
Journal of Global Optimization (2022) 83:273–299
https://doi.org/10.1007/s10898-021-01105-z

A Newton Frank–Wolfe method for constrained
self-concordant minimization

Deyi Liu1 · Volkan Cevher2 ·Quoc Tran-Dinh1

Received: 30 June 2020 / Accepted: 18 October 2021 / Published online: 20 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We develop a new Newton Frank–Wolfe algorithm to solve a class of constrained self-
concordant minimization problems using linear minimization oracles (LMO). Unlike
L-smooth convex functions, where the Lipschitz continuity of the objective gradient holds
globally, the class of self-concordant functions only has local bounds, making it difficult to
estimate the number of linear minimization oracle (LMO) calls for the underlying optimiza-
tion algorithm. Fortunately, we can still prove that the number of LMO calls of our method
is nearly the same as that of the standard Frank-Wolfe method in the L-smooth case. Specif-
ically, our method requires at mostO

(
ε−(1+ν)

)
LMO’s, where ε is the desired accuracy, and

ν ∈ (0, 0.139) is a given constant depending on the chosen initial point of the proposed
algorithm. Our intensive numerical experiments on three applications: portfolio design with
the competitive ratio, D-optimal experimental design, and logistic regression with elastic-
net regularizer, show that the proposed Newton Frank–Wolfe method outperforms different
state-of-the-art competitors.

Keywords Frank–Wolfe method · Inexact projected Newton scheme · Self-concordant
function · Constrained convex optimization · Oracle complexity

Mathematics Subject Classification 90C25 · 90-08

B Quoc Tran-Dinh
quoctd@email.unc.edu

Deyi Liu
deyi@live.unc.edu

Volkan Cevher
volkan.cevher@epfl.ch

1 Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill,
318 Hanes Hall, Chapel Hill, NC 27599-3260, USA

2 Laboratory for Information and Inference Systems, EPFL, Lausanne, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01105-z&domain=pdf
http://orcid.org/0000-0002-5866-0787

274 Journal of Global Optimization (2022) 83:273–299

1 Introduction

In this paper, we consider the following constrained convex optimization problem:

f � := min
x∈X f (x). (1)

Here we assume that X is a nonempty, closed, and convex subset in R
p and f : R

p →
R ∪ {+∞} is a smooth 1 and convex function such that dom(f) ∩ X �= ∅. We emphasize
that, in our setting, dom(f) does not necessarily contain X . Among first-order methods,
the Frank–Wolfe (FW) method [14] (or more generally, the conditional gradient method)
has gained tremendous popularity lately due to its scalability and its theoretical guarantees
when the objective is L-smooth (i.e., its gradient∇ f is Lipschitz continuous with a Lipschitz
constant L) on X . The scalability of FW is mainly due to its computational primitive, called
the linear minimization oracle (LMO):

LX (s) := argmin
u∈X〈s,u〉. (2)

There are many applications, such as latent group LASSO and simplex optimization prob-
lems where computing the LMO is significantly cheaper as compared to projecting onto the
constraint setX . IfX is polyhedral, then evaluatingLX (s) requires to solve a linear program,
which can be achieved in polynomial-time up to very high accuracy. In many cases, evalu-
ating LX (s) can be done in a closed form or with a low-order polynomial-time algorithms
such as using quick-sort, see, e.g., [26] and its subsequent references.

While existing Frank–Wolfe methods can handle a sufficiently large class of convex
problems, there are many machine learning problems where the objective function involves
logarithmic, ridge regularized exponential, and log-determinant functions. These problems
so far cannot exploit the rate as well as the scalability of the FW algorithm or its key
variants. Our work precisely bridges this gap by focusing on objective functions where
f : R

p → R ∪ {+∞} is standard self-concordant (see Definition 1) and X is a nonempty,
compact, and convex set in R

p . We emphasize that the class of self-concordant functions
intersects with the class of Lipschitz continuous gradient functions, but they are different. In
particular, we assume:

Assumption 1 The solution set X � of (1) is nonempty. The function f in (1) is standard
self-concordant (cf. Definition 1) and its Hessian ∇2 f (x) is nondegenerate (i.e., ∇2 f (x) is
positive definite) for any x ∈ dom(f). The constraint set X is closed and bounded, and its
LMO defined by (2) can be computed efficiently and accurately.

Note that when X � dom(f), we cannot guarantee that the Hessian ∇2 f is bounded on
X . For instance, a univariate function f (x) := − log(x)− log(1− x) is self-concordant with
its domain dom(f) = (0, 1). If we consider X := [0, 1], then f is not L-smooth on X .

Under Assumption 1, problem (1) covers various applications in statistics and machine
learning such as D-optimal experimental design [23,31], minimum-volume enclosing ellip-
soid [9], quantum tomography [21], logistic regression with elastic-net regularizer [42],
portfolio optimization [37], and optimal transport [36].
Related work Motivated by the fact that, for many convex sets, including simplex, polytopes,
and spectrahedron, computing a linear minimization oracle is much more efficient than eval-
uating their projection [25,26], various linear minimization oracle-based algorithms have

1 The smoothness of f is only defined on dom(f), an open set.

123

Journal of Global Optimization (2022) 83:273–299 275

been proposed, see, e.g., [14,25,26,29,30]. Recently, such approaches are extended to the
primal-dual setting in [44,45].

The most classical one is the Frank–Wolfe algorithm proposed in [14] for minimizing
a quadratic function over a polytope. It has been shown that the convergence rate of this
method is O (1/k) and is tight under the L-smoothness assumption, where k is the iteration
counter. After that, many works have attempted to improve the convergence rate of the
Frank–Wolfe algorithm and its variants by imposing further assumptions or exploiting the
underlying problem structures. For instance, [3] showed a linear convergence of the Frank–
Wolfe method under the assumption that f is a quadratic function and the optimal solution
x� is in the interior of X . [22] firstly proposed a variant of the Frank–Wolfe method with
away-step and proved its linear rate to the optimal value if f is strongly convex, X is a
polytope, and the optimal solution x� is in the interior of X .

Recently, [15,28] showed that the result of [22] still holds even when x� is on the boundary
ofX . This can be viewed as the first general global linear convergence result of Frank–Wolfe
algorithms. [16] showed that the convergence rate of the Frank–Wolfe algorithm can be
accelerated up to O

(
1/k2

)
if f is strongly convex and X is a “strongly convex set” (see

their definition).
All the results mentioned above rely on the L-smooth assumption of the objective function

f . Moreover, the primal-dual methods in [44,45] suffer in proving convergence rate since
they can only handle the self-concordant function by splitting the objective and then relying
on the proximal operator of the self-concordant function.

For the non-L-smooth case, the literature is minimal. Notably, [34] is the first work, to
the best of our knowledge, that proved that the Frank–Wolfe method could converge with
O (1/k) rate for the Poisson phase retrieval problem where f is a logarithmic objective.
This result relies on a specific simplex structure of the feasible set X and proved that the
objective function f is eventually L-smooth on X . However, the worst-case bound is rather
loosely estimated. In addition, [9] showed a linear convergence of the Frank–Wolfe method
with away-step for the minimum-volume enclosing ellipsoid problemwith a log-determinant
objective. The algorithms and analyses in the respective papers exploit the cost function and
the structure, but it is not clear how they can handle more general self-concordant objectives.
Note that since both objective functions in the aforementioned works are self-concordant,
they are covered by our framework in this paper. Another related work is [13], which was
available several months later after our paper was online. However, the algorithm and its
analysis in [13] are different from our work, and it relies on additional assumptions.

In terms of algorithm, there are also several papers exploiting combination between
the Frank–Wolfe method and other schemes to solve different problems. For instance,
[17,20] propose to combine the Frank–Wolfe method and a (quasi) Newton scheme to solve
constrained nonlinear systems, where local and global convergence rates are established,
respectively. [11,19] further generalize the Frank–Wolfe method in [17,20] to an inexact pro-
jection framework.Notice that these algorithms are fundamentally different fromourmethod.
In fact, they first solve the Newton system and then apply a Frank–Wolfe method to estimate
the projection, while our method uses Frank–Wolfe scheme directly to solve the constrained
quadratic subproblem (4). In a concurrent work [18], a Frank–Wolfe variant is proposed as
a subsolver for the subproblem of the underlying quasi-Newton method, which is similar to
ours. However, [18] does not establish an explicit convergence rate for the proposed method
and uses a different set of assumptions.
Our goal and approach Our first goal is to tackle an important class of problems (1), where
existing LMO-based methods do not have convergence guarantees. Our results have advan-
tages when computing the LMO is cheaper than computing projections. Otherwise, the

123

276 Journal of Global Optimization (2022) 83:273–299

first-order methods, e.g., from [41] can also be applied. For this purpose, we apply a projected
Newton method to solve (1) and use the Frank–Wolfe method in the subproblems to approxi-
mate the projected Newton direction. This approach leads to a double-loop algorithm, where
the outer loop performs an inexact projected Newton scheme, and the inner loop carries out
an adaptive Frank–Wolfe scheme by automatically adjusting the inner accuracy.

Notice that our algorithm enjoys several additional computational advantages. When the
feasible set X is a polytope, our subproblem becomes minimizing a quadratic function over
a polytope. By the result of [28], we can use the Frank–Wolfe algorithm with away-steps to
attain linear convergencewithout sacrificing the overall complexity. Since our objective func-
tion in the subproblem is quadratic, the optimal step-size at each iteration has a closed form
expression, leading to structure exploiting variants (see Algorithm 2). Finally, our algorithm
can enhance Frank–Wolfe-type approaches by using the inexact projected Newton direction.
Our contribution To this end, our contribution can be summarized as follows:

(a) We propose a double-loop algorithm to solve (1) when f is self-concordant (see Defi-
nition 1) and X is equipped with a tractable linear minimization oracle. The proposed
algorithm is self-adaptive, i.e., it does not require tuning for the step-size and accuracy
of the subproblem.

(b) We prove that the gradient and Hessian complexity of our method is O
(
log

(1
ε

))
, while

the LMO complexity isO
(
ε−(1+ν)

)
, where ν := log(1−2β)

log(2β)
and β > 0 can be sufficiently

small. When β approaches zero, the complexity bound also approaches O
(1

ε

)
as in the

Frank–Wolfe methods for the L-smooth case.

To the best of our knowledge, this work is the first one studying LMO-based methods for
solving (1) with non-Lipschitz continuous gradient functions on a general convex set X . It
also covers the models in [9,34] as special cases, via a completely different approach.
Paper outline The rest of this paper is organized as follows. Section 2 recalls some basic
notation and preliminaries of self-concordant functions. Section 3 presents the main algo-
rithm. Section 4 proves the local linear convergence of the outer loop and gives a rigorous
analysis of the total oracle complexity. Three numerical experiments are given in Sect. 5.
Finally, we draw some conclusions in Sect. 6. For the sake of presentation, all the technical
proofs are deferred to the “Appendix”.

2 Theoretical background

Basic notation We work with Euclidean spaces, R
p and R

n , equipped with standard inner
product 〈·, ·〉 and Euclidean norm ‖·‖. For a given proper, closed, and convex function f :
R

p → R∪{+∞}, dom(f) := {x ∈ R
p | f (x) < +∞} denotes the domain of f , ∂ f denotes

the subdifferential of f , and f ∗ is its Fenchel conjugate. For a symmetric matrix A ∈ R
n×n ,

λmax(A) denotes the largest eigenvalue of A. We use [k] to denote the set {1, · · · , k}, and e
to denote the vector whose elements are 1s. For a vector u ∈ R

p , Diag(u) is a p× p diagonal
matrix formed by u. We also define two nonnegative and monotonically increasing functions
ω(τ) := τ − log(1+τ) for τ ∈ [0,∞) and ω∗(τ) := −τ − log(1−τ) for τ ∈ [0, 1). We use
H � 0 (resp., H � 0) to denote a symmetric positive semidefinite (resp., definite) matrix H.

123

Journal of Global Optimization (2022) 83:273–299 277

2.1 Self-concordant functions

Our class of objective functions in (1) is self-concordant. Hence, we recall the definition of
self-concordant functions introduced in [33] here.

Definition 1 A three times continuously differentiable 2 univariate function ϕ : R → R ∪
{+∞} is said to be self-concordant with a parameter Mϕ ≥ 0 if |ϕ′′′(τ)| ≤ Mϕϕ′′(τ)3/2 for
all τ ∈ dom(ϕ). A three times continuously differentiable function f : R

p → R ∪ {+∞} is
said to be self-concordant with a parameter M f ≥ 0 if ϕ(τ) := f (x+ τv) is self-concordant
with the same parameter M f for any x ∈ dom(f) and v ∈ R

p . If M f = 2, then we say that
f is standard self-concordant.

Note that any self-concordant function f can be rescaled to the standard form as f̂ (·) :=
(M2

f /4) f (·). When dom(f) does not contain straight line, ∇2 f (x) is nondegenerate (i.e.,
positive definite) [32, Theorem 4.1.3], and therefore we can define a local norm associated
with f together with its dual norm as follows:

‖u‖x := (
u�∇2 f (x)u

)1/2 and ‖u‖∗
x := (

u�∇2 f (x)−1u
)1/2

.

These norms are weighted and satisfy the Cauchy-Schwarz inequality 〈u, v〉 ≤ ‖u‖x‖v‖∗
x

for u, v ∈ R
p .

The class of self-concordant functions is sufficiently broad to cover many important appli-
cations. It is closed under nonnegative combination and affine transformation. Any linear
and convex quadratic functions are self-concordant. The function f1(x) := − log(x) and
f2(x) := x log(x) − log(x) are self-concordant. For symmetric positive semidefinite matri-
ces, f3(X) := − log det(X) is also self-concordant, which is widely used in covariance
estimation-type and experimental design problems. In statistical learning, the regularized
logistic regression model with f4(x) := 1

n

∑n
i=1 log(1 + exp(−yia�

i x)) + μ f
2 ‖x‖2 and the

regularized Poisson regressionmodel with f5(x) := 1
n

∑n
i=1

(
yi exp(

−a�
i x
2) + exp(

a�
i x
2)

)
+

μ f
2 ‖x‖2 are both self-concordant. Note that all the functions introduced above are not globally
L-smooth on their domain except for f4. In addition, any three times continuously differen-
tiable and strongly convex function with Lipschitz Hessian continuity is also self-concordant.
We refer the reader to [35,40] for more examples and theoretical results.

2.2 Approximate solutions

Since∇2 f (x) is nondegenerate, (1) has only one optimal solution x�. Moreover,∇2 f (x�) �
0. Our goal is to design an algorithm to approximate x� as follows:

Definition 2 Given a tolerance ε > 0, we say that x�
ε is an ε-solution of (1) if

‖x�
ε − x�‖x� ≤ ε. (3)

Different from existing Frank–Wolfe methods where an approximate solution x�
ε is defined

by f (x�
ε)− f � ≤ ε, we define it via a local norm. However, we show in Theorem 4 that these

two concepts are related to each other.

2 The differentiability of ϕ is only defined on dom(ϕ), an open set.

123

278 Journal of Global Optimization (2022) 83:273–299

3 The proposed Newton Frank–Wolfe algorithm

Since f in (1) is standard self-concordant, we first approximate it by a quadratic surrogate
and apply a projected Newton method to solve (1). More precisely, given x ∈ dom(f) ∩ X ,
the projected Newton method computes a search direction at x by solving the following
constrained convex quadratic program:

T (x) := argmin
u∈X

{
Q f (u; x) := 〈∇ f (x),u − x〉 + 1

2
(u − x)�∇2 f (x)(u − x)

}
. (4)

Since ∇2 f (x) is positive definite by Assumption 1, T (x) is the unique solution of (4). How-
ever, this problem often does not have a closed-form solution, and we need to approximate
it up to a given accuracy. Since we aim at exploiting LMO of X , we apply a Frank–Wolfe
scheme to solve (4). The optimality condition of (4) becomes

〈∇Q f (T (x); x), T (x) − u〉 ≤ 0, ∀u ∈ X , (5)

where ∇Q f (T (x); x) = ∇ f (x) + ∇2 f (x)(T (x) − x). Using this optimality condition, we
can define an inexact solution of (4) as follows:

Definition 3 Given a tolerance η > 0, we say that Tη(x) is an η-solution of (4) if

max
u∈X 〈∇Q f (Tη(x); x), Tη(x) − u〉 ≤ η2. (6)

The following lemma shows that the distance between T (x) and Tη(x) can be bounded by η.
Therefore, this justifies the well-definedness of Definition 3.

Lemma 1 Let Tη(x) be an η-solution defined by Definition 3 and T (x) be the exact solution
of (4). Then, it holds that ‖Tη(x) − T (x)‖x ≤ η.

Proof From Definition 3, we have 〈∇Q f (Tη(x); x), Tη(x) − T (x)〉 ≤ η2. Since Q f (·; x) is
a convex quadratic function, it is easy to show that

〈∇Q f (T (x); x) + ∇2 f (x)(Tη(x) − T (x)), Tη(x) − T (x)〉
= 〈∇Q f (Tη(x); x), Tη(x) − T (x)〉 ≤ η2.

Substituting Tη(x) for u in the optimality condition (5), we obtain

〈∇Q f (T (x); x), Tη(x) − T (x)〉 ≥ 0.

Combining the above two inequalities, we finally get

〈∇2 f (x)(Tη(x) − T (x)), Tη(x) − T (x)〉 ≤ η2,

which is equivalent to ‖Tη(x) − T (x)‖x ≤ η. ��
Now,we combine our inexact projectedNewton scheme and thewell-known Frank–Wolfe

algorithm to develop a new algorithm as presented in Algorithm 1.
Let us make a few remarks on Algorithm 1.

(a) Discussion on structure Algorithm 1 integrates both damped-step and full-step inexact
projected Newton schemes. First, it performs the damped-step scheme to generate {xk}
starting from an initial point x0 that may be far from the optimal solution x�. Then, once
‖xk − x�‖x� ≤ β is satisfied, it switches to the full-step scheme. For the damped-step
stage, we will show later that Algorithm 1 only performs a finite number of iterations.

123

Journal of Global Optimization (2022) 83:273–299 279

Algorithm 1 (Newton Frank–Wolfe Algorithm)

Inputs: Input ε > 0 and x0 ∈ dom(f) ∩ X .
• Choose (β, σ,C) > 0 such that (11) holds. Choose C1 ∈ (0, 0.5) and δ ∈ (0, 1).
• Set λ−1 := β

σ
and η0 := min{ β

C ,C1h−1(β)}, where h is defined in (8).
for k := 0, 1, · · · do

zk := Adaptive_Frank_Wolfe_Subroutine(∇ f (xk),∇2 f (xk)[·], xk, η2k).
dk := zk − xk and γk := ‖dk‖xk .
if γk + ηk ≤ h−1(β) or λk−1 ≤ β then

λk := σλk−1 and ηk+1 := σηk

xk+1 := xk + dk (full-step)
else

λk := λk−1 and ηk+1 := ηk .

αk := δ(γ 2
k − η2k)/(γ

3
k + γ 2

k − η2kγk).

xk+1 := xk + αkdk (damped-step)
end if
if λk ≤ ε then

return xk+1

end if
end for

Algorithm 2 (Adaptive Frank–Wolfe Subroutine)

Adaptive_Frank_Wolfe_Subroutine(h,H[·],u0, η)
for t := 0, 1, · · · T do

gt := h + H(ut − u0).
vt := argmaxs∈X

〈
gt , ut − s

〉
.

Vt := 〈
gt , ut − vt

〉
.

if Vt > η then
δt := ‖vt − ut‖2H and τt := min {1, Vt/δt }.
ut+1 := (1 − τt)ut + τtvt .

else
return ut .

end if
end for

(b) Discussion on the Newton decrement λk . Due to the update rule of λk in Algorithm 1
we have λk := βσ k . As proved in (12) of Theorem 2 below, one has ‖xk − x�‖x� ≤ λk
in the full-step stage. 3 Since λk is decreased geometrically by a factor σ ∈ (0, 1) as
λk := σλk−1, ‖xk − x�‖x� converges linearly to zero (see Theorem 2). Notice that in
the damped-step stage, we keep λk unchanged. Therefore, λk does not upper bound
‖xk − x�‖x� in this case.

(c) Discussion on the inner accuracy ηk . The quantity ηk is used to measure ‖T (xk)− zk‖xk
(see (4) for the definition of T (xk)). In Algorithm 1, zk is calculated by Algorithm 2 as

zk := Adaptive_Frank_Wolfe_Subroutine(∇ f (xk),∇2 f (xk)[·], xk, η2k). (7)

3 Notice that Theorem 2 is proven under an assumption that x0 is sufficiently close to x� (the optimal solution
of (1)) so that the damped step is never invoked.

123

280 Journal of Global Optimization (2022) 83:273–299

From the stop criterion ofAlgorithm2, zk is an ηk-approximate solution byDefinition 3 at
x = xk and may not be in dom(f). According Lemma 1, we have ‖zk − T (xk)‖xk ≤ ηk .
Therefore, ηk measures the accuracy for solving the subproblem. In the damped-step
stage, we keep ηk as a constant. In the full-step one, ηk is decreased by a factor of
σ ∈ (0, 1) at each iteration to guarantee that we get a more accurate projected Newton
direction when the algorithm approaches the optimal solution x�. The following lemma
shows that the choice of our step-size guarantees that xk ∈ dom(f) ∩ X regardless of
the full-step or the damped-step.

Lemma 2 Let {xk} be generated by Algorithm 1. Then {xk} ⊂ dom(f) ∩ X .

Proof We prove this lemma by induction. Due to the initialization of Algorithm 1, we have
x0 ∈ dom(f) ∩ X . Assume that xk ∈ dom(f) ∩ X for k ≥ 0. We now show that xk+1 ∈
dom(f)∩X . SinceX is convex, xk+1 = (1−αk)xk +αkzk , xk ∈ X , zk ∈ X , and αk ∈ (0, 1],
it is obvious that xk+1 ∈ X . We only need to show that xk+1 ∈ dom(f). If we update xk+1

by the damped-step, then by Algorithm 1, we have

‖xk+1 − xk‖xk = αk‖zk − xk‖xk = αkγk = δ(γ 2
k − η2k)

γ 2
k − η2k + γk

< 1.

Alternatively, if we update xk+1 by the full-step, then by (12) of Theorem 2 below, we have
‖xk+1 − xk‖xk = 2βσ k < 1. In both cases, we have ‖xk+1 − xk‖xk < 1. Hence, by using
[32, Theorem 4.1.5], we conclude that xk+1 ∈ dom(f). Consequently, xk+1 ∈ dom(f)∩X .
By induction, we have {xk} ⊂ dom(f) ∩ X . ��
(d) Discussion on the switching condition γk + ηk ≤ h−1(β). When γk + ηk > h−1(β), we

use a damped-step scheme with the step-size

αk := δ(γ 2
k − η2k)

γ 3
k + γ 2

k − η2kγk
.

This step-size is derived fromLemma3 in the “Appendix”, and is in (0, 1). Once γk+ηk ≤
h−1(β) is satisfied, we move to the full-step stage and no longer use the damped-step
one. In addition, from Lemma 4 in the “Appendix”, we can see that if γk +ηk ≤ h−1(β),
then we have ‖xk − x�‖x� ≤ β, which means that we already find a good initial point for
the full-step stage.

(e) Discussion on the Frank–Wolfe subroutine The subroutine (7) is an adaptive Frank–
Wolfe variant, which is customized to solve the following constrained convex quadratic
program:

min
x∈X

{
ψ(x) := 〈h, x − u0〉 + 1

2 〈H(x − u0), x − u0〉}.
The step size τt in (7) is computed via the following exact linesearch condition (see [29]
for further details):

τt := arg min
α∈[0,1]

{
ψ(ut + α(vt − ut))

}
.

(f) Discussion on the Hessian evaluation ∇2 f (·). In practice, we do not need to evaluate
the full Hessian ∇2 f (xk) at each iteration k. We only need to evaluate the matrix-vector
operator∇2 f (xk)v for a given direction v. Similarly, the computation of γk does not incur
significant cost. Indeed, since we have already computed ∇2 f (xk)dk in (7), computing
γk requires only one additional vector inner product 〈∇2 f (xk)dk,dk〉.

123

Journal of Global Optimization (2022) 83:273–299 281

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 The shape of h (left) and the feasible region of (β, σ) for (11) when C = 10 (right)

(g) Faster Frank–Wolfe variants Since X in(1) is a general convex set, our analysis below is
based on the standard Frank–Wolfe variant [26]. However, when it is possible (e.g., X
is a polytope or a strongly convex set [16]), we can replace this standard Frank–Wolfe
subroutine by a faster variant. For instance, if X is a polytope, then we can use an away-
step variant, which often has a linear convergence rate [28]. If X is strongly convex [16],
then we can apply an accelerated variant, which can achieve up toO

(
1/T 2

)
convergence

rate. In both cases, the LMO complexity stated in Theorems 3 and 4 still holds (up to a
constant factor), or can even be improved.

4 Convergence and complexity analysis

Our analysis closely follows the outline below:

– Given β ∈ (0, 1), we show that we only need a finite number of damped-steps to reach
xk such that ‖xk − x�‖x� ≤ β. We call it the damped-step stage.

– Once ‖xk−x�‖x� ≤ β is satisfied, we prove a linear convergence of the full-step projected
Newton scheme. We call this the full-step stage.

– We finally estimate the overall LMO complexity of Algorithm 1.

4.1 Finite complexity of damped-step stage

Before we present the main theorem of this section, let us first define a univariate function
h : R+ → R+ , whose shape is shown in Fig. 1, as

h(τ) := τ(1 − 2τ + 2τ 2)

(1 − 2τ)(1 − τ)2 − τ 2
. (8)

From Fig. 1, h is nonnegative and monotonically increasing on [0,C2) for the constant
C2 ∈ (0.3, 0.4) such that (1 − 2C2)(1 − C2)

2 − C2
2 = 0.

The following theorem states that Algorithm 1 only needs a finite number of LMO calls
T1 to achieve xk such that ‖xk − x�‖x� ≤ β. Although T1 is independent of tolerance ε, it
depends on the pre-defined constants β andC1 in the algorithm and the structure of f andX .

123

282 Journal of Global Optimization (2022) 83:273–299

Theorem 1 Let ω(τ) := τ − log(1+ τ). If we choose the parameters as in Algorithm 1, then
after at most

K := f (x0) − f (x�)

δω
(
1−2C1
1−C1

h−1(β)
) (9)

outer iterations of the damped-step scheme, we can guarantee that γk + ηk ≤ h−1(β) for
some k ∈ [K], which implies that ‖xk − x�‖x� ≤ β. Moreover, the total number of LMO
calls is at most

T1 := 6D2
Xλmax(∇2 f (x0))
(C1h−1(β))2

1 − (1 − δ)2K+1

δ(1 − δ)2K
, (10)

where DX := max
x,y∈X ‖x − y‖. The number of gradient ∇ f (xk) and Hessian ∇2 f (xk) evalu-

ations is also at most K .

Proof Notice that in Algorithm 1, we always have ηk ≤ C1h−1(β) in the damped-step stage,
whereC1 ∈ (0, 0.5). Clearly, if γk+ηk > h−1(β), then γk > h−1(β)−ηk ≥ (1−C1)h−1(β).
Therefore, we can show that

γ 2
k − η2k

γk
≥ ((1 − C1)h−1(β))2 − (C1h−1(β))2

(1 − C1)h−1(β)
= 1 − 2C1

1 − C1
h−1(β).

Using Lemma 3 in the “Appendix” and the monotonicity of ω we also have

f (xk+1)
(26)≤ f (xk) − δω(

γ 2
k − η2k

γk
) ≤ f (xk) − δω(

1 − 2C1

1 − C1
h−1(β)).

Consequently,we need atmost K := f (x0)− f (x�)

δω
(
1−2C1
1−C1

h−1(β)
) outer iterations to get γk+ηk ≤ h−1(β)

as stated in (9).
From Lemma 6 in the “Appendix”, we can show that the number of LMO calls needed at

the k-th outer iteration is Tk := 6λmax(∇2 f (xk))D2
X

η2k
. Since f is self-concordant, we have

∇2 f (xk+1) � ∇2 f (xk)
(1 − ‖xk+1 − xk‖xk)2

= ∇2 f (xk)
(1 − αkγk)2

� ∇2 f (xk)
(1 − δ)2

,

which implies that ∇2 f (xk) ≤ ∇2 f (x0)
(1−δ)2k

. Hence, the total number of LMO calls can be
computed by

T1 := ∑K
k=0 Tk = 6D2

X
∑K

k=0
λmax(∇2 f (xk))

η2k

≤ 6D2
X

(C1h−1(β))2

∑K
k=0

λmax(∇2 f (x0))
(1−δ)2k

≤ 6D2
X

(C1h−1(β))2

∑2K
k=0

λmax(∇2 f (x0))
(1−δ)k

= 6D2
X λmax(∇2 f (x0))
(C1h−1(β))2

1−(1−δ)2K+1

δ(1−δ)2K
.

Finally, if γk+ηk ≤ h−1(β), then we have λ̄k :=‖xk−x�‖x�

(30)≤ h(γk+ηk) ≤ h(h−1(β))=β.
��

123

Journal of Global Optimization (2022) 83:273–299 283

4.2 Linear convergence of full-step stage

Theorem 1 shows that we only need a finite number of damped-steps to obtain xk such that
‖xk −x�‖x� ≤ β. Therefore, without loss of generality, we always assume that ‖x0−x�‖x� ≤
β in the rest of this paper. Using this assumption, we analyze convergence rate of {xk} to the
unique optimal solution x� of (1). In this case, Algorithm 1 always choose full-steps, i.e.,
xk+1 := xk + dk = zk .

The following theorem states the linear convergence of ‖xk − x�‖x� and ‖xk+1 − xk‖xk .
The convergence of ‖xk+1 − xk‖xk will be used in Theorem 3 to bound {∇2 f (xk)} which is
key to our LMO complexity analysis.

Theorem 2 Suppose that ‖x0 − x�‖x� ≤ β and the triple (σ, β,C) satisfies:
⎧
⎪⎨

⎪⎩

σ ∈ (0, 1), β ∈ (0, 0.5), C > 1,
1

C(1−β)
+ β

(1−2β)(1−β)2
≤ σ,

1
C + 1

(1−2β)
≤ 2.

(11)

Let ηk := βσ k

C and {xk} be updated by the full-step stage in Algorithm 1. Then, for k ≥ 0,
the following bounds hold:

‖xk − x�‖x� ≤ βσ k and ‖xk+1 − xk‖xk ≤ 2βσ k . (12)

Proof We prove this theorem by induction. Firstly, we have ‖x0 − x�‖x� ≤ βσ 0 = β < 1
by assumption. Next, suppose that λ̄k := ‖xk − x�‖x� ≤ βσ k for k ≥ 0. By induction, we
can derive

λ̄k+1 := ‖xk+1 − x�‖x�

(35)≤ ηk
1−λ̄k

+ λ̄2k
(1−λ̄k)

2(1−2λ̄k)

= βσ k

C(1−λ̄k)
+ λ̄2k

(1−λ̄k)
2(1−2λ̄k)

≤
(

1
C(1−λ̄k)

+ λ̄k
(1−λ̄k)

2(1−2λ̄k)

)
βσ k (by induction)

≤
(

1
C(1−β)

+ β

(1−β)2(1−2β)

)
βσ k (by induction)

(11)≤ βσ k+1,

which proves the first estimate of (12).
Similarly, we also have

‖xk+1 − xk‖xk
(36)≤ ηk + λ̄2k

(1−2λ̄k)(1−λ̄k)
+ λ̄k

1−λ̄k

= βσ k

C + λ̄2k
(1−2λ̄k)(1−λ̄k)

+ λ̄k
1−λ̄k

≤
(

1
C + λ̄k

(1−λ̄k)(1−2λ̄k)
+ 1

1−λ̄k

)
βσ k (by induction)

≤
(

1
C + β

(1−β)(1−2β)
+ 1

1−β

)
βσ k (by induction)

=
(

1
C + 1

(1−2β)

)
βσ k

(11)≤ 2βσ k,

which proves the second estimate of (12). ��

123

284 Journal of Global Optimization (2022) 83:273–299

Theorem 2 shows that {xk} linearly converges to x� with a contraction factor σ ∈ (0, 1)
chosen from (11). Figure 1 shows the feasible region of (β, σ) for (11) when C = 10. From
this figure, we can see that (11) will always hold once β is sufficiently small. Therefore,
theoretically, we can let β arbitrarily close to 0.

4.3 Overall LMO complexity analysis

This subsection focuses on the analysis of LMO complexity of Algorithm 1. We first show
that Algorithm 1 needs O

(
ε−2(1+ν)

)
LMO calls to reach an ε-solution defined by (3) where

ν := log(1−2β)
log(σ)

. Consequently, we can show that it needs O
(
ε−(1+ν)

)
-LMO calls to find an

ε-solution x�
ε such that f (x�

ε) − f � ≤ ε.

Theorem 3 Suppose that ‖x0 − x�‖x� ≤ β. If we choose the parameters β, σ , C, and {ηk}
as in Theorem 2 and update {xk} by the full-step stage, then to obtain an ε-solution x�

ε := xk

defined by (3), it requires

⎧
⎪⎨

⎪⎩

O
(
log(ε−1)

)
gradient evaluations ∇ f (xk),

O
(
log(ε−1)

)
Hessian evaluations∇2 f (xk), and

O
(
ε−2(1+ν)

)
LMO calls, with ν := log(1−2β)

log(σ)
.

Proof By self-concordance of f , using [32, Theorem 4.1.6], it holds that

∇2 f (xk+1) � ∇2 f (xk)
(1 − ‖xk+1 − xk‖xk)2

(12)� ∇2 f (xk)
(1 − 2βσ k)2

� ∇2 f (xk)
(1 − 2β)2

.

By induction, we have

∇2 f (xk) �
(

1

1 − 2β

)2k

∇2 f (x0).

Therefore, we can bound the maximum eigenvalue λmax(∇2 f (xk)) of ∇2 f (xk) as

λmax(∇2 f (xk)) ≤
(

1

1 − 2β

)2k

λmax(∇2 f (x0)). (13)

Let us denote by λ̂0 := λmax(∇2 f (x0)). Then, from Lemma 6 in the “Appendix”, we can
see that the number of LMO calls at the k-th outer iteration is at most

Ok := 6λmax(∇2 f (xk))D2
X

η2k

(13)≤ 6λ̂0D2
X

(1 − 2β)2kη2k
= 6C2λ̂0D2

X
β2((1 − 2β)σ)2k

, (14)

where the last equality holds because we set ηk := βσ k/C in Theorem 2.
To obtain an ε-solution xk defined by (3), we need to impose βσ k ≤ ε (recall that

‖xk − x�‖x� ≤ βσ k by Theorem 2), which is equivalent to k ≥ log(β/ε)
log(1/σ)

. Since β ∈ (0, 1),

the outer iteration number is at most log(1/ε)
log(1/σ)

= log(ε)
log(σ)

. This number is also the total number
of gradient and Hessian evaluations.

123

Journal of Global Optimization (2022) 83:273–299 285

Finally, by (14), the total number of LO calls of Algorithm 1 is estimated as

∑ log(ε)
log(σ)

k=0
6C2λ̂0D2

X
β2((1−2β)σ)2k

= 6C2λ̂0D2
X

β2

∑ log(ε)
log(σ)

k=0

(
1

(1−2β)σ

)2k

≤ 3C2λ̂0D2
X

β3

(
1

(1−2β)σ

) 2 log(ε)
log(σ)

= 3C2λ̂0D2
X

β3

(1
ε

)2
(
1+ log(1−2β)

log(σ)

)

,

where the last equality holds since τα log(s) = sα log(τ). ��

From Theorem 3, we can observe that a small value of β gives a better oracle complexity
bound, but increases the number of oracle calls in the damped-step stage. Hence, we need
to trade-off between the damped-step stage and the full-step stage. In practice, we do not
recommend to choose an extremely small β but some value in the range of [0.01, 0.1].

Finally, the following theorem states the LMO complexity of Algorithm 1 on the
objective residuals.

Theorem 4 Suppose that ‖x0 − x�‖x� ≤ β. If we choose σ , β, C, and {ηk} as in Theorem 2
and update {xk} by the full-step stage, then we have

f (xk+1) − f (x�) ≤
(

12β3

1 − 2β
+ β2

C2 + β2
)

σ 2k .

Consequently, the total LMO complexity of Algorithm 1 to achieve an ε-solution x�
ε := xk

such that f (x�
ε) − f � ≤ ε is O

(
ε−(1+ν)

)
, where ν := log(1−2β)

log(σ)
.

Proof It is easy to check that ω∗(τ) ≤ τ 2 for 0 < τ < 0.5. Therefore, ω∗(βσ k) ≤ (βσ k)2

for k ≥ 0. Since ηk := βσ k

C , γk ≤ 2βσ k , and λ̄k := ‖xk − x�‖x� ≤ βσ k in Theorem 2, for
k ≥ k0, we have

f (xk+1) − f (x�)
(44)≤ γ 2

k (γk+λ̄k)

1−γk
+ η2k + ω∗(λ̄k+1)

(12)≤ 12β3σ 3k

1−2βσ k + β2σ 2k

C2 + ω∗(βσ k+1)

≤
(

12β3σ k

1−2βσ k + β2

C2 + β2σ 2
)

σ 2k

≤
(

12β3

1−2β + β2

C2 + β2
)

σ 2k .

(15)

Let C1 >
12β2

1−2β + β2

C2 + β2 be a constant. To guarantee f (xk+1) − f (x�) ≤ ε, we impose

C1σ
2k ≤ ε i.e. k ≥ log(ε/C1)

2 log(σ)
. Therefore, the outer iteration number is at most log(ε/C1)

2 log(σ)
+ 1.

Using (14), the total number of LMO calls will be

T2 := ∑ log(ε/C1)

2 log(σ)
+1

k=0
6C2λmax(∇2 f (x0))D2

X
β2((1−2β)σ)2k

= O
(
∑ log(ε/C1)

2 log(σ)
+1

k=0

(
1

(1−2β)σ

)2k
)

= O
((

1
(1−2β)σ

) log(ε/C1)

log(σ)

)

= O
((1

ε

) log((1−2β)σ)
log(σ)

)
,

(16)

where the last equality follows from the fact that τα log(s) = sα log(τ). ��

123

286 Journal of Global Optimization (2022) 83:273–299

4.4 Trade-off between the damped-step and full-step stages

Fix β ∈ [0, 0.1], let us choose

C = 1

σ

2(1 − 2β)(1 − β)

2(1 − 2β)(1 − β)2 − 1
> 0, and σ = 2β.

It is easy to verify that (11) still holds. The overall complexity in Theorem 4 becomes

O
(
ε−(1+ν)

) = O
(

ε
−(1+ log(1−2β)

log(2β)
)

)
. Here, since β ∈ (0, 0.1], we have ν := log(1−2β)

log(2β)
≤

0.139. As a concrete example, if we choose β := 0.05, then the conditions (11) of Theorem 2
hold if we choose (C, σ) = (27.3814, 0.1). In this case, ν := log(1−2β)

log(σ)
= 0.0458 which is

very close to zero.
Now we show that the LMO complexity of the full-step stage: T2 in (16) dominates the

LMO complexity of the damped-step stage: T1 in (10). Let us choose δ := ε. Then, the

step-size of the damped-step stage becomes αk = ε(γ 2
k −η2k)

γ 3
k +γ 2

k −η2kγk
, which is proportional to ε. In

this case, the number of iterations K of the damped-step stage in Theorem 1 is

K = R

ε
= O

(
1

ε

)
, where R := f (x0) − f (x�)

ω
(1−2C1
1−C1

h−1(β)
) is a fixed constant.

Moreover, for a sufficiently small ε, we have (1− δ)2K = (1− ε)
2R
ε = �

(
1

e2R

)
. Hence, by

Theorem 1, the total LMO calls of the damped-step stage can be bounded by

T1 := O
(

1

δ(1 − δ)2K

)
= O

(
e2R

ε

)
= O

(
1

ε

)
.

Therefore, the LMO complexity T2 := O
(
ε−(1+ν)

)
in the full-step stage dominates the one

T1 = O
(
ε−1

)
in the damped-step stage. Overall, the total complexity of Algorithm 1 is

O
(
ε−(1+ν)

)
, as stated in Theorem 4.

5 Numerical experiments

We provide three numerical examples to illustrate the performance of Algorithm 1. We
emphasize that the objective function f of the first two examples is not globally L-smooth.
Hence, existing Frank–Wolfe and projected gradient-basedmethodsmay not have theoretical
guarantees. In the following experiments, we implement Algorithms 1 and its competitors in
Matlab running on a Linux desktop with 3.6GHz Intel Core i7-7700 and 16Gb memory. Our
code is available at https://github.com/unc-optimization/FWPN.

5.1 Portfolio optimization

Consider the following portfolio optimization model studied in [40, Section 6.4]:

{
min
x∈Rp

{
f (x) := −∑n

i=1 log(a
�
i x)

}

s.t.
∑p

i=1 xi = 1, x ≥ 0,
(17)

123

https://github.com/unc-optimization/FWPN

Journal of Global Optimization (2022) 83:273–299 287

10-3 10-2 10-1 100

10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-3 10-2 10-1 100 101
10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-3 10-2 10-1 100 101
10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-4 10-3 10-2 10-1 100 101
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-4 10-3 10-2 10-1 100 101
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-2 10-1 100 101 102
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-2 10-1 100 101 102
10-12

10-10

10-8

10-6

10-4

10-2

100

102

100 101 102 103
10-12

10-10

10-8

10-6

10-4

10-2

100

102

100 101 102 103
10-12

10-10

10-8

10-6

10-4

10-2

100

102

Fig. 2 A comparison between 7 methods for solving problem (17) on 9 datasets

where ai ∈ R
p for i = 1, · · · , n. LetA := [a1, · · · , an]� ∈ R

n×p . In the portfolio optimiza-
tion model,Ai j represents the return of stock j in scenario i and log(·) is the utility function.
Our goal is to allocate assets to different stock companies to maximize the expected return.

We implement Algorithm 1, abbreviated by FWPN, to solve (17). We also implement
the standard projected Newton method which uses accelerated projected gradient method to
compute the search direction, the Frank–Wolfe algorithm [14] and its linesearch variant [26],
the projected gradient method using Barzilai-Borwein’s step-size [1,38], the nonmonotone
spectral projected gradient method [6], and the inexact variable metric method [18] to solve
this problem. We name these algorithms by PN, FW, FW-LS, PG-BB, nSPG, and IVM,
respectively. For PN and PG-BB, we use the algorithm in [7] to compute the projection onto
the simplex set.

We test these algorithms both on synthetic and real data. For the real data, we download
three US stock datasets from http://www.excelclout.com/historical-stock-prices-in-excel/.
We name these datasets by real1, real2, and real3. We generate synthetic datasets as
follows. We generate a matrix A as A := ones(n, p)+N (0, 0.1) which allows each stock to
vary about 10% among scenarios. We test with six examples, where(n, p) = (7× 102, 103),
(103, 103), (5×103, 104), (104, 103), (104, 104), and (105, 103), respectively. We call these
six datasets syn1, syn2, syn3, syn4, syn5, and syn6, respectively. The results and the
performance of these six algorithms are shown in Fig. 2.

123

http://www.excelclout.com/historical-stock-prices-in-excel/

288 Journal of Global Optimization (2022) 83:273–299

From Fig. 2, one can observe that our algorithm, FWPN, clearly outperforms the other
competitors on both real and synthetic datasets. In our algorithm, we use a Frank–Wolfe
method with away-step to solve the simplex constrained quadratic subproblem which has a
linear convergence rate as proved in [28]. As we can see from Fig. 2, PGBB, nSPG, and PN
work relatively well compared to other candidates on the real datasets. nSPG works quite
well if the data is well-conditioned (see the plots of the syn4 and syn6 datasets) but will
perform poorly if the condition number is large (see the plots of syn3 and syn5 datasets).
Also notice that the IVM method is slightly worse than our FWPN method in most cases. In
fact, both methods have the same subproblem, and we also apply the same subsolver to both
methods. However, due to different stepsize strategies, their performance is not identical. As
expected, the standard FW and its linesearch variant cannot reach a highly accurate solution.

5.2 D-optimal experimental design

Our second example in this section is the following convex optimization model in D-optimal
experimental design:

{
min
x∈Rp

{
f (x) := − log det(AXA�)

}

s.t.
∑p

j=1 x j = 1, x ≥ 0,
(18)

where A := [a1, · · · , ap] ∈ R
n×p , X := Diag(x), and ai ∈ R

n for i = 1, · · · , p. It is well-
known that the dual problem of (18) is the minimum-volume enclosing ellipsoid (MVEE)
problem:

{
min
H�0

{
g(H) := − log det(H)

}

s.t. a�
i Hai ≤ n, i = 1, · · · , p.

(19)

The objective of this problem is to find the minimum ellipsoid that covers the points
a1, · · · , ap ∈ R

n . The datasets {ai }pi=1 are generated using independent multinomial
Gaussian distribution N (0,�) as in [9]. To solve (18), one state-of-the-art solver is the
Frank–Wolfe algorithm with away-step [28]. We observe that the linesearch problem for
computing the optimal step-size τ :

min
τ∈[0,1] f ((1 − τ)x + τe j)

has a closed-form solution (see [27] for more details). Therefore, we do not have to carry out
a linesearch at each iteration of the Frank–Wolfe algorithm.

Recently, [9] showed that the Frank–Wolfe algorithm with away-step has a linear con-
vergence rate for this specific problem. Figure 3 reveals the performance of our algorithm
(FWPN), Frank–Wolfe algorithmwith away-step, the nonmonotone spectral projected gradi-
ent method (nSPG) [6], and the inexact variable metric method (IVM) [18] on three datasets,
where the dimension n varies from 100 to 5, 000. Note that existing literature only tested for
problems with n ≤ 500. As far as we are aware of, this is the first attempt to solve problem
(18) with n up to 5, 000.

From Fig. 3, our method outperforms the other three competitors on both large and small
datasets, including IVM. Figure 3 also shows that when the size of the problem is small, our
algorithm is slightly better than the Frank–Wolfe method with away-step. However, when
the size of the problem becomes large, our algorithm highly outperforms the Frank–Wolfe

123

Journal of Global Optimization (2022) 83:273–299 289

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10-12

10-10

10-8

10-6

10-4

10-2

100

102

0 5 10 15 20 25 30
10-12

10-10

10-8

10-6

10-4

10-2

100

102

0 100 200 300 400 500 600 700

10-8

10-6

10-4

10-2

100

Fig. 3 A comparison between 4 algorithms for solving (18) on three datasets

method in terms of computational time. This happens due to a small number of projected
Newton steps while each inner iteration requires significantly small computational time.

5.3 Logistic Regression with Elastic-net Regularizer

Finally, let us consider the following logistic regression with elastic-net regularizer:

min
x∈Rp

{1
n
e� log(e + exp(A�x)) + μ

2
‖x‖2 + ρ‖x‖1

}
, (20)

where e := (1, 1, · · · , 1)� ∈ R
n , A := [−y1a1, · · · ,−ynan] ∈ R

p×n , and (ai , yi) ∈
R

p × {−1, 1} for i = 1, · · · , n.
It is well-known that (20) is the Lagrangian formulation of the following constrained

problem with a suitable penalty parameter ρ > 0 [24, Section 3.4.2]. Although [24] only
consider the standard linear regression problem, it is trivial to extend it to logistic regression
of the form:

{
min
x∈Rp

{
f (x) := 1

n e
� log(e + exp(A�x)) + μ

2 ‖x‖2
}

s.t. ‖x‖1 ≤ ρ1.
(21)

It is has been shown in [40] that f (x) := 1
n e

� log(e+exp(A�x))+ μ
2 ‖x‖2 is self-concordant.

Therefore, (21) fits into our template (1) with X := {x ∈ R
p | ‖x‖1 ≤ ρ1}.

For this example, the objective function f is also L-smooth and strongly convex. Hence,
we can compare Algorithm 1 (FWPN) with the standard proximal-gradient method [4], the
accelerated proximal-gradient method with linesearch and restart [5,39], the nonmonotone
spectral projected gradient method [6], and the inexact variable metric method [18]. These
methods are abbreviated by PG, APG-LSRS, nSPG, and IVM, respectively. We use binary
classification datasets: a1a, a9a,w1a,w8a, covtype, news20, real-sim from [8] and generate
the datasetsmnist17 andmnist38 from themnist dataset where digits are chosen from {1, 7}
and {3, 8}, respectively. We set μ := 1

n as in [10], and ρ1 is set to be 10, which guarantees
that the sparsity of the solution is maintained between 1% and 10%.

Since we need to evaluate the projection on an �1-norm ball at each iteration of PG and
APG-LSRS, we use the algorithm provided by [12] which only need O(p) time. For our
algorithm, since the �1-norm ball is still a polytope, we can linearly solve the subproblem by
using the Frank–Wolfe algorithm with away-step from [28]. The performance and results of
three algorithms on the above datasets are presented in Fig. 4 in terms of objective residuals
against CPU time.

123

290 Journal of Global Optimization (2022) 83:273–299

0 0.5 1 1.5 2 2.5 3
10-12

10-10

10-8

10-6

10-4

10-2

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0 0.5 1 1.5 2 2.5 3
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0 0.1 0.2 0.3 0.4 0.5 0.6
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0 20 40 60 80 100 120 140
10-15

10-10

10-5

100

0 50 100 150 200 250 300 350 400
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0 50 100 150 200 250 300 350 400 450 500 550
10-12

10-10

10-8

10-6

10-4

10-2

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0 2 4 6 8 10 12 14 16 18 20
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Fig. 4 A comparison between 5 methods for solving (21) on 9 different datasets

From Fig. 4, one can observe that our algorithm outperforms PG, APG-LSRS, and nSPG
on all datasets. This happens thanks to the low computational cost of the linear minimization
oracle and the linear convergence of the FWmethod with away-step. We also notice that our
algorithm is still better than IVM on most datasets except for mnist38. It is interesting that
although our algorithm is a hybrid method between second-order and first-order methods, we
can still solve high-dimensional problems (e.g., when p = 1, 355, 191 in news20 dataset)
as often seen in first-order methods. We gain this efficiency due to the use of Hessian-vector
products instead of full Hessian evaluations.

6 Conclusions

In this paper, we have combined the well-known Frank–Wolfe scheme (known as a variant
of the conditional gradient method) and an inexact projected Newton (second-order) method
to develop a novel hybrid algorithm for solving a class of constrained convex optimization
problems with self-concordant objective function. Our approach is different from existing
methods that heavily rely on the L-smooth assumption. Under this new setting, we have
derived the first rigorous convergence and complexity analysis for the proposed method.
Surprisingly, the LMO complexity of our algorithm is still comparable with the Frank–
Wolfe algorithms for a different class of problems. In addition, our algorithm enjoys several

123

Journal of Global Optimization (2022) 83:273–299 291

computation advantages on some specific problems, which are also supported by the three
numerical examples in Sect. 5. Moreover, the last example has shown that our algorithm still
outperformsfirst-ordermethods on large-scale instances.Our finding suggests that sometimes
it is worth carefully combining first-order and second-order methods for solving large-scale
problems in non-standard settings.

Acknowledgements Q. Tran-Dinh was partly supported by the National Science Foundation (NSF), Grant
No. DMS-1619884 and the Office of Naval Research (ONR), Grant No. N00014-20-1-2088. V. Cevher was
partly supported by the European Research Council (ERC) under the EuropeanUnion’s Horizon 2020 research
and innovation program (Grant agreement n 725594 - time-data) and by 2019Google Faculty Research Award.

Appendix: The proof of technical results

Let us recall the following key properties of standard self-concordant functions. Let f be
standard self-concordant and x, y ∈ dom(f) such that ‖y − x‖x < 1. Then

(‖u‖y
)2 := u�∇2 f (y)u ≤ u� ∇2 f (x)

(1−‖y−x‖x)2 u =
(‖u‖x
1−‖y−x‖x

)2
, ∀u ∈ R

p. (22)

Similarly, if ‖y − x‖y < 1, then

(‖u‖y
)2 := u�∇2 f (y)u ≤ u� ∇2 f (x)

(1−‖y−x‖y)2 u =
(‖u‖x
1−‖y−x‖y

)2
, ∀u ∈ R

p. (23)

These inequalities can be found in [32, Theorem 4.1.6]. In addition, from [43, equation (72)],
we have

‖∇ f (y) − ∇ f (x) − ∇2 f (x)(y − x)‖∗
x ≤ ‖y − x‖2x

1 − ‖y − x‖x , (24)

if ‖y − x‖x < 1. 4 These inequalities will be repeatedly used in our proofs below.

Two key lemmas for proving theorem 1

We need the following two lemmas to prove Theorem 1. The first lemma describes the
decreasing of the objective value when applying damped-step iterations.

Lemma 3 Let γk := ‖zk − xk‖xk be the local distance between zk to xk , where zk is the
output of Algorithm 2 at xk with η = η2k . Recall that ‖zk − T (xk)‖xk ≤ ηk . If we choose
α ∈ (0, 1) such that αγk < 1 and update xk+1 := xk + α(zk − xk), then we have

f (xk+1) ≤ f (xk) − [
α(γ 2

k − η2k) − ω∗(αγk)
]
. (25)

Assume γk > ηk . If δ ∈ (0, 1) and the step size is αk := δ(γ 2
k −η2k)

γk (γ
2
k +γk−η2k)

then we have

αkγk < δ < 1. Moreover, it also holds that

f (xk+1) ≤ f (xk) − δω
(γ 2

k − η2k

γk

)
, (26)

where ω(τ) := τ − log(1 + τ) and ω∗(τ) := −τ − log(1 − τ) are two nonnegative and
convex functions.

4 One can see from the proof leading to [43, equation (72)] that the relation holds more generally when the
z+ and z are replaced by any two vectors satisfying ‖y − x‖x ≤ 1.

123

292 Journal of Global Optimization (2022) 83:273–299

Proof From (7) and the stop criterion of Algorithm 2, zk is an ηk-solution of (4) at x = xk .
It is clear that zk satisfies

〈∇ f (xk) + ∇2 f (xk)(zk − xk), zk − xk〉 ≤ η2k .

This inequality leads to

〈∇ f (xk), zk − xk〉 ≤ η2k − ‖zk − xk‖2xk . (27)

Therefore, using the self-concordance of f [32, Theorem 4.1.8], we can derive

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk
〉 + ω∗(‖xk+1 − xk‖xk)

= f (xk) + α
〈∇ f (xk), zk − xk

〉 + ω∗(α‖zk − xk‖xk)
(27)≤ f (xk) + α

(
η2k − ‖zk − xk‖2xk

)
+ ω∗(α‖zk − xk‖xk)

= f (xk) − [α(γ 2
k − η2k) − ω∗(αγk)].

(28)

This is exactly (25).

Assume that γ 2
k > η2k . Defineψ(α) := α(γ 2

k −η2k)−ω∗(αγk) and plug αk = δ(γ 2
k −η2k)

γk (γ
2
k +γk−η2k)

into ψ(α), we arrive at

ψ(αk) = αk(γ
2
k − η2k) − ω∗(αkγk)

= αk(γ
2
k − η2k + γk) + log(1 − αkγk)

= δ(γ 2
k −η2k)

γk
+ log

(
1 − δ(γ 2

k −η2k)

γ 2
k −η2k+γk

)

≥ δ(γ 2
k −η2k)

γk
+ δ log

(
1 − (γ 2

k −η2k)

γ 2
k −η2k+γk

)

= δω(
γ 2
k −η2k
γk

),

(29)

where we use log(1− δs) ≥ δ log(1− s) in s ∈ (0, 1) for the inequality. Using (28) and (29)
we proves (26). ��

The following lemma shows that the residual ‖xk −x�‖x� can be bounded by the projected
Newton decrement γ̄k := ‖T (xk) − xk‖xk .
Lemma 4 Let λ̄k := ‖xk −x�‖x� , γ̄k := ‖T (xk)−xk‖xk , γk := ‖zk −xk‖xk , and h be defined
by (8). Recall that ‖zk − T (xk)‖xk ≤ ηk . If γk + ηk ∈ (0,C2), then we have

λ̄k ≤ h(γ̄k) ≤ h(γk + ηk). (30)

Proof Firstly, we can write down the optimality condition of (4) and (1), respectively as
follows:

{ 〈∇ f (xk) + ∇2 f (xk)[T (xk) − xk], x − T (xk)
〉 ≥ 0, ∀x ∈ X ,

〈∇ f (x�), x − x�〉 ≥ 0, ∀x ∈ X .

Substituting x� for x into the first inequality and T (xk) for x into the second inequality,
respectively we get

{ 〈∇ f (xk) + ∇2 f (xk)[T (xk) − xk], x� − T (xk)
〉 ≥ 0,〈∇ f (x�), T (xk) − x�

〉 ≥ 0.

Adding up both inequalities yields

〈∇ f (x�) − ∇ f (xk) − ∇2 f (xk)[T (xk) − xk], T (xk) − x�〉 ≥ 0,

123

Journal of Global Optimization (2022) 83:273–299 293

which is equivalent to

〈∇ f (T (xk)) − ∇ f (xk) − ∇2 f (xk)[T (xk) − xk], T (xk) − x�〉
≥ 〈∇ f (T (xk)) − ∇ f (x�), T (xk) − x�〉.

Since f is self-concordant, by [32, Theorem 4.1.7], we have

〈
∇ f (T (xk)) − ∇ f (x�), T (xk) − x�

〉
≥

‖T (xk) − x�‖2
T (xk)

1 + ‖T (xk) − x�‖T (xk)
.

By the Cauchy-Schwarz inequality, this estimate leads to

‖T (xk) − x�‖T (xk)

1 + ‖T (xk) − x�‖T (xk)
≤ ‖∇ f (T (xk)) − ∇ f (xk) − ∇2 f (xk)[T (xk) − xk]‖∗

T (xk). (31)

Now, we can bound the right-hand side of the above inequality as

R := ‖∇ f (T (xk)) − ∇ f (xk) − ∇2 f (xk)[T (xk) − xk]‖∗
T (xk)

≤ ‖∇ f (T (xk))−∇ f (xk)−∇2 f (xk)[T (xk)−xk]‖∗
xk

1−‖T (xk)−xk‖xk
(24)≤

(
‖T (xk)−xk‖xk

1−‖T (xk)−xk‖xk

)2

,

(32)

where the first inequality comes from the dual formof (23), i.e.,
‖u‖∗

y
1−‖y−x‖y ≥ ‖u‖∗

x foru ∈ R
p ,

5 and the last term holds since ‖T (xk) − xk‖xk ≤ γk + ηk ≤ C2 < 0.5.
From (31) and (32), we have

‖T (xk) − x�‖T (xk)

1 + ‖T (xk) − x�‖T (xk)
≤

(‖T (xk) − xk‖xk
1 − ‖T (xk) − xk‖xk

)2

,

which can be reformulated as

‖T (xk) − x�‖T (xk) ≤ ‖T (xk) − xk‖2xk
1 − 2‖T (xk) − xk‖xk

. (33)

Next, since we want to use ‖T (xk) − xk‖xk to bound ‖xk − x�‖xk , we can derive

‖xk − x�‖xk ≤ ‖xk − T (xk)‖xk + ‖T (xk) − x�‖xk
(23)≤ ‖xk − T (xk)‖xk + ‖T (xk)−x�‖T (xk)

1−‖xk−T (xk)‖xk
(33)≤ ‖xk − T (xk)‖xk + ‖xk−T (xk)‖2

xk(
1−2‖xk−T (xk)‖xk

)(
1−‖xk−T (xk)‖xk

)

= γ̄k + γ̄ 2
k

(1−2γ̄k)(1−γ̄k)
.

(34)

Notice that (23) of the above inequality holds because of ‖xk−T (xk)‖xk ≤ γk+ηk ≤ C2 < 1,
where C2 is a constant defined right after (8). Since h is monotonically increasing and
γ̄k ≤ γk + ηk , we finally get

‖xk − x�‖x�

(22)≤ ‖xk − x�‖xk
1 − ‖xk − x�‖xk

(34)≤ γ̄k(1 − 2γ̄k + 2γ̄ 2
k)

(1 − 2γ̄k)(1 − γ̄k)2 − γ̄ 2
k

= h(γ̄k) ≤ h(γk + ηk),

5 In fact, by (23), we have ∇2 f (y) � ∇2 f (x)
(1−‖y−x‖y)2 , which is equivalent to ∇2 f (x)−1 � ∇2 f (y)−1

(1−‖y−x‖y)2 .

Therefore, we have
‖u‖∗

y
1−‖y−x‖y ≥ ‖u‖∗

x for u ∈ R
p .

123

294 Journal of Global Optimization (2022) 83:273–299

which proves (30). Notice that we can also prove ‖xk −x�‖xk < 1 to justify (22) of the above
inequality, by using (34) and γ̄k ≤ C2. ��

Key bounds for proving theorem 2

The following lemma shows that ‖xk+1 − x�‖x� and ‖xk+1 − xk‖xk can both be bounded by
‖xk − x�‖x� when ‖xk − x�‖x� is sufficiently small.

Lemma 5 Suppose that λ̄k := ‖xk − x�‖x� ≤ β, where β ∈ (0, 0.5) is chosen by Algorithm
1. Then, we have

λ̄k+1 ≤ ηk

1 − λ̄k
+ λ̄2k

(1 − λ̄k)2(1 − 2λ̄k)
. (35)

In addition, we can also bound ‖xk+1 − xk‖xk as follows:

‖xk+1 − xk‖xk ≤ ηk + λ̄2k

(1 − 2λ̄k)(1 − λ̄k)
+ λ̄k

1 − λ̄k
. (36)

Proof Since we always choose full-step αk = 1, we have xk+1 = zk . Therefore, ‖xk+1 −
T (xk)‖xk = ‖zk − T (xk)‖xk ≤ ηk , which leads to

λ̄k+1 = ‖xk+1 − x�‖x� ≤ ‖xk+1 − T (xk)‖x� + ‖T (xk) − x�‖x�

(23)≤ ‖xk+1−T (xk)‖xk
1−‖xk−x�‖x� + ‖T (xk)−x�‖xk

1−‖xk−x�‖x�
≤ ηk

1−λ̄k
+ ‖T (xk)−x�‖xk

1−λ̄k
.

(37)

Now, we bound ‖T (xk) − x�‖xk as follows. Firstly, the optimality conditions of (4) and
(1) can be written as

{ 〈∇ f (xk) + ∇2 f (xk)(T (xk) − xk), x − T (xk)〉 ≥ 0, ∀x ∈ X ,

〈∇ f (x�), x − x�〉 ≥ 0, ∀x ∈ X .

This can be rewritten equivalently to

{ 〈∇2 f (xk)[T (xk) − (xk − ∇2 f (xk)−1∇ f (xk))], x − T (xk)〉 ≥ 0, ∀x ∈ X ,

〈∇2 f (xk)[x� − (x� − ∇2 f (xk)−1∇ f (x�))], x − x�〉 ≥ 0, ∀x ∈ X .
(38)

Similar to the proof of [2, Theorem 3.14], we can show that (38) is equivalent to

{
T (xk) = proj∇

2 f (xk)
X

(
xk − ∇2 f (xk)−1∇ f (xk)

)
,

x� = proj∇
2 f (xk)

X
(
x� − ∇2 f (xk)−1∇ f (x�)

)
.

(39)

123

Journal of Global Optimization (2022) 83:273–299 295

Using the nonexpansiveness of the projection operator [2, Chapter 4] we can derive

‖T (xk) − x�‖xk (39)=
∥
∥
∥proj∇

2 f (xk)
X

(
xk − ∇2 f (xk)−1∇ f (xk)

)

− proj∇
2 f (xk)

X
(
x� − ∇2 f (xk)−1∇ f (x�)

) ∥∥
∥
xk≤ ‖xk − x� − ∇2 f (xk)−1(∇ f (xk) − ∇ f (x�))‖xk

= ‖∇ f (x�) − ∇ f (xk) − ∇2 f (xk)(x� − xk)‖∗
xk

(24)≤ ‖x�−xk‖2
xk

1−‖x�−xk‖xk
(22)≤ ‖x�−xk‖2x�

(1−2‖x�−xk‖x�)(1−‖x�−xk‖x�)

= λ̄2k
(1−2λ̄k)(1−λ̄k)

.

(40)

We make the following two explanation for (40):

– In the second inequality of (40), 1 − ‖x� − xk‖xk in the denominator can be justified by
‖x�−xk‖xk < 1, which follows directly from (24) and our assumption that ‖x�−xk‖x� ≤
β < 0.5 stated at the beginning of this lemma.

– For the last inequality of (40), we first have 0 < ‖x� − xk‖xk ≤ ‖x�−xk‖x�
1−‖x�−xk‖x� < 1 by (22)

and our assumption that ‖x� − xk‖x� < 0.5. Since t2
1−t is increasing for t ∈ (0, 1), we

can replace ‖x� − xk‖xk by ‖x�−xk‖x�
1−‖x�−xk‖x� to get the last inequality of (40).

Plugging (40) into (37), we get (35).
Finally, we note that

‖xk+1 − xk‖xk ≤ ‖xk+1 − T (xk)‖xk + ‖x� − T (xk)‖xk + ‖xk − x�‖xk
(40)≤ ‖xk+1 − T (xk)‖xk + λ̄2k

(1−2λ̄k)(1−λ̄k)
+ ‖xk − x�‖xk

(22)≤ ηk + λ̄2k
(1−2λ̄k)(1−λ̄k)

+ ‖xk−x�‖x�
1−‖xk−x�‖x�

= ηk + λ̄2k
(1−2λ̄k)(1−λ̄k)

+ λ̄k
1−λ̄k

,

which proves (36). ��

An intermediate lemma for proving theorem 3

Firstly, the following lemma establishes the sublinear convergence rate of the Frank–Wolfe
gap in each outer iteration.

Lemma 6 At the k-th outer iteration of Algorithm 1, if we run the Frank–Wolfe subroutine
(7) to update ut , then, after Tk iterations, we have

min
t=1,··· ,Tk

Vk(ut) ≤ 6λmax(∇2 f (xk))D2
X

Tk + 1
, (41)

where Vk(ut) := maxu∈X
〈∇ f (xk) + ∇2 f (xk)(ut − xk),ut − u

〉
. As a result, the number of

LMO calls at the k-th outer iteration of Algorithm 1 is at most Ok := 6λmax(∇2 f (xk))D2
X

η2k
.

123

296 Journal of Global Optimization (2022) 83:273–299

Proof Let φk(u) = 〈∇ f (xk),u − xk
〉 + 1/2

〈∇2 f (xk)(u − xk),u − xk
〉
and

{
ut
}
be gen-

erated by the Frank–Wolfe subroutine (7). Then, it is well-known that (see [26, Theorem
1]):

φk(ut) − φ�
k ≤ 2λmax(∇2 f (xk))D2

X
t + 1

. (42)

Let vt := argminu∈X {〈∇φk(ut),u
〉}. Notice that

φk(ut+1) = minτ∈[0,1]{φk((1 − τ)ut + τvt)} ≤ φk

((
1 − 2

t+1

)
ut + 2

t+1v
t
)

≤ φk(ut) + 2
t+1

〈∇φk(ut), (vt − ut)
〉 + λmax(∇2 f (xk))

2

(
2

t+1

)2 ‖vt − ut‖2
≤ φk(ut) − 2

t+1Vk(u
t) + 2λmax(∇2 f (xk))

(t+1)2
D2
X .

This is equivalent to

tVk(ut) ≤ t(t + 1)

2

(
φk(ut) − φk(ut+1)

) + tλmax(∇2 f (xk))
t + 1

D2
X . (43)

Summing up this inequality from t = 1 to Tk , we get

Tk(Tk + 1)

2
min

t=1,··· ,Tk
{
Vk(ut)

} ≤
Tk∑

t=1

tVk(ut)

(43)≤
Tk∑

t=1

tφk(ut)

− Tk (Tk+1)
2 φk(uTk+1) + Tkλmax(∇2 f (xk))D2

X

≤
Tk∑

t=1

t(φk(ut) − φ�
k) + Tkλmax(∇2 f (xk))D2

X

(42)≤ 3Tkλmax(∇2 f (xk))D2
X ,

which implies (41). ��

An intermediate lemma for proving theorem 4

The following lemma states that we can bound f (xk)− f � by ‖xk+1−xk‖xk and ‖xk −x�‖x� .
Therefore, from the convergence rate of ‖xk+1 − xk‖xk and ‖xk − x�‖x� in Theorem 2, we
can obtain a convergence rate of

{
f (xk) − f �

}
.

Lemma 7 Let γk := ‖xk+1 − xk‖xk = ‖zk − xk‖xk and λ̄k := ‖xk − x�‖x� . Suppose that
x0 ∈ dom(f) ∩ X . If 0 < γk, λ̄k, λ̄k+1 < 1, then we have

f (xk+1) ≤ f (x�) + γ 2
k (γk + λ̄k)

1 − γk
+ η2k + ω∗(λ̄k+1), (44)

where ω∗(τ) := −τ − log(1 − τ).

Proof Firstly, from [32, Theorem 4.1.8], we have

f (xk+1) ≤ f (x�) +
〈
∇ f (x�), xk+1 − x�

〉
+ ω∗(‖xk+1 − x�‖x�),

123

Journal of Global Optimization (2022) 83:273–299 297

provided that ‖xk+1 − x�‖x� < 1. Next, using
〈∇ f (x�) − ∇ f (xk+1), xk+1 − x�

〉 ≤ 0, we
can further derive

f (xk+1) ≤ f (x�) +
〈
∇ f (xk+1), xk+1 − x�

〉
+ ω∗(‖xk+1 − x�‖x�). (45)

Now, we bound
〈∇ f (xk+1), xk+1 − x�

〉
as follows. We first notice that this term can be

decomposed as
〈∇ f (xk+1), xk+1 − x�

〉 = 〈∇ f (xk) + ∇2 f (xk)(xk+1 − xk), xk+1 − x�〉
︸ ︷︷ ︸

T1

+ 〈∇ f (xk+1) − ∇ f (xk) − ∇2 f (xk)(xk+1 − xk), xk+1 − x�〉
︸ ︷︷ ︸

T2

.

Since xk+1 is an ηk-solution of (4) at x = xk , we have

T1 = 〈∇ f (xk) + ∇2 f (xk)(xk+1 − xk), xk+1 − x�〉 ≤ η2k . (46)

Using the Cauchy-Schwarz inequality and the triangle inequality, T2 can also be bounded as

T2 = 〈∇ f (xk+1) − ∇ f (xk) − ∇2 f (xk)(xk+1 − xk), xk+1 − x�
〉

≤ ‖∇ f (xk+1) − ∇ f (xk) − ∇2 f (xk)(xk+1 − xk)‖∗
xk‖xk+1 − x�‖xk

(24)≤ ‖xk+1−xk‖2
xk

1−‖xk+1−xk‖xk
‖xk+1 − x�‖xk

≤ ‖xk+1−xk‖2
xk

1−‖xk+1−xk‖xk
[‖xk − x�‖xk + ‖xk+1 − xk‖xk

]

= γ 2
k (γk+λ̄k)

1−γk
.

(47)

Finally, we can bound f (xk+1) − f � as

f (xk+1) − f (x�)
(45)≤ 〈∇ f (xk+1), xk+1 − x�

〉 + ω∗(λ̄k+1)

= T1 + T2 + ω∗(λ̄k+1)

(46)(47)≤ η2k + γ 2
k (γk+λ̄k)

1−γk
+ ω∗(λ̄k+1),

which proves (44). ��

References

1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148
(1988)

2. Bauschke, H.H., Combettes, P.: Convex Analysis and Monotone Operators Theory in Hilbert Spaces.
Springer-Verlag, 2nd edn. (2017)

3. Beck, A., Teboulle, M.: A conditional gradient method with linear rate of convergence for solving convex
linear systems. Math. Methods Oper. Res. 59(2), 235–247 (2004)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

5. Becker, S., Candès, E.J., Grant, M.: Templates for convex cone problems with applications to sparse
signal recovery. Math. Program. Compt. 3(3), 165–218 (2011)

6. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex
sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

7. Chen, Y., Ye, X.: Projection onto a simplex. Preprint arXiv:1101.6081 (2011)
8. Chang, C.-C., Lin, C.-J.: LIBSVM, A library for support vector machines. ACM Trans. Intell. Syst.

Technol. 2(3), 1–27 (2011)

123

http://arxiv.org/abs/1101.6081

298 Journal of Global Optimization (2022) 83:273–299

9. Damla, S.A., Sun, P., Todd,M.J.: Linear convergence of amodified Frank–Wolfe algorithm for computing
minimum-volume enclosing ellipsoids. Optim. Methods Softw. 23(1), 5–19 (2008)

10. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA:A fast incremental gradientmethodwith support for non-
strongly convex composite objectives. In Advances in Neural Information Processing Systems (NIPS),
pp. 1646–1654 (2014)

11. deOliveira, F.R., Ferreira, O.P., Silva, G.N.: Newton’smethodwith feasible inexact projections for solving
constrained generalized equations. Comput. Optim. Appl. 72(1), 159–177 (2019)

12. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the �1-ball for learning
in high dimensions. In Proceedings of the 25th International Conference on Machine Learning, ICML
’08, pp. 272–279, New York, NY, USA, ACM (2008)

13. Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.: Self-concordant analysis of Frank-
Wolfe algorithms. In International Conference on Machine Learning, pp. 2814–2824. PMLR, (2020)

14. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3, 95–110 (1956)
15. Garber, D., Hazan, E.: A linearly convergent conditional gradient algorithm with applications to online

and stochastic optimization. Preprint arXiv:1301.4666 (2013)
16. Garber, D., Hazan, E.: Faster rates for the Frank–Wolfe method over strongly-convex sets. In Proceedings

of the 32nd International Conference on Machine Learning 951, pp. 541–549 (2015)
17. Gonçalves, M.L.N., Melo, J.G.: A newton conditional gradient method for constrained nonlinear systems.

J. Comput. Appl. Math. 311, 473–483 (2017)
18. Gonçalves, D. S., Gonçalves, M. L. N., Menezes, T. C.: Inexact variable metric method for convex-

constrained optimization problems. Optimization, 1–19, (online first) (2021)
19. Gonçalves, D. S., Gonçalves, M. L. N., Oliveira, F. R.: Levenberg-marquardt methods with inexact

projections for constrained nonlinear systems. Preprint arXiv:1908.06118 (2019)
20. Gonçalves, M.L.N., Oliveira, F.R.: On the global convergence of an inexact quasi-Newton conditional

gradient method for constrained nonlinear systems. Numer. Algorithm 84(2), 606–631 (2020)
21. Gross, D., Liu, Y.-K., Flammia, S., Becker, S., Eisert, J.: Quantum state tomography via compressed

sensing. Phys. Rev. Lett. 105(15), 150401 (2010)
22. Guelat, J., Marcotte, P.: Some comments on Wolfe’s away step. Math. Program. 35(1), 110–119 (1986)
23. Harman, R., Trnovská, M.: Approximate D-optimal designs of experiments on the convex hull of a finite

set of information matrices. Math. Slov. 59(6), 693–704 (2009)
24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference,

and Prediction. Springer Science & Business Media (2009)
25. Hazan, E.: Sparse approximate solutions to semidefinite programs. In: Latin American Symposium on

Theoretical Informatics, pp. 306–316. Springer (2008)
26. Jaggi, M.: Revisiting Frank–Wolfe: projection-free sparse convex optimization. JMLR W&CP 28(1),

427–435 (2013)
27. Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Math. Oper. Res.

21(2), 307–320 (1996)
28. Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of Frank–Wolfe optimization variants. In

Advances in Neural Information Processing Systems (NIPS), pp. 496–504 (2015)
29. Lan,G., Zhou,Y.: Conditional gradient sliding for convex optimization. SIAMJ.Optim. 26(2), 1379–1409

(2016)
30. Lan, G., Ouyang, Y.: Accelerated gradient sliding for structured convex optimization. Preprint

arXiv:1609.04905 (2016)
31. Lu, Z., Pong, T.K.: Computing optimal experimental designs via interior point method. SIAM J. Matrix

Anal. Appl. 34(4), 1556–1580 (2013)
32. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course volume 87 of Applied

Optimization. Kluwer Academic Publishers (2004)
33. Nesterov, Y., Nemirovski, A.: Interior-point polynomial algorithms in convex programming. Soc. Ind.

Math. (1994)
34. Odor, G., Li, Y.-H., Yurtsever, A., Hsieh, Y.-P., Tran-Dinh, Q., El-Halabi, M., Cevher, V.: Frank-Wolfe

works for non-lipschitz continuous gradient objectives: Scalable poisson phase retrieval. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6230–6234. IEEE
(2016)

35. Ostrovskii, D.M., Bach, F.: Finite-sample analysis of M-estimators using self-concordance. Electron. J.
Stat. 15(1), 326–391 (2021)

36. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607
(2019)

37. Ryu, E. K., Boyd, S.: Stochastic proximal iteration: a non-asymptotic improvement upon stochastic
gradient descent. Author website, early draft (2014)

123

http://arxiv.org/abs/1301.4666
http://arxiv.org/abs/1908.06118
http://arxiv.org/abs/1609.04905

Journal of Global Optimization (2022) 83:273–299 299

38. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer.
Anal. 13(3), 321–326 (1993)

39. Su,W., Boyd, S., Candes, E.: A differential equation formodelingNesterov’s accelerated gradientmethod:
theory and insights. InAdvances inNeural Information Processing Systems (NIPS), pp. 2510–2518 (2014)

40. Sun, T., Tran-Dinh, Q.: Generalized self-concordant functions: a recipe for Newton-type methods. Math.
Program. 178, 145–213 (2019)

41. Tran-Dinh, Q., Kyrillidis, A., Cevher, V.: Composite self-concordant minimization. J. Mach. Learn. Res.
15, 374–416 (2015)

42. Tran-Dinh, Q., Ling, L., Toh, K.-C.: A new homotopy proximal variable-metric framework for composite
convex minimization. Math. Oper. Res., 1–28, (online first) (2021)

43. Tran-Dinh, Q., Sun, T., Lu, S.: Self-concordant inclusions: a unified framework for path-following gen-
eralized Newton-type algorithms. Math. Program. 177(1–2), 173–223 (2019)

44. Yurtsever, A., Fercoq, O., Cevher, V.: A conditional-gradient-based augmented lagrangian framework. In
International Conference on Machine Learning (ICML), pp. 7272–7281 (2019)

45. Yurtsever, A., Tran-Dinh, Q., Cevher, V.: A universal primal-dual convex optimization framework.
Advances in Neural Information Processing Systems (NIPS), pp. 1–9 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	A Newton Frank–Wolfe method for constrained self-concordant minimization
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Self-concordant functions
	2.2 Approximate solutions

	3 The proposed Newton Frank–Wolfe algorithm
	4 Convergence and complexity analysis
	4.1 Finite complexity of damped-step stage
	4.2 Linear convergence of full-step stage
	4.3 Overall LMO complexity analysis
	4.4 Trade-off between the damped-step and full-step stages

	5 Numerical experiments
	5.1 Portfolio optimization
	5.2 -optimal experimental design
	5.3 Logistic Regression with Elastic-net Regularizer

	6 Conclusions
	Acknowledgements
	Appendix: The proof of technical results
	Two key lemmas for proving theorem 1
	Key bounds for proving theorem 2
	An intermediate lemma for proving theorem 3
	An intermediate lemma for proving theorem 4

	References

