-NIMBUS, lightly
robust efficient solutions are computed invoking an augmented weighted achievement scalar-
izing function which involves a reference point and a classification of the objective functions
specified by the DM.

In addition to designing and analyzing the LR-NIMBUS algorithm and highlighting the
above-mentioned general issues, we prove some important theoretical results to answer the
following crucial question: For which forms of uncertainty sets and objective functions,
is generation of robust efficient solutions by LR-NIMBUS operational? We answer this
question for linear and quadratic objective functions as well as box, norm, and polyhedral
uncertainty sets. These theoretical outcomes reveal the tractability of LR-NIMBUS. In addi-
tion to presenting theoretical results and sketching the algorithm, we address an application
of the LR-NIMBUS method in stock investing (portfolio selection) under uncertainty by
implementing it on a data set of S&P 500 stocks extracted from Yahoo Finance.

The rest of the paper is organized as follows. In Sect. 2, some basic definitions and prelimi-
naries are given. Section 3 is devoted to designing and analyzing the algorithm accompanying
the theoretical results. Section 4 contains an application, followed by conclusions in Sect. 5.

2 Preliminaries

In this section, we provide some basic definitions and preliminaries that will be used in the
rest of the paper.

123



846 Journal of Global Optimization (2022) 83:843–863

2.1 Basic definitions and notations

For a vector d ∈ R
n , dT stands for the transpose of d . For x, y ∈ R

n with n ≥ 2, the vector
inequality x < y means xi < yi for all i = 1, 2, . . . , n. Furthermore, x � y denotes xi ≤ yi
for all i = 1, 2, . . . , n. Moreover, x ≤ y stands for x � y with x �= y. Corresponding to
these vector inequalities, we define

R
n
� := {x ∈ R

n : x � 0},
R
n≥ := {x ∈ R

n : x ≥ 0},
R
n
> := {x ∈ R

n : x > 0}.
Consider the following deterministic multiobjective optimization problem:

min f (x) = ( f1(x), . . . , f p(x))
s.t . x ∈ X ,

(1)

where X is a nonempty set in R
n and fi (i ∈ I := {1, 2, . . . , p}) are real-valued functions

from X toR. Here, X is the set of feasible solutions.We denote the image of X by Y := f (X).

Definition 2.1 A feasible point x̄ ∈ X is called an efficient solution of (1) if there is no other
x ∈ X such that f (x) ≤ f (x̄). In this case, f (x̄) is called a nondominated point of (1).

We denote the sets of all efficient solutions and nondominated points of (1) by XE and YN ,

respectively. Indeed, YN = f (XE ). The nadir point zN = (zN1 , . . . , zNp ) (resp. ideal point

z I = (z I1, . . . , z
I
p)) is the vector composed with the worst (resp. best) objective values over

the efficient set. Mathematically, the components of a nadir (resp. ideal) point are defined as
zNi := maxx∈XE fi (x) (resp. z Ii := minx∈X fi (x)). A vector zU with zU < z I is called a
utopian point.

2.2 NIMBUSmethod

As mentioned in the preceding section, NIMBUS is an interactive method for solving multi-
objective optimization problems. In this method, a DM expresses preferences at the current
solution to indicate how to get a more preferred solution in each iteration by classifying
objective functions to five classes as follows [27,28]:

• I< := {i : fi should be decreased},
• I≤ := {i : fi should be decreased till an aspiration level},
• I= := {i : fi is satisfactory at the moment},
• I≥ := {i : fi is allowed to increase till an upper bound},
• I � := {i : fi is allowed to change freely}.
According to the definition of efficient solutions, a classification is feasible only if I< ∪

I≤ �= ∅, I≥ ∪ I � �= ∅, and the DM has to classify all the objective functions, that is,
I< ∪ I≤ ∪ I= ∪ I≥ ∪ I � = {1, 2, . . . , p}. The following theorem plays a crucial role in the
NIMBUSmethod. The proof of this theorem can be found in [28]. Indeed, in each iteration of
the NIMBUS method, problem (2) below is constructed and solved. In this problem, xh ∈ X
is the current solution derived from the preceding iteration. Recall that, z I is the ideal point.
Whenever we use this point, we assume its existence implicitly.

Theorem 2.1 [28] Let w = (w1, . . . , wp) ∈ R
p
> be a vector of given positive weights and ρ

be a sufficiently small positive scalar. Assume that xh ∈ X is the current solution, ẑ j , j ∈ I≤,
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are aspiration levels, and εi , i ∈ I≥, are the upper bounds. Consider the following single-
objective optimization problem:

min max
i∈I<

j∈I≤

[
wi ( fi (x) − z Ii ), w j ( f j (x) − ẑ j )

] + ρ

p∑

i=1

wi fi (x)

s.t . fi (x) ≤ fi (xh), i ∈ I< ∪ I≤ ∪ I=,

fi (x) ≤ εi , i ∈ I≥,

x ∈ X .

(2)

Each optimal solution of (2) is an efficient solution for (1).

Now, we sketch Algorithm 1 invoking Theorem 2.1. Indeed, this algorithm addresses the

NIMBUS method. In practice, in (2), we usually set wi = 1

zNi − zUi
for i ∈ I . In Step 0 of

the algorithm, an intial efficient solution can be generated by the Achievement Scalarizing
Function (ASF) [39]. See Appendix A for a brief introduction of the ASF. Throughout the
present paper, we assume that the considered (single) multiobjective optimization problems
are well behaved and admit at least one (optimal) efficient solution.

Algorithm 1. NIMBUS
Step 0. Generate an initial efficient solution x0 of (1); and set h = 0.
Step 1. If the DM is satisfied with xh , go to step 4; otherwise, go to

step 2.
Step 2. Ask the DM to classify the objective functions of (1) to I<,

I≤, I=, I≥, I �.
Step 3. Solve (2) corresponding to xh .

Denote the derived optimal solution of (2) by xh+1.
Set h = h + 1 and go to Step 1.

Step 4. Stop; xh is a desirable efficient solution of (1).

Actually, the method presented in [28] has other scalarizing functions besides (2) so that up
to four efficient solutions can be generated and presented to the DM at each iteration. The
method also has an option of generating intermediate solutions between any two efficient
solutions. For details, see [28].

2.3 Robustness

In optimization under uncertainty, the optimal/efficient solution depends on different possible
realizations of parameters, called scenarios. The most typical or expected scenario is called
the nominal scenario [4,6]. Robust optimization, as one of the leading tools for dealing with
uncertainty, has been the subject of many publications in recent decades, e.g., [4–6,13].

Suppose thatUi ⊂ R
si , i = 1, . . . , p, are nonempty given uncertainty sets. Here, si ∈ N

is the dimension of the uncertainty set Ui . We define,

U := {
ξ = {ξ1, ξ2, . . . , ξp} : ξ1 ∈ U1, ξ2 ∈ U2, . . . , ξp ∈ Up

}
.

Now, associated with ξ ∈ U , we consider the parametric problem

P(ξ) : min f (x, ξ) = ( f1(x, ξ1), . . . , f p(x, ξp))
s.t . x ∈ X ,

(3)
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in which X ⊂ R
n is the (nonempty) feasible set; and fi (·, ·) : X × R

si −→ R, i ∈ I , are
real-valued functions. Here, ξ ∈ U is composed by p vectors ξi ∈ Ui , i = 1, . . . , p. Indeed,
U is the uncertainty set in which ξ varies. We set

P(U ) := {P(ξ) : ξ ∈ U }.
This set is a family of parameterized multiobjective optimization problems.

As mentioned in the introduction, there are several robustness notions in the literature of
multiobjective optimization. In the following, we address two of them which are relevant
to our study: set-based minmax robustness and light robustness. The main part of our work
concentrates on light robustness, though we need set-based minmax robustness to define the
light one.

We start with set-based minmax robustness introduced in [13].

Definition 2.2 [13] The feasible solution x̄ ∈ X is said to be a set-based minmax robust
efficient solution for P(U ), if there is no other feasible solution x ′ ∈ X such that

fU (x ′) ⊆ fU (x) − R
k≥,

where fU (x) = { f (x, ξ), ξ ∈ U } = {( f1(x, ξ1), . . . , f p(x, ξp)
) : ξi ∈ Ui , i ∈ I }.

Light robustness was first introduced in [16] for single-objective optimization problems
and was extended to multiobjective cases in [22]. This robustness notion is looking for
set-based minmax robust efficient solutions which are not unreasonably far from efficient
solutions associatedwith a nominal scenario. This reasonability is controlled by a δ parameter.

Let ξ̂ = {ξ̂1, . . . , ξ̂p} ∈ U be the nominal scenario. We consider the following determin-
istic problem:

P(ξ̂ ) : min f (x, ξ̂ ) = ( f1(x, ξ̂1), . . . , f p(x, ξ̂p))
s.t . x ∈ X .

(4)

We denote the set of efficient solutions of P(ξ̂ ) by X∗(ξ̂ ). Suppose δ ∈ R
p
≥ and x̂ ∈ X∗(ξ̂ )

are given. Consider the uncertain problem

P(x̂, δ, ξ) : min f (x, ξ)

s.t . fi (x, ξ̂i ) ≤ fi (x̂, ξ̂i ) + δi , i = 1, . . . , p.
x ∈ X ,

(5)

and set

P(x̂, δ,U ) := {P(x̂, δ, ξ) : ξ ∈ U }.

Definition 2.3 [22] Suppose that the nominal scenario ξ̂ ∈ U and a vector δ ∈ R
p
≥ are given.

A feasible solution x̄ ∈ X is called a lightly robust efficient solution for P(U ) w.r.t. δ, if it
is a set-based minmax robust efficient solution for P(x̂, δ,U ) for some x̂ ∈ X∗(ξ̂ ).

3 Main results

This section is devoted to introducing and investigation of the LR-NIMBUS algorithm. In
the first subsection we provide the main idea, and in the second subsection we establish the
tractability of the algorithm for special cases of the uncertainty set.
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3.1 LR-NIMBUS

In this subsection, we provide the main idea of the interactive LR-NIMBUS method. LR-
NIMBUS is able to find a lightly robust efficient solution such that the DM plays role
throughout the solution process.

MuRO-NIMBUS [45] is one of the successful interactive algorithms existing in the liter-
ature which is looking for robust solutions. MuRO-NIMBUS looks for a set-based minmax
robust efficient solution, while our algorithm finds a lightly robust efficient solution. Notice
that lightly robust efficient solutions are less conservative than set-based minmax ones,
because the objective values at lightly robust efficient solutions do not highly differ from
the objective values at efficient solutions for the nominal scenario. As mentioned in [22, p.
250], a pitfall of minmax robustness is its overconservatism. Indeed, “hedging against all
scenarios from the uncertainty set usually comes with a high price, namely the quality in the
nominal scenario often drastically decreases. For example, if one wants to hedge against all
delays in timetabling, one would need so much buffer that the timetable becomes unattractive
to the passengers. These high costs motivate the definition of light robustness, in which a
certain nominal quality of the solution is required." [22]. In light robust solutions, the objec-
tive value should not differ too much from an efficient solution corresponding to the nominal
scenario. To this end, an additional constraint is imposed to the problem, to produce a solution
which is good enough for the nominal case.

Assume the nominal scenario ξ̂ ∈ U is given. For starting the algorithm,wefind an efficient
solution of the deterministic problem (4). It is done by applying the NIMBUS method; and
an efficient solution satisfying DM is found1. To this end, according to Theorem 2.1 in each
iteration of the NIMBUS method, one should solve

min max
i∈I<

j∈I≤

[
wi ( fi (x, ξ̂i ) − z Ii ), w j ( f j (x, ξ̂ j ) − ẑ j )

] + ρ

p∑

i=1

wi fi (x, ξ̂i )

s.t . fi (x, ξ̂i ) ≤ fi (xh, ξ̂i ), i ∈ I< ∪ I≤ ∪ I=,

fi (x, ξ̂i ) ≤ εi , i ∈ I≥,

x ∈ X ,

(6)

where z Ii is the i-th component of the ideal point corresponding to fi (·, ξ̂ ). Furthermore,
xh is the current solution of P(ξ̂ ), scalars ẑ j , j ∈ I≤, are aspiration levels for f j (·, ξ̂ ), and
εi , i ∈ I≥, are the upper bounds.

Theorem 3.1 Let w = (w1, . . . , wp) ∈ R
p
> be a given vector of positive weights and ρ be a

sufficiently small positive scalar. Each optimal solution of (6) is an efficient solution for (4).

Proof As problem (4) is deterministic, the claim follows from Theorem 2.1. ��

Theorem 3.2 introduces a single-objective optimization problem which gives a lightly
robust efficient solution for P(U ). Let δ ∈ R

p
≥ and x∗ ∈ X∗(ξ̂ ) be given. The main idea

behind this result goes back to the deterministic multiobjective optimization problem

1 Two measures “price to be paid for robustness" and “gain in robustness" developed by Zhou-Kangas and
Miettinen [44] could be helpful here to support the DM in controlling the trade-offs between robustness and
the objective function values in the nominal scenario. See also [2,30] and the references therein for some tools
to recognize if a DM is learned and satisfied.
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min (max
ξ1∈U1

f1(x, ξ1), . . . , max
ξp∈Up

f p(x, ξp))

s.t . fi (x, ξ̂i ) ≤ fi (x∗, ξ̂i ) + δi , i ∈ I ,
x ∈ X .

(7)

This problem provides a counterpart for robust optimization problems whose objective func-
tions depend on some scenarios. In fact, in this problem the worst case of the objective
functions fi is optimized.

In Theorem 3.2, the parameters w, ẑ, ρ, and ε are as described above.

Theorem 3.2 Let δ ∈ R
p
≥ and x∗ ∈ X∗(ξ̂ ) be given. Each optimal solution of the follow-

ing single-objective optimization problem is a lightly robust efficient solution of P(U ) (for
uncertain multiobjective optimization problem (3) w.r.t. δ:

min max
i∈I<

j∈I≤

[
wi (max

ξi∈Ui
fi (x, ξi ) − z Ii ), w j (max

ξ j∈Uj
f j (x, ξ j ) − ẑ j )

] + ρ

p∑

i=1

wi max
ξi∈Ui

fi (x, ξi )

s.t . max
ξi∈Ui

fi (x, ξi ) ≤ max
ξi∈Ui

fi (x
h, ξi ), i ∈ I< ∪ I≤ ∪ I=,

max
ξi∈Ui

fi (x, ξi ) ≤ εi , i ∈ I≥,

fi (x, ξ̂i ) ≤ fi (x∗, ξ̂i ) + δi , i ∈ I ,
x ∈ X ,

(8)

where z Ii is the i-th components of the ideal point of problem (7).

Proof Let x̄ be an optimal solution of problem (8). According to [28, Theorem 3.1], x̄ is an
efficient solution of multiobjective problem (7).

To prove the theorem, it is sufficient to show that x̄ is a set-based minmax robust efficient
solution of

min ( f1(x, ξ1), . . . , f p(x, ξp))
s.t . fi (x, ξ̂i ) ≤ fi (x∗, ξ̂i ) + δi , i ∈ I ,

x ∈ X ,

(9)

in which ξ = {ξ1, ξ2, · · · , ξp} varies in U.
Let us assume that there exists a vector x ′ which is feasible for (9) and

fU (x ′) ⊆ fU (x̄) − R
p
≥.

So, for every {ζ1, . . . , ζp} ∈ U , there exists some {η1, . . . , ηp} ∈ U such that fi (x ′, ζi ) ≤
fi (x̄, ηi ) for all i = 1, . . . , p and f j (x ′, ζ j ) < f j (x̄, η j ) for at least one j . Therefore,

fi (x ′, ζi ) ≤ max
ηi∈Ui

fi (x̄, η j ), ∀i = 1, . . . , p,

f j (x ′, ζ j ) < max
η j∈Uj

f j (x̄, η j ), ∃ j = 1, . . . , p,

This contradicts the efficiency of x̄ for (7) and the proof is complete. ��
Now,weare ready to sketch theLR-NIMBUSalgorithm (Algorithm2).Abrief explanation

of Algorithm 2 is as follows. In the initial step, as in the original NIMBUS method, we find
a neutral compromise solution by ASF (See Appendix A), as an initial efficient solution.
Then, by applying the NIMBUS method for (4) (repeatedly), taking the DM’s preferences
into account, we solve (6) to get solutions that satisfy the DM (Steps 0-3). In these four steps,
we find an efficient solution for the nominal scenario, denoted by x∗.
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Using x∗, we find an initial efficient solution for (7). If the DM is satisfied with the
objective values at x∗, then the algorithm stops. The derived efficient solution of (7) is a
lightly robust efficient solution of P(U ). Otherwise, the DM is asked to classify the objective
functions of (7). Then, by applying the NIMBUS method, we solve (8) repeatedly to get a
solution satisfying the DM (Steps 4-8). The output of the algorithm is a lightly robust efficient
solution.

Algorithm 2. LR-NIMBUS
Step 0. Generate an initial efficient solution x0 for (4); and set h = 0.
Step 1. If the DM is satisfied with xh , go to step 4; otherwise, go to

step 2.
Step 2. Ask the DM to classify the objective functions of (4) to I<,

I≤, I=, I≥, I �.
Step 3. Solve problem (6) corresponding to xh .

Denote the derived optimal solution of (6) by xh+1.
Set h = h + 1 and go to Step 1.

Step 4. Set x∗ = xh . Generate an initial efficient solution x0 for (7);
and set h = 0.

Step 5. If the DM is satisfied with xh , go to step 8; otherwise, go to
step 6.

Step 6. Ask the DM to classify the objective functions of (7) to I<,

I≤, I=, I≥, I �
Step 7. Solve problem (8) corresponding to xh .

Denote the derived optimal solution of (8) by xh+1.
Set h = h + 1 and go to Step 5.

Step 8. Stop; xh is a desirable lightly robust efficient solution of P(U ).

Although the LR-NIMBUS algorithm works well theoretically, there is an operational diffi-
culty in implementing it. This is related to the tractability of problems (7) and (8), because of
the presence of the max

ξi∈Ui
fi (x, ξi ) term in objective functions of these problems. Notice that

this maximum depends on x . This term may make the afore-mentioned problems intractable
for general uncertainty setsUi . However, in the next subsection we prove tractability of prob-
lems (7) and (8) (and thus applicability of LR-NIMBUS) under special forms of objective
functions and uncertainty sets.

3.2 Tractability

In this section, we establish the tractability of problem (8) for various classes of objective
functions and uncertainty sets. The considered classes are popular and important in the
literature [6,18]. The results of the present subsection lead to applicability of LR-NIMBUS
under the considered cases. As the problematic max-term in both (7) and (8) is the same, we
present the results only for (8). Analogous results can be developed for (7).
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Linear functions and box uncertainty set

Suppose that the functions fi (x, ξi ), i ∈ I , are affine in ξi , while their coefficients depend
on x . In addition, assume that the uncertainty set has a box form. In general, we assume

fi (x, ξi ) = ξ Ti f̄i (x), i ∈ I ,
U = [ξ

1
, ξ̄1] × . . . × [ξ

p
, ξ̄p], (10)

where f̄i : Rn −→ R
si , i ∈ I , are deterministic functions, ξ

i
, ξ̄i ∈ R

si and ξ
i
≤ ξ̄i . Here,

Ui = [ξ
i
, ξ̄i ] = {ξ ∈ R

si : ξ
i
� ξ � ξ̄i }.

Denote the set of extreme points of Ui = [ξ
i
, ξ̄i ], i ∈ I , by Ei = {ξ̃ (1), . . . , ξ̃ (2si )}.

According to this notation, the extreme points of U have the form {ξ̃ (r1), . . . , ξ̃ (rp)} with
ξ̃ (ri ) ∈ Ei , i ∈ I .

Theorem 3.3 Consider problem (8) with fi (·, ·)’s and U as in (10). The following problem
is equivalent to problem (8), in the sense that, x ∈ R

n is a feasible (resp. optimal) solution of
problem (8), if there are α ∈ R and γ = (γ1, . . . , γp) ∈ R

p such that (x, α, γ ) is a feasible
(resp. optimal) solution of the following problem and vice versa:

min α + ρ

p∑

i=1

wiγi

s.t . ξ̃ (ri )T f̄i (x) ≤ max
r=1,...,2si

ξ̃ (ri )T f̄i (x
h), ri ∈ {1, . . . , 2si }, i ∈ I< ∪ I≤ ∪ I=,

ξ̃ (ri )T f̄i (x) ≤ εi , ri = 1, . . . , 2si , i ∈ I≥,

ξ̂ Ti f̄i (x) ≤ ξ̂ Ti f̄i (x
∗) + δi , i ∈ I ,

ξ̃ (ri )T f̄i (x) ≤ γi , ri = 1, . . . , 2si , i ∈ I ,

ξ̃ (ri )T f̄i (x) ≤ α

wi
+ z Ii , ri = 1, . . . , 2si , i ∈ I<,

ξ̃ (r j )T f̄ j (x) ≤ α

w j
+ ẑ j , r j = 1, . . . , 2s j , j ∈ I≤,

x ∈ X .

(11)

Proof As each linear function attains its maximum over a polytope in at least one extreme
point of the polytope, we have

max
ξi∈Ui

fi (x, ξi ) = max
ξi∈Ui

ξ Ti f̄i (x) = max
ri=1,...,2si

ξ̃ (ri )T f̄i (x). (12)

Hence, problem (8) can be rewritten as

min

(
max
i∈I<

j∈I≤

[
wi ( max

ri=1,...,2si
ξ̃ (ri )T f̄i (x) − z Ii ), w j ( max

r j=1,...,2s j
ξ̃ (r j )T f̄ j (x) − ẑ j )

]

+ ρ
∑p

i=1 wi maxri=1,...,2si ξ̃ (ri )T f̄i (x)

)

s.t . ξ̃ (ri )T f̄i (x) ≤ max
ri=1,...,2si

ξ̃ (ri )T f̄i (x
h), ri ∈ {1, . . . , 2si }, i ∈ I< ∪ I≤ ∪ I=,

ξ̃ (ri )T f̄i (x) ≤ εi , ri = 1, . . . , 2si , i ∈ I≥,
ˆξ Ti f̄i (x) ≤ ˆξ Ti f̄i (x

∗) + δi , i ∈ I ,
x ∈ X .

(13)
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Now, by setting

γi := max
ri=1,...,2si

ξ̃ (ri )T f̄i (x),

α := max
i∈I<

j∈I≤

[
wi ( max

ri=1,...,2si
ξ̃ (ri )T f̄i (x) − z Ii ), w j ( max

r j=1,...,2s j
ξ̃ (r j )T f̄ j (x) − ẑ j )

]
,

(14)

with a little algebra, the proof is completed. ��

Linear functions and norm uncertainty set

Assume again the functions fi (x, ξi ), i ∈ I , are affine in ξi , while their coefficients depend
on x . Assuming l > 1 given, we consider the norm uncertainty set as

U = U1×, . . . ×Up,

Ui = {
ξ̄i + γiξi : ξi ∈ R

si , ||Aiξi ||l ≤ 1
}
, i = 1, . . . , p,

(15)

where ξ̄i ∈ R
si , γi > 0 and Ai ∈ R

si×si is an invertible symmetric matrix.

Here, || · ||l is the l-norm, defined by ||y||l = (
∑

i

|yi |l) 1
l . In the following theorem, || · ||∗l

stands for the dual norm of the l-norm, defined as

||y||∗l = max||x ||≤1
yT x .

It is known that ||y||∗l = ||y|| l
l−1

; see [9].

Theorem 3.4 Consider problem (8) with fi (·, ·) functions described in (10) and uncertainty
set given in (15). Then the following problem is equivalent to problem (8):

min max
i∈I<

j∈I≤

[
wi

(
Ri (x) − z Ii

)
, w j

(
R j (x) − ẑ j

)] + ρ

p∑

i=1

wi
(
Ri (x)

)

s.t . Ri (x) ≤ Ri (x
h), i ∈ I< ∪ I≤ ∪ I=,

Ri (x) ≤ εi , i ∈ I≥,

ξ̂ Ti f̄i (x) ≤ ξ̂ Ti f̄i (x
∗) + εi , i ∈ I ,

x ∈ X ,

where Ri (x) := ξ̄ Ti f̄i (x) + γi ‖ A−1
i f̄i (x) ‖ l

l−1
.

Proof According to the assumptions, we get

max
ξi∈Ui

fi (x, ξi ) = max
ξi∈Ui

ξi
T f̄i (x) = ξ̄ Ti f̄i (x) + max

ξi :||Ai ξi ||l≤1
γiξ

T
i f̄i (x).

By setting z := Aiξi , we have

max
ξi∈Ui

fi (x, ξi ) = ξ̄ Ti f̄i (x) + max
z:||z||l≤1

γi z
T A−1

i f̄i (x)

= ξ̄ Ti f̄i (x) + γi ||A−1
i f̄i (x)||∗l

= ξ̄ Ti f̄i (x) + γi ||A−1
i f̄i (x)|| l

l−1
.

Now, by replacing max
ξi∈Ui

fi (x, ξi ) with Ri (x) := ξ̄ Ti f̄i (x) + γi ‖ A−1
i f̄i (x) ‖ l

l−1
in (8), the

proof is completed. ��
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Linear functions and polyhedral uncertainty set

Let us assume again that the functions fi (x, ξi ), i ∈ I , are affine in ξi , while their coefficients
depend on x . In addition, we suppose that the uncertainty set is a polyhedral set as

U = U1×, . . . ×Up,

Ui = {ξi ∈ R
si : Hiξi ≤ hi , ξi ≥ 0}, i ∈ I ,

(16)

where Hi , for i ∈ I , is an mi × si matrix. Furthermore, hi ∈ R
mi , for i ∈ I .

Theorem 3.5 Consider problem (8) with fi (·, ·) functions described in (10) and uncertainty
set given in (16). Assume I � = ∅. If there exist x̄ ∈ R

n, γ̄i , (i ∈ I< ∪ I≤ ∪ I= ∪ I≥), such
that (x̄, γ̄ ) is an optimal solution for

min
x,γi ,γ j

max
i∈I<

j∈I≤

[
wi (γ

T
i hi − z Ii ), w j (γ

T
j h j − ẑ j )

] + ρ
∑

i∈I<∪I≤∪I=∪I≥
wiγ

T
i hi

s.t . γ T
i hi ≤ max

ξi∈Ui
ξ T f̄i (x

h), i ∈ I< ∪ I≤ ∪ I=,

γ T
i hi ≤ εi , i ∈ I≥,

ξ̂i
T
f̄i (x) ≤ ξ̂i

T
f̄i (x

∗) + δi , i ∈ I ,
HT
i γi ≥ f̄i (x), i ∈ I< ∪ I≤ ∪ I= ∪ I≥,

γi ≥ 0, i ∈ I< ∪ I≤ ∪ I= ∪ I≥
x ∈ X ,

(17)

then x̄ is an optimal solution for (8).

Proof By setting

ki (x) := max ξ Ti f̄i (x)
s.t . Hiξi ≤ hi ,

ξi ≥ 0
(18)

for i ∈ I , one can rewrite problem (8) as follows

min max
i∈I<

j∈I≤

[
wi (ki (x) − z Ii ), w j (k j (x) − ẑ j )

] + ρ

p∑

i=1

wi ki (x)

s.t . ki (x) ≤ max
ξi∈Ui

ξ Ti f̄i (x
h), i ∈ I< ∪ I≤ ∪ I=,

ki (x) ≤ εi , i ∈ I≥,

ξ̂ Ti f̄i (x) ≤ ξ̂ Ti f̄i (x
∗) + δi , i ∈ I ,

x ∈ X .

(19)

Now, by duality theory in linear programming, we have

ki (x) = min
γi

γ T
i hi

s.t . HT
i γi ≥ f̄i (x),

γi ≥ 0.

(20)
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So, problem (19) (equivalently (8)) is rewritten as

min
x,γi ,γ j

max
i∈I<

j∈I≤

[
wi (γ

T
i hi − z Ii ), w j (γ

T
j h j − ẑ j )

] + ρ
∑

i∈I<∪I≤∪I=∪I≥
wiγ

T
i hi

s.t . ki (x) ≤ max
ξi∈Ui

ξ Ti f̄i (x
h), i ∈ I< ∪ I≤ ∪ I=,

ki (x) ≤ εi , i ∈ I≥,

ξ̂ Ti f̄i (x) ≤ ξ̂ Ti f̄i (x
∗) + δi , i ∈ I ,

HT
i γi ≥ f̄i (x), i ∈ I< ∪ I≤ ∪ I= ∪ I≥,

γi ≥ 0, i ∈ I< ∪ I≤ ∪ I= ∪ I≥,

x ∈ X .

(21)

Now, assume that (x̄, γ̄ ) is a feasible solution of (17). Due to the constraints of (17), by
invoking weak duality in linear programming theory, we have

ki (x) ≤ γ T
i hi ≤ max

ξi∈Ui
ξ Ti f̄i (x

h), i ∈ I< ∪ I≤ ∪ I=,

ki (x) ≤ γ T
i hi ≤ εi , i ∈ I≥.

These imply that (x̄, γ̄ ) is a feasible solution of (21)which is equivalent to (8). This completes
the proof because the objective functions of (17) and (21) are the same. ��

Quadratic functions and polyhedral uncertainty set

Let us assume that fi (x, ξi ), i ∈ I , is a quadratic function in terms of ξi , and coefficients of
these function depend on x . We suppose

fi (x, ξi ) = 1

2
ξ Ti F̄i (x)ξi + ξ Ti f̄i (x), (22)

where F̄i (x) and f̄i (x) for i ∈ I are an si × si positive definite matrix and an si -vector,
respectively. Furthermore, we assume that the uncertainty set is a polyhedral set as

U = U1 ×U2 × . . . ×Up,

Ui = {ξi : Hiξi ≤ hi }, i ∈ I .
(23)

Here, Hi is an mi × si matrix and hi is an mi -vector.

Theorem 3.6 Consider problem (8) with functions fi (·, ·), (i ∈ I ), as described in (22) and
Ui , i ∈ I , is a polyhedral set as given in (23). Assume I � = ∅. The vector x̄ is an optimal
solution of (8) if there exist γ̄i , (i ∈ I< ∪ I≤ ∪ I= ∪ I≥), such that (x̄, γ̄ ) is an optimal
solution of the following problem:

min
x

min
γi ,γ j

max
i∈I<

j∈I≤

[
wi (Si (x, γi ) − z Ii ), w j (S j (x, γ j ) − ẑ j )

] + ρ

p∑

i=1

wi Si (x, γi )

s.t . Si (x, γi ) ≤ max
ξi∈Ui

1

2
ξ Ti F̄i (x

h)ξi + ξ Ti f̄i (x
h), i ∈ I< ∪ I≤ ∪ I=,

Si (x, γi ) ≤ εi , i ∈ I≥,

Si (x, ξ̂i ) ≤ Si (x
∗, ξ̂i ) + δi , i ∈ I ,

γi ≥ 0,
x ∈ X ,

(24)

where Si (x, γi ) := 1

2
γ T
i Di (x)γi + γ T

i ci (x) − 1

2
f̄i (x)T F̄i (x)−1 f̄i (x).
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Proof The main part of the proof of this theorem is similar to that of Theorem 3.5 and is
hence omitted. The only point worth mentioning is the duality of quadratic programming
problems. The dual of the quadratic problem

ki (x) := max
1

2
ξ Ti F̄i (x)ξi + ξ Ti f̄i (x)

s.t . Hiξi ≤ hi
(25)

can be written as [1]

min
1

2
uT Di (x)u + uT ci (x) − 1

2
f̄i (x)T F̄i (x)−1 f̄i (x)

s.t . u ≥ 0,
(26)

where

Di (x) = −Hi F̄i (x)
−1Hi ,

ci (x) = −hi − Hi F̄i (x)
−1 f̄i (x).

(27)

��

4 Numerical example in portfolio selection

Portfolio selection is an important, widely studied and challenging problem in appliedmathe-
matics and finance. The traditional aim is concerning how to find optimalways for assembling
a portfolio of assets such that the expected return is maximized while the investment risk
is minimized. Presented in the pioneering works [25,26], the financial risk in terms of the
variance of the random variable is associated with the return of the portfolio. An efficient
portfolio is defined as a feasible portfolio with the highest expected return for a given amount
of risk. In multiobjective optimization terms, for an efficient portfolio it is not possible to get
a higher return without accepting more risk and vice versa.

Several theoretical and practical developments have been done, e.g., in [32,33,37,41]
among others. In this section, we formulate a multiobjective portfolio selection problemwith
uncertainty in return. We solve the problem to demonstrate the ability of the LR-NIMBUS
method in incorporating the DM’s preferences and generating a satisfactory lightly robust
efficient solution.

The objective functions of our model are

• Maximization of the return;
• Minimization of the risk;
• Maximization of the sustainability index;
• And maximization of the liquidity index.

We do not have certain information about return and risk in the future. It means these two
factors are uncertain in their essence and the DM does not exactly know about the return
and risk associated with each asset. However, the intervals in which these two factors may
change could be estimated using the historical data in a time window. Here, we consider the
data of 7 assets in S&P 500 stocks for one year (as a time window). The data is extracted
from Yahoo Finance, https://finance.yahoo.com/.

Consider a financial market with n risky assets. Let ri , i = 1, 2, . . . , n, be the parameter
corresponding to the rate of return of asset i . We do not know the exact value of ri , though we
suppose it varies within the interval [r i , r̄i ] where r i = min j r(i, j) and r̄i = max j r(i, j),
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in which r(i, j) is the rate of return of investment in asset i in j th day. Indeed, r(i, j) is
equal to

The selling price of asset i in j th day − The purchase price of asset i in first day

the purchase price of asset i in first day
.

Assume the decision variable xi , i = 1, 2, . . . , n, represents the fraction of the initial wealth
invested in asset i . So, the objective function corresponding to the return is maximization of∑n

i=1 ri xi . Here, we assume short-selling is not allowed, and hence the decision variables
are nonnegative. Evidently, we have

∑n
i=1 xi = 1 as a constraint.

There are various ways for defining risk in portfolio selection literature [8,34]. In this

paper, we use the risk measure defined as |1 − ∑n
i=1

ri
r̃
xi | in [14]. In this formula, ri , i =

1, 2, . . . , n, are uncertain parameters. Furthermore, r̃ represents the market rate of return
which is calculated based upon the information of the whole market [34]. So, we have the
following uncertain multiobjective programming problem. Here, r := (r1, r2, . . . , rn).

min ( f1(x, r), f2(x, r), f3(x), f4(x)) =
(

−
n∑

i=1

ri xi , |1 −
n∑

i=1

ri
r̃
xi |,−

n∑

i=1

si xi ,−
n∑

i=1

li xi

)

s.t .
n∑

i=1

xi = 1,

xi ≥ 0.

(28)

The third objective function of the problem is associated with sustainability. There is no
uncertain parameter in this objective function. Here, si , i = 1, 2, . . . , n, represents the sus-
tainability index of the asset i . Recent studies show that many of investors in developed
societies are interested in investing in companies which care about sustainability. Sustain-
ability index is calculated with respect to three main scores: environmental, social, and
governance. There are various ways for calculating the sustainability index of companies,
and usually the sustainability score is a number between 1 and 100.

The fourth objective function of the above problem is the liquidity index. In this function,
li , i = 1, 2, . . . , n, represents the liquidity ratio of the asset i , which has been defined in
various ways in the literature. One of these ratios is the so-called “ Current Liquidity Ratio",
which measures company’s ability to pay off its current liabilities (payable within one year)
with its current assets such as cash, receivable accounts and inventories. The higher ratio,
the better the company’s liquidity position. The current liquidity ratio can be calculated as
follows:

Current liquidity ratio := Current assets

Current liabilities
.

Now, we want to apply LR-NIMBUS to find a lightly robust portfolio for problem (28)
taking theDM’s preferences into account. Here, the uncertainty set is a bounded box. The first
objective function, f1(x, ·) is linear with respect to the uncertain parameter, r . The third and
fourth objective functions are deterministic ones. The second objective function is not linear,
but it does not destroy the tractability of the method. It is a convex function with respect
to the uncertain parameter r , and hence it takes its maximum over the uncertainty box at
some extreme point of the box. Therefore, the theory presented in Subsection 3.2 (Theorem
3.3) works here. So, LR-NIMBUS can be implemented operationally. We need a nominal
scenario for starting the algorithm. Assume the DM considers the scenario corresponding to
maximum rates of return, i.e. r̄ = (r̄1, r̄2, . . . , r̄n), as a nominal scenario.
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We extracted information of 7 companies (assets) from the Yahoo finance website https://
finance.yahoo.com/. This includes the opening prices on February 22, 2018 and the closing
prices of all days during February 22, 2018 until February 22, 2019 (except holidays). We
considered the opening and closing prices as purchase and selling prices, respectively. The
sustainability scores of the considered companies, for 2018, were extracted from the Yahoo
finance website directly. This is available in the aforementioned website since 2018. Also,
we extracted the current assets and current liabilities of these companies, for four years
2015, 2016, 2017 and 2018, from the Yahoo finance website. Then, we calculated the current
liquidity ratio for these four years and estimated it for 2019 using extrapolation.

After extracting the required information from the above-mentioned website, we started
the process of finding a most preferred lightly robust portfolio (solution) by Algorithm 2.
We considered one of our colleagues as a DM and asked him to choose a favorable scenario
among the existing ones as a nominal scenario. His choice was

r̄ = (0.1147, 0.1784, 0.0746, 0.1842, 0.1009, 0.0625, 0.2247).

By considering a reference point

z̄ = (−0.1247, 0.2000,−0.1616,−2.5764),

and applying the ASF method, we derived an initial efficient solution

x0 = (0.0000, 0.0000, 0.0019, 0.3136, 0.0000, 0.6845, 0.0000),

in which the vector of the objective function values is

z0 = (−0.1007, 0.2592,−0.1459,−1.8373).

Our implementation, including solving the single-objective problems, has been done in
MATLAB.

Remark 1 The reference point z0 has been chosen taking an interval, in which the desired
values are reasonable and consistent with reality, into account. This interval is corresponding
to the lower bounds (ideal point) and upper bounds (nadir point) of the objective functions,
as follows:

z INom = (−0.2247, 0.0000,−0.1816,−2.7764),
zNNom = (−0.0800, 1.8085,−0.1375,−1.2763).

Notice that, these two vectors are corresponding to the nominal scenario. There is not any
efficient tool for calculation of the nadir point. Here, we considered an estimation of this
point by a pay-off table approach [3]. ��
Remark 2 We have converted all objectives to be minimized, that is, considered the first
objective function asminimization of the negative of the return. So, in the vector z0, the return
associated with portfolio x0 is 0.1007 (i.e., the first component of z0 should be multiplied by
(−1)). A similar clarification in needed for sustainability and liquidity as well. ��

TheDMwas not satisfiedwith the objective values at x0 (Step 1).We should get preference
information, as a classification of the objective functions, from the DM (Step 2). He preferred
to improve the first function (return) as much as possible and the liquidity to an aspiration
level 2 (so, for the fourth function, we have z̄4 = −2). On the other hand, the value of the
second function (risk) is close to the ideal situation. So, he allowed to impair this function
up to an upper bound ε2 = 0.3. Indeed, the DM preferred to sacrifice the second objective
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function (increase the risk) within an acceptable tolerance in order to improve other objective
functions. The DM was satisfied with the value of the third function (sustainability) and
preferred to keep its current value. The solution obtained from the NIMBUS problem (6),
imposing the mentioned preferences of the DM (Step 3), is

x1 = (0.0000, 0.0000, 0.0000, 0.2998, 0.0000, 0.6695, 0.0307).

The vector of the objective values at this point is

z1 = (−0.1040, 0.3000,−0.1459,−1.8689).

The DMwas satisfied with the value of the first objective function. However, he preferred
to continue the improvement of the fourth objective function as much as possible and the
third function to an aspiration level 0.18 (i.e., z̄3 = −0.18), allowing the second function to
be increased until the upper bound ε2 = 0.4. This led to the efficient solution

x2 = (0.0000, 0.0000, 0.0000, 0.2628, 0.0000, 0.6294, 0.1078),

whose corresponding objective vector is

z2 = (−0.1120, 0.4000,−0.1459,−1.9404).

Here, the DM was satisfied with the solution derived for the nominal scenario. So, we
started the second phase of the process of finding a most preferred lightly robust efficient
solution (Step 4). Throughout the second phase, x2 was utilized as an efficient solution for
the nominal scenario. To choose a reference point properly, we computed lower and upper
bounds for the objective functions as follows. These two vectors are respectively the ideal
and estimated nadir points for the worst-case (wc) problem, denoted by z Iwc and zNwc:

z Iwc = (0.0851, 2.0636,−0.1603,−2.2120),
zNwc = (0.3469, 5.3358,−0.1383,−1.6404).

Due to two vectors z Iwc and zNwc, for the worst-case scenario, the return belongs to
[−0.3469,−0.0851]. The negativity of these return values is natural, because of consid-
ering the worst-case scenario. Invoking the above two vectors, we considered a reference
point as z̄ = (0.2, 4,−0.15,−1.9). We need it to perform ths ASF method.

As we were looking for a lightly robust efficient solution, we asked the DM to choose a
tolerance for the objective functions in the nominal case. This tolerance means howmuch the
image point corresponding to the robust solution can be far from the image point associated
with the efficient solution obtained for the nominal case. The DM’s answer was

δ = (0.01, 0.23, 0.01, 0.3).

The initial lightly robust efficient solution obtained from the ASF method was equal to

x3 = (0.0000, 0.0000, 0.0000, 0.1848, 0.3621, 0.2689, 0.1842),

and the objective function vector at this point was

z3 = (0.2115, 3.6434,−0.1452,−1.8799).

Notice that, here the return value is negative.
TheDMwas not satisfiedwith the objective values at x3 (Step 5).We should get preference

information, as a classification of the objective functions, from the DM (Step 6). He preferred
to improve the first function as much as possible and the fourth function to an aspiration level
2.2120 (so, z̄4 = −2.2120). On the other hand, the value of the second function satisfied the
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DM. Moreover, he agreed to decrease sustainability to a lower bound 0.1383 (Step 6). The
solution obtained from problem (8), imposing the mentioned preferences of the DM (Step
7), is

x4 = (0.0000, 0.0000, 0.0000, 0.0127, 0.3981, 0.2844, 0.3049).

The vector of the objective values at this point is

z4 = (0.2115, 3.6434,−0.1390,−1.9721).

In this stage, since the value of the third function was very bad, the DM preferred to
improve it as much as possible. To do this, he agreed to sacrifice the fourth function up to
1.9 (i.e., ε4 = −1.9). Also, he preferred to improve the second function to an aspiration level
2.0636 and keep the first function in its current value. The derived solution and its objective
vector were

x5 = (0.0000, 0.0000, 0.0000, 0.1549, 0.3731, 0.2714, 0.2077),
z5 = (0.2115, 3.4501,−0.1452,−1.9096),

respectively.
The solution x5 also did not satisfy the DM and he wants to improve the return, no matter

what it takes. So he decided to impair the second, third and fourth functions, simultaneously.
The upper bounds for increasing these functions were ε2 = 3.5000, ε3 = −0.1420, and
ε4 = −1.8900, respectively. This led to a new solution

x6 = (0.0000, 0.0000, 0.0000, 0.0932, 0.4482, 0.2260, 0.2326),

whose corresponding objective vector is

z6 = (0.1888, 3.4906,−0.1420,−1.8900).

The solution x6 satisfied the DM, as all objective function values were in a satisfactory status
(taking z Iwc and zNwc into account).

Computing z jnom , as the vector of the objective function values (in nominal case) at x j ,
we have (z jnom)i − z2i � δi for each i = 1, 2, 3 and each j = 3, 4, 5, 6. Here, we have not
reported the z j vectors.

Finally, the DMwas satisfied with the last lightly robust efficient solution as the final point
(Step 8). The efficient portfolio derived from the LR-NIMBUS method is corresponding to
investment in fourth, fifth, sixth and seventh companies with 0.0932, 0.4482, 0.2260, and
0.2326 as fractions of the capital, respectively.

As demonstrated by the example, some of the strengths of our algorithm are the participa-
tion of the DM in the solution process, taking the uncertainty in the problem into account, and
the proximity of the final solution to the solution obtained for the most preferred scenario.
The algorithm allows the DM to control this proximity. The participation of the DM resulted
with a portfolio with characteristics (risk, return, liquidity, and sustainability) following the
DM’s preferences as well as possible. Furthermore, the lightly robustness notion helped us
to generate a solution which was reasonably close to the solution corresponding to the most
preferred scenario. Although, return is uncertain in its essence, it is usually considered as
deterministic in the models in the literature. We overcame this contradiction by incorporating
an uncertainty set in the model. This includes all possible scenarios and increases the trust
in the results derived from the historical data.
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5 Conclusions

We have proposed an interactive method called LR-NIMBUS for solving multiobjective
optimization under uncertainty. Uncertainty is assumed to be in the objective functions and
the method supports a decision maker in finding a most preferred lightly robust solution.

We have proven several theorems devoted to problem types in which the proposed method
is tractable. We also demonstrated the applicability of the method with a portfolio optimiza-
tion problem involving four objective functions.

Acknowledgements This research is related to the thematic research area Decision Analytics utilizing Causal
Models and Multiobjective Optimization (DEMO, jyu.fi/demo) at the University of Jyvaskyla.

Appendix A: ASFmethod

The Achievement Scalarizing Function (ASF), used for generating initial efficient solutions
is the objective function of the following problem corresponding to MOP (1):

min max
i=1,2,...,p

[
wi ( fi (x) − z̄i )

] + ρ

p∑

i=1

wi fi (x)

s.t . x ∈ X .

(29)

Here,wi = 1

zNi − zUi
for i = 1, 2, . . . , p are the weights assigned to the objective functions.

The vector z̄ = (z̄1, z̄2, . . . , z̄ p) is a reference point, which here is the average of nadir and
ideal points, and ρ > 0 is a sufficiently small scalar to prevent generating weakly efficient
solutions [39].
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