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Abstract
Social networks are becoming important dissemination platforms, and a large body of works
have been performed on viralmarketing, butmost are tomaximize the benefits associatedwith
the number of active nodes. In this paper, we study the benefits related to interactions among
activated nodes. Furthermore, since the stochasticity caused by the dynamics of influence
cascade in the social network, we propose the adaptive seeding strategy where seeds are
selected one by one according to influence propagation situation of seeds already selected,
and define the adaptive profitmaximization problem.We analyze its complexity and prove it is
not adaptive submodular.We find the upper and lower bounds which are adaptive submodular
and design an adaptive sandwich policy based on the sandwich strategy which could gain a
data dependent approximation solution. Through real data sets, we verify the effectiveness
of our proposed algorithm.
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1 Introduction

With the advancements in information science in the last two decades, social networks find
important applications in viral marketing, where a few individuals are provided with free
products, hoping that the product will be recursively recommended by each individual to his
friends to create a large cascade of further adoptions. Kempe et al. [14] first formulate it as
the influence maximization problem on independent cascade (IC) model and linear threshold
(LT) model. After that, a large body of works have been performed on viral marketing to
maximize the benefits associated with the number of active nodes.

In this paper, we study the benefits related to strength of interactions among activated
nodes. For example, whenmultiple people participate in one game, a large amount of data are
transferred to synchronize the settings of game environment and operations between players
[27]. Network provider generally charges based on the amount of data used by customers. In
addition, interaction behaviors between game players may bring some advertising revenues
to the network provider [25]. We consider the scenario of gaming on console like Nintendo
switch, which provides online play mode. Players can find online opponents and play, in this
case, the interaction determines the game company profit. Let’s take the game “overcooked
2” as an example, when playing onlinemode, 2 or 4 players can join one game, they can select
a new released level to play together, that level is not free if played locally. Thus the online
gaming is actually a live advertisement of the game depending on the interaction. Affected
by the advertisement, players may later buy the new levels and play locally. We use profit
to represent the revenues related to the strength of interactions between players and define
a profit maximization problem, which selecting a seed set to maximize the profits between
activated nodes.

Furthermore, one must deal with the stochasticity caused by the dynamics of influence
cascade [24]. Specifically, when a seed is selected, how the influence propagates and how
many nodes it will eventually affect is uncertain. In such settings, the outcome of a seed is
not known in advance and will only be discovered after it is selected.

Motivated by the above observations, we aim to consider adaptive strategies to address the
profit maximization problem. We pick a node, get to see which nodes it influenced and the
profit among them, then adaptively pick the next node based on these observations and so on.
Note that when picking the next node, we take into account the current profits of influenced
nodes. To this end, we formulate adaptive profit maximization problem (APMP) in this work.

Solving such stochastic optimization problems is a notoriously difficult challenge. How-
ever, Golovin et al. [10] introduce the concept of adaptive submodularity and prove that if the
problem satisfies this property, the adaptive greedy policy can achieve a 1−1/e approximate
solution to the optimal policy. But unfortunately, our adaptive profit maximization problem
is not adaptive submodular, thus the greedy strategy cannot obtain a guaranteed approximate
solution. To solve this problem, we find the upper and lower bounds of the objective function
both of which are adaptive submodular, and then use the sandwich strategy [16] to design an
adaptive sandwich policy, which can obtain a data-dependent approximate solution.

The contributions of this paper are summarized as follows.

– We propose a new problem named adaptive profit maximization problem, analyze its
complexity and prove it is not adaptive submodular.

– We find the upper and lower bounds of APMP and prove both of them are adaptive
submodular.

– Based on the upper and lower bound, we design an adaptive sandwich policy for APMP
using the sandwich strategy and get a data dependent approximate solution.
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– Through real data sets, we verify the effectiveness of our proposed algorithms.

To the best of our knowledge, this is the first paper applying the sandwich strategy to the
stochastic optimization problem which is not adaptive submodular.

The rest of the paper is organized as follows. Section 2 is devoted to the related work.
The profit maximization problem is proposed in Sect. 3. The preliminaries about stochastic
optimization and adaptive profit maximization problem are provided in Sect. 4. The upper
bound and lower bound are presented in Sect. 5. In Sect. 6 we propose the adaptive sandwich
policy. The experiments are presented in Sect. 7.

2 Related work

Kempe et al. [14] formulate the influence maximization problem under IC and LT models
and provide a greedy algorithm with an approximation ratio. Since the problem is submod-
ular a simple greedy algorithm gain an approximation ratio of 1 − 1/e [9,17]. Since then,
considerable work [3,4,16,18,19,21,22,22,23] has been devoted to extending existing models
to study influence maximization and its variants. Recently, Wang et al. [26] study the activity
maximization problem to maximize the sum of activity strengths among the influenced users.

Our work is related to [26] but we are different from it in the following aspects. First,
the optimization problem we addressed in this paper is adaptive profit maximization prob-
lem which is different from the normal activity maximization. Our optimization strategy is
selecting seeds one by one according to current observations while activity maximization is
to choose a seed set in one step. Second, the property of our problem is totally different from
[26] as we prove our problem is adaptive non-submodular while the problem in [26] is non-
submodular. And we prove the upper and lower bounds are adaptive submodular respectively
while they prove they are submodular. Third, to solve the adaptive non-submodular problem
in our paper, we try to apply the sandwich algorithm to solve the adaptive non-submodular
problem and successfully prove it could get a data dependent approximation solution. This
is the first method to solve the adaptive non-submodular problem. Actually, we success-
fully apply the sandwich algorithm to the adaptive non-submodular problem like Golovin
and Krause in [10] apply the greedy algorithm to adaptive submodular problem which is a
meaningful work.

The adaptive strategy is a stochastic optimization framework. Asadpour et al. [1] present
the preliminary results of stochastic submodular maximization problem with respect to a
cardinality constraint. Golovin andKrause [10] define the concept of adaptive submodularity,
generalizing submodular set functions to adaptive policies, and propose a greedy adaptive
algorithm with an approximation ratio. After their initial works, algorithms for stochastic
maximization problems with adaptive submodular functions have been studied in [7,8,11].
Other applications of adaptive submodularity in artificial intelligence are shown in [5,6,15].

Most of them are to address the adaptive submodular problem and apply the greedy
framework. There is no work to solve the adaptive non-submodular problem. To the best
of our knowledge, our paper has been the first work that tries to solve the adaptive non-
submodular problem since the definition of adaptive submodular is proposed by Golovin and
Krause in [10].

For the application of stochastic optimization in social networks, Seeman and Singer [20]
consider the adaptive approach to a variant influence maximization problem, and Horel and
Singer [13] consider the strategies with two seeding steps. Hatano et al. [12] study adaptive
budget allocation problem. Tong et al. [24] introduce the adaptive seeding strategy based on a
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dynamic independent cascade model. Yuan and Tang [28] study the influence maximization
discount allocation problem.

3 Non-adaptive profit maximization problem

In this section, we first propose the non-adaptive profit maximization problem in IC model.
In IC model each node has two states, active and inactive. Every edge (u, v) is assigned

with a probability puv so that when u is active, v is activated by u with probability puv . And
the profit between nodes is represented by a nonnegative function c : V × V → R≥0, in
which c(u, v) = c(v, u) for the unordered pair {u, v} of node u and v. For any seed set S,
denote by I (S) the set of all active nodes at end of the diffusion process. We denote the P(A)

as the collection of subsets of set A whose cardinality is two. For example, if A = {1, 2, 3},
then P(A) = {{1, 2}, {1, 3}, {2, 3}}. Actually the set P consists of all the pairs of nodes in
set A. The expected profit would be defined as

f (S) = E

⎡
⎣ ∑

{u,v}∈P(I (S))

c(u, v)

⎤
⎦ (1)

Note that for each unordered pair {u, v}, we only compute once the profit between them
denoted as c(u, v) or c(v, u).

Definition 1 Non-Adaptive Profit Maximization: Given a social network G = (V , E) under
the IC model, a profit function c : V × V → R≥0, and a positive integer k, find a set S
of k seeds to maximize the expected profit between activated nodes by S through influence
propagation:

max f (S) (2)

s.t .|S| ≤ k (3)

Theorem 1 Non-adaptive profit maximization problem is NP-hard.

Proof We prove it by reducing from the activity maximization problem proposed byWang et
al. [26]which isNP-hard.Note that theyonly consider the activity between active nodeswhich
are connected by edges. But we consider the benefits among all active nodes, regardless of
whether there is an edge connecting them. To this end, our non-adaptive profit maximization
problem can be viewed as a significant extension of activity maximization problem. In order
to make an obvious comparison with our problem, we give an equivalent formulation about
it: given a social network G = (V , E) with the IC model, each edge (u, v) ∈ E is associated
with an activity strength Au,v and a propagation probability Bu,v , the activity of a given seed
set S is defined as

δA(S) = E

⎡
⎣ ∑

(u,v)∈E,{u,v}⊆I (S)

Au,v

⎤
⎦

The activity maximization problem can be stated as follows:

max δA(S) (4)

s.t .|S| ≤ k (5)

��
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Remark 1 The activity maximization problem is polynomial time reducible to the non-
adaptive profit maximization problem. Given an instance of activity maximization problem,
we construct a corresponding graph which has the same network topology and the propa-
gation probability. And we construct the profit function for profit maximization problem as
follows. For each pair of nodes {u, v} between which there are edges, we set the profit value
on unordered pair {u, v} to be the sum of activity strength Au,v and Av,u . For the pair of nodes
{u, v} between which there are no edges, we set the profit value on unordered pair {u, v} to
be 0. Therefore, the activity maximization problem is equivalent to solve the non-adaptive
profit maximization problem.

According to Remark1 and Theorem 1 in [26] which says activity maximization problem
is NP-hard, the theorem follows immediately. ��
Theorem 2 Give a seed S, computing the exact game profit f (S) is �P-hard.

Proof According to Remark1 and Theorem 2 in [26] which says computing the exact activity
δA(S) under IC model given a seed set S is �P-hard, the theorem follows immediately. ��

4 Adaptive profit maximization problem

In this section, we propose the adaptive seeding strategy for profit maximization problem,
where seeds are selected one by one according to influence propagation situation of seeds
already selected.

4.1 Preliminaries

We employ the following concepts to formulate our problem.

Definition 2 Realization and Partial realization: Each node v ∈ V is in a particular state from
a set O of possible states. A realization is a function φ : V → O , representing the states
of nodes. And φ(v) is the state of v. We use Φ to denote a random realization. A partial
realization ψ : H → O, H ⊆ V , is a function from some subset H of V to their states. It
is actually a set of relations, so that ψ ⊆ V × O equals {(v, o) : ψ(v) = o}. We use the
notation dom(ψ) = {v : (v, o) ∈ ψ} to refer to the domain of ψ . A partial realization ψ is
consistent with a realization φ if they are equal everywhere in the domain of ψ . In this case,
we write φ ∼ ψ . We say ψ is a subrealization of ψ ′ if and only if ψ ⊆ ψ ′.

In social networks, when a node is selected, its state corresponds to the diffusion of
influence other than the state of itself, active or inactive. Specifically, we model φ(u) as a
function φu : E → {0, 1, ?}, where φu((u, v)) = 0 means that activating u has revealed that
the edge (u, v) is dead;φu((u, v)) = 1means the edge (u, v) is live, andφu((u, v)) =?means
the status of (u, v) is unknown. We require each realization to be consistent and complete.
Consistency means that no edge should be declared both live and dead by any two states of
nodes. That is, for all u, v ∈ V and e ∈ E , (φu(e), φv(e)) /∈ {(1, 0), (0, 1)}. Completeness
means that the status of each edge is revealed by some activation. Let E(φ) denote the live
edges as encoded by φ.

Note that the realization φ represent the state of each node according to its definition, and
in the social network it actually revealed the state of each edge. But these two expressions are
not contradictory sincewemodelφ(u) as a function φu : E → {0, 1, ?}. In different contexts,
we will alternate between the two representations as needed, if there is no confusion.
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Definition 3 The Full-Adoption Feedback Model: After activating seed u, we get to see the
status (live or dead) of all edges existing v, for all nodes v reachable from u via live edges(i.e.,
reachable from u in (V , E(φ))), where φ is the true realization.

Definition 4 Adaptive policy: We encode our adaptive strategy for picking seeds as a policy
π which is a function from a set of partial realizations to V , specifying which node to pick
next under a particular set of observations.

4.2 Adaptive profit maximization problem

For the adaptive stochastic settings of profit maximization problem in the full adoption
feedback model, we pick a node, get to see which nodes it influenced and compute the profit
between them which is called the current observations. And when picking the next node, we
need to take into account the current profits of influenced nodes. In other words, making a
decision based on these observations and so on. We define the profit function as follows

f (S, φ) =
∑

{u,v}∈P(I (S,φ))

c(u, v) (6)

where φ is a realization which encode the states of each node selected (i.e., actually reveals
the states of all edges, live or dead), I (S, φ) is nodes activated by seed set S under realization
φ, P(I (S, φ)) is the all pairs of nodes in I (S, φ). N (π, φ) is the seeds selected by policy π

under realization φ. Based on this notation, the expected profit of a policy π is

favg(π) = E[ f (N (π,Φ),Φ)] (7)

where the expectation is taken with respect to p(φ).

Definition 5 (Adaptive Profit Maximization Problem, APMP) Given a social network G =
(V , E) under the full feedback model, a profit function c : V × V → R≥0, and a positive
integer k, find a policy π∗ to maximize the expected profit between nodes activated through
influence propagation:

max favg(π) (8)

s.t .|N (π, φ)| ≤ k for all φ (9)

Remark 2 Let us first consider the very special case of adaptive profitmaximizationwhere the
distribution p(φ) is deterministic. Note that, we model φ(i) as a function φi : E → {0, 1, ?}.
Because of completeness of the realization φ, the state of each edge is revealed, live or dead.
And no edge is declared to be both live and dead by any two states of nodes, since the
property of consistency. Through the above analysis, a deterministic realization corresponds
to a live edge graph [14]which is obtained from live edges E(φ) under realization φ and
all nodes. In this case, the realization φ is known to the decision maker in advance, and
thus there is no benefit in adaptive selection and the policies are non-adaptive. So when the
distribution is deterministic, the APMP is transferred to the following problem: given a live
graph G(V , E(φ)) (i.e. given the realization φ), where each edge(u, v) in E(φ) is live, find
a seed set S that max the profit of influenced nodes:

max f (S, φ) (10)

s.t .|S| ≤ k (11)
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Fig. 1 Counter example

Our research work is mainly based on the theory of adaptive submodularity which is the
first proposed by [10], the specific concepts associated with it are as follows

Definition 6 Conditional Expected Marginal Benefit: Given a partial realization ψ and node
v, the conditional expected marginal benefit of v conditioned on having observedψ , denoted
�(v | ψ), is

�(v | ψ) := E[ f (dom(ψ) ∪ v,Φ) − f (dom(ψ),Φ) | Φ ∼ ψ] (12)

Definition 7 AdaptiveMonotonicity: A function f : 2V ×OV → R≥0 is adaptive monotone
with respect to distribution p(φ) if the conditional expected marginal benefit of any item is
nonnegative, i.e., for all ψ with P[Φ ∼ ψ] > 0 and all v ∈ V we have

�(v | ψ) ≥ 0. (13)

Definition 8 Adaptive Submodularity: A function f : 2V ×OV → R≥0 is adaptive submod-
ular with respect to distribution p(φ) if the conditional expected marginal benefit of any fixed
item does not increase as more items are selected and their states are observed. Formally, f
is adaptive submodular w.r.t. p(φ) if for all ψ and ψ ′ such that ψ is a subrealization of ψ ′
(i.e., ψ ⊆ ψ ′), and for all v ∈ V \ dom(ψ ′), we have

�(v | ψ) ≥ �(v | ψ ′). (14)

Theorem 3 f (S, φ) is not adaptive submodular under full adoption feedback model.

Proof We prove it by a special case proposed by Remark 2. Actually, when the distribution
is deterministic, the diminishing returns property of adaptive submodularity reduces to the
classical characterization of submodular set functions. So we construct a live graph as shown
in Fig. 1. Note that each edge in the figure is bidirectional, and the first number in the
tuple attached to each edge represents the propagation probability, the second number is the
profit between its two endpoints. For example in Fig. 1, the tuple (0, 1) on edge (v1, v2)

means propagation probability p(v1, v2) = p(v2, v1) = 0 and c(v1, v2) = 1. And for the
vertices between which there is no edge we set c(vi , v j ) = 0. Then we have f ({v1}) = 0,
f ({v1, v4}) = 1, f ({v1, v2}) = 1 and f ({v1, v2, v4}) = 3. Thus, f ({v1, v4}) − f ({v1}) <

f ({v1, v2, v4}) − f ({v1, v2}), which implies f (·) is not submodular. ��

Theorem 4 Adaptive profit maximization problem is NP-hard.

Proof We prove APMP is NP-hard by showing a special case of it is NP-hard, where p(φ)

is deterministic as proposed by Remark 2. Now we prove by reducing from the set cover
problem, which is NP-complete. Given a ground setU = {u1, u2, . . . , un} and a collection of
sets {S1, S2, . . . , Sm}whose union equals the ground set, the set cover problem is to decide if
there exist k sets in S so that the union equalsU . Given an instance of the set cover problem,
we construct a corresponding live graph with m + 2n nodes as follows. For each set Si we
create one node pi , and for each element u j we create two nodes q j and q ′

j . If the Si contains
the element u j , then we create two edges (pi , q j ) and (pi , q ′

j ). Note that each edge is live.
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Now we create the profit function over pairs of nodes. For the pairs {q j , q ′
j }, the profit equals

to 1, and the other pairs equal to 0. Then the set cover problem is equivalent to deciding if
there is a set S of k nodes such that the profit of S equals to n. The deterministic case of
Adaptive profit maximization problem is NP-hard follows immediately and so is the theorem.

��
Through above analysis, we find that the problem APMP is not adaptive submodular and

hard to solve. There is no general way to optimize or approximate a non-adaptive submodular
function.

5 Adaptive submodular upper bound and lower bound

In this section, we propose an upper and a lower bound of the original problem APMP, and
we prove that both of them are adaptive submodular. Thus, the adaptive greedy policy can
achieve a 1 − 1/e approximate solution to the expected reward of the best policy according
to [10].

5.1 Upper bound

Under realization φ, the upper bound equals to the profit between nodes both of which are
active plus half of the profit between nodes which are active and nodes which are not active.
The former is exactly the profit we want to compute. And it can be defined as

U (S, φ) =
∑

{u,v}∈P(I (S,φ))

c(u, v) + 1

2

∑
u∈I (S,φ),v∈V \I (S,φ)

c(u, v)

=
∑

v∈I (S,φ)

w(v) (15)

where I (S, φ) denotes the set of all active nodes under the realization φ, when S is the seed
set and

w(v) = 1

2

∑
u∈V

c(v, u) (16)

Thus, we can see that the upper bound is essentially a weighted version of influence spread,
where the weight of node v is 1

2

∑
u∈V c(v, u), which equals to half of the sum of profit

between v and the other nodes in V .

Lemma 1 Under any fixed realization φ, U (S, φ) is monotone and submodular.

Proof Given a fixed realization φ which means the state of all the edges are determined
according to Remark 2, we just need to prove U (S, φ) is monotone and submodular in a
live graph. Since the profit function c : V × V → R≥0 is nonnegative which means the
profit of each pair of nodes is non-negative. Thus the weight of every node is non-negative
and the monotonicity ofU (S, φ) follows immediately. For the submodularity, we need prove
U (A ∪ {v}) − U (A) ≥ U (B ∪ {v}) − U (B), such that A ⊆ B ⊆ V and v ∈ V \ B. It is
the second equivalent definitions of submodularity as shown in Theorem 1 of work [9]. The
left side of inequality is the weight of nodes which can be activated by v but can not by A.
The right side is the weight of nodes which can be activated by v but can not by B. We have
I (v) − I (A) ⊇ I (v) − I (B), since A ⊆ B. And the submodularity follows immediately. ��
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Lemma 2 If we have U (S, φ) = f (I (S, φ)), where I (S, φ) denotes the set of all activated
nodes when S is the seed set selected under the realization φ, then f : 2V → R≥0 is a
monotone submodular function indicating the profit of influenced nodes set .

Proof SinceU (S, φ) = ∑
v∈I (S,φ) w(v), andU (S, φ) = f (I (S, φ)), we have f (I (S, φ)) =∑

v∈I (S,φ) w(v). Sincew(v) is a constant for each node v, apparently f : 2V → R≥0 is linear

function. And for each node v, its weight w(v) ≥ 0. So f : 2V → R≥0 is an monotone
submodular function indicating the profit for influencing a set. ��
Lemma 3 In the full-adoption feedbackmodel, given realizationsφ andφ′, and a node v ∈ V ,
if φ(v) = φ′(v), then I (v, φ) = I (v, φ′).

Proof It means that if the states of a seed v are the same under different realizations, then the
nodes that can be activated by it are the same too. For any node w ∈ I (v, φ), there is a live
path from v to w under realization φ. According to the definition of realization, we know
that the node v reveals a set of edges denoted as A to be dead or live under realization φ and
φ′. And for any edge (i, j) ∈ A, φv(i, j) = φ′

v(i, j) since φ(v) = φ′(v), which means the
node v revealed edge (i, j) to the same state under realization φ and φ′ respectively. So if
there a live path from v to w under realization φ, then there a live path from v to w under
realization φ′ too. It follows that w ∈ I (v, φ′) and vice versa. ��
Lemma 4 In the full-adoption feedback model, given realizations φ and partial realization
ψ , such that φ ∼ ψ , then I (dom(ψ), φ) = ∪x∈dom(ψ) I (x, φ)

Proof Since the realization is complete according to the definition of it, the state of every
edge in social network is deterministic which means we get a live graph under the realization
φ. Apparently, in a live graph the influence spread of nodes set dom(ψ) equals to the union
of influenced spread of node in dom(ψ). The lemma follows immediately. ��
Lemma 5 In the full-adoption feedback model, given realizations φ and φ′, and partial
realization ψ and ψ ′, such that φ ∼ ψ , φ′ ∼ ψ ′, and ψ is subrealization of ψ ′ , then
I (dom(ψ), φ) = I (dom(ψ), φ′).

Proof Sinceψ is subrealization ofψ ′, we know thatψ ⊆ ψ ′ whichmeans thatψ(x) = ψ ′(x)
for all x ∈ dom(ψ). Then we get φ(x) = φ′(x), for x ∈ dom(ψ), since the consistency
of realization and the given fact φ ∼ ψ , φ′ ∼ ψ ′. And based on Lemma 3, we have
I (x, φ) = I (x, φ′), for x ∈ dom(ψ). And we have I (dom(ψ), φ) = ∪x∈dom(ψ) I (x, φ),
I (dom(ψ), φ′) = ∪x∈dom(ψ) I (x, φ′) according to Lemma 4. Then the lemma follows imme-
diately. ��
Theorem 5 U (S, φ) is adaptive monotone and submodular.

Proof Since U (·, φ) is monotonic for each fixed φ according to Lemma 1, adaptive mono-
tonicity is readily proved.

Moving on to adaptive submodularity, we first define a coupled distribution θ(φ, φ′) over
pairs of realizations φ ∼ ψ and φ′

∼ φ′ using the technique proposed by [10]. We denote
the state of edge (u, v) as Xuw , for (u, v) ∈ E . Then a realization can be represented by a
random variable X = {Xuw : (u, w) ∈ E}. Then θ(φ, φ′) can be defined implicitly in terms
of a joint distribution θ̂ on X × X′, where θ = θ(X) and θ ′ = θ ′(X′) are the realizations
induced by the two sets of edge statuses, respectively. Hence θ(φ, φ′) = θ̂ (X,X′). There
are two constraints we need to consider in constructing θ̂ . First, the status of all edges which
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are revealed by ψ are the same since ψ ⊆ ψ ′. Second, the status of all edges which are
unobserved by both ψ and ψ ′ are the same in X and X′, meaning Xuw = X ′

uw for all such
edges (u, w). The bove constraints leave us with the following degrees of freedom: we may
select Xuw for all (u, w) ∈ E which are unobserved by ψ .

Hence for all (X,X′) satisfying the above two constraints, we have

θ̂ (X,X′) =
∏

(u,w) unobserved by ψ

pXuw
uw (1 − puw)1−Xuw

and otherwise θ̂ (X,X′) = 0. Note that p(φ | ψ) = Σφ′θ(φ, φ′) and p(φ′ | ψ ′) =
Σφθ(φ, φ′). And all (X,X′) ∈ support(θ̂) satisfy the two constraints. We next claim that for
all (φ, φ′) ∈ support(θ),

U (dom(ψ ′) ∪ {v}, φ′) −U (dom(ψ ′), φ′)
≤ U (dom(ψ) ∪ {v}, φ) −U (dom(ψ), φ). (17)

Recall U (S, φ) = f (I (S, φ)) proposed in Lemma 2, where I (S, φ) is the set of all
activated nodes when S is the seed set of activated nodes and φ is the realization. Let
B := I (dom(ψ), φ) and C := I (dom(ψ) ∪ {v}, φ) denote the active nodes before and after
selecting v after dom(ψ) under realization φ, and similarly define B ′ := I (dom(ψ ′), φ′)
and C ′ := I (dom(ψ ′) ∪ {v}, φ′) with respect to ψ ′ and ψ ′. Let D := C\B, D′ := C ′\B ′.
Then Eq. 17 is equivalent to

f (B ′ ∪ D′) − f (B ′) ≤ f (B ∪ D) − f (B) (18)

According to Lemma 2, we know that f : 2V → R≥0 is a monotone submodular function.
So it suffices to show that B ⊆ B ′ and D′ ⊆ D to prove the above inequality, which we will
now do.

We first prove B ⊆ B ′. Since (φ, φ′) ∈ support(θ), this implies that ψ ⊆ ψ ′
and dom(ψ) ⊆ dom(ψ ′). We denote the set H = dom(ψ ′) − dom(ψ). Then B ′ =
I (dom(ψ ′), φ′) = I (dom(ψ) ∪ H , φ′) = I (dom(ψ), φ′) ∪ I (H , φ′) according Lemma 4.
And B = I (dom(ψ), φ) = I (dom(ψ), φ′) according Lemma 5, so we have B ⊆ B ′.

Next we show D′ ⊆ D. According to Lemma 4, we have D = C − B = I (dom(ψ) ∪
{v}, φ) − I (dom(ψ), φ) = I (v, φ) − I (dom(ψ), φ), and D′ = C ′ − B ′ = I (dom(ψ ′) ∪
{v}, φ′) − I (dom(ψ ′), φ′) = I (v, φ′) − I (dom(ψ ′), φ′). We have φ(v) = φ′(v) since
(φ, φ′) ∈ support(θ), and then I (v, φ) = I (v, φ′) according to Lemma 3. And we know that
I (dom(ψ), φ) ⊆ I (dom(ψ ′), φ′) which has been proved above(i.e., B ⊆ B ′), then we have
D′ ⊆ D.

Having proved Eq. 17, we now proceed to use it to show �(v | ψ ′) ≤ �(v | ψ). Since

�(v | ψ ′) =
∑

(φ,φ′)
θ(φ, φ′)(U (dom(ψ ′) ∪ {v}, φ′) −U (dom(ψ ′), φ′))

�(v | ψ) =
∑

(φ,φ′)
θ(φ, φ′)(U (dom(ψ) ∪ {v}, φ) −U (dom(ψ), φ))

we have �(v | ψ ′) ≤ �(v | ψ) which completes the proof. ��
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5.2 Lower bound

The major idea is that we only consider the profit between nodes which are activated by the
same seed node. Accordingly, the lower bound can be defined as

L(S, φ) =
∑

{u,v}∈∪x∈S P(I ({x},φ))

c(u, v) (19)

where I ({x}, φ) are nodes activated by node x under realization φ. It is easy to see that
L(S, φ) ≤ f (S, φ) for any S ⊆ V since we ignore the profit of pairs of nodes which are
activated by different seeds.

Lemma 6 Under any fixed realization φ, L(S, φ) is monotone and submodular.

Proof Given a fixed realization φ which means the state of all the edges in the social network
is determined according to Remark 2, we just need to prove L(S, φ) is monotone and sub-
modular in a live graph. Since the profit function c : V × V → R≥0 is nonnegative which
means the profit of each pair of nodes is non-negative, the monotonicity of L(S, φ) follows
immediately. For the submodularity, we need prove L(A∪{e})−L(A) ≥ L(B∪{e})−L(B),
such that A ⊆ B ⊆ V and e ∈ V \ B. We have I (e) − ∪x∈A I (x) ⊇ I (e) − ∪x∈B I (x), since
A ⊆ B. Thus P(I (e) − ∪x∈A I (x)) ⊇ P(I (e) − ∪x∈B I (x)), and the submodularity follows
immediately. ��

To prove the lower bound is adaptive submodular, we define a new function

f̂ : 2V×O → R≥0 (20)

which quantifies the profit L(S, Φ) when seeds S are in arbitrary states. Note f̂ is a set
function taking a set of (seeds, state) pairs as input. The profit L(S, φ) of choosing seeds S
under realization φ is then

L(S, φ) := f̂ ({(v, φ(v)) : v ∈ S}) (21)

We make the value of f̂ equals 0, when the status of the seeds are not consistent with each
other. For example f̂ ((v1, φ(v1)), (v2, φ

′(v2))) = 0, if there is a edge which is declared to
be live and dead by φ(v1) and φ′(v2) respectively.

Lemma 7 f̂ : 2V×O → R≥0 is a monotone submodular function.

Proof Since f̂ ((x, φ(x))) = L(x, φ) is nonnegative, for any (x, φ). The monotonicity of f̂
follows immediately.

For the submodularity, we need prove f̂ (A ∪ {x}) − f̂ (A) ≥ f̂ (B ∪ {x}) − f̂ (B), such
that A ⊆ B ⊆ 2V×O and x ∈ 2V×O \ B. Note that x is actually a tuple (e, φ(e)) or (e, φ′(e))
whichmeans that the node e is in stateφ(e).We have A := ψ and B := ψ ′, andφ(e) = φ′(e).
We address the problem in two situations. One is called effective domain which means given
realizations φ and φ′, and partial realization ψ and ψ ′, such that φ ∼ ψ , φ′ ∼ ψ ′, and ψ

is subrealization of ψ ′. The other condition is called non-effective domain where the above
condition is not satisfied. Actually it means that there exist some nodes whose states are not
consistent with each other.
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For the effective domain,

f̂ (ψ ′ ∪ (e, φ′(e))) − f̂ (ψ ′) = L(dom(ψ ′) ∪ {e}, φ′) − L(dom(ψ ′), φ′)

=
∑

{u,v}∈∪x∈{dom(ψ ′)∪e}P(I ({x},φ′))
c(u, v)

−
∑

{u,v}∈∪x∈dom(ψ ′)P(I ({x},φ′))
c(u, v)

=
∑

{u,v}∈{P(I ({e},φ′))−∪x∈dom(ψ ′)P(I ({x},φ′))}
c(u, v)

in the same way

f̂ (ψ ∪ (e, φ(e))) − f̂ (ψ) = L(dom(ψ) ∪ {e}, φ) − L(dom(ψ), φ)

=
∑

{u,v}∈∪x∈{dom(ψ)∪e}P(I ({x},φ))

c(u, v)

−
∑

{u,v}∈∪x∈dom(ψ)P(I ({x},φ))

c(u, v)

=
∑

{u,v}∈{P(I ({e},φ))−∪x∈dom(ψ)P(I ({x},φ))}
c(u, v)

According Lemma 3, we have I (e, φ) = I (e, φ′) since φ(e) = φ′(e). So we get
P(I (e, φ′)) = P(I (e, φ)). And since ψ is subrealization of ψ ′, we have dom(ψ) ⊂
dom(ψ ′), and I (x, φ) = I (x, φ′) for x ∈ dom(ψ). So we know ∪x∈dom(ψ)P(I ({x}, φ) ⊆
∪x∈dom(ψ ′)P(I ({x}, φ′)). Thus P(I (e, φ′)) − ∪x∈dom(ψ ′)P(I ({x}, φ′)) ⊆ P(I (e, φ)) −
∪x∈dom(ψ ′)P(I ({x}, φ))}. Then we have

f̂ (ψ ′ ∪ (e, φ′(e))) − f̂ (ψ ′) ≤ f̂ (ψ ∪ (e, φ(e))) − f̂ (ψ)

For the non-effective domain, we make the value of f̂ equals 0 when the status of some
seeds are not consistent with each other according to its definition: if the state of φ′(e) is not
consistent withψ ′ which means φ′ ∼ ψ ′ is not satisfied and at the same time the state of φ(e)
is not consistent with ψ which means φ ∼ ψ is not satisfied, then f̂ (ψ ′ ∪ (e, φ′(e))) = 0,
and f̂ (ψ ∪ (e, φ(e))) = 0. We have f̂ (ψ) ≤ f̂ (ψ ′), since ψ ⊆ ψ ′ and the monotonicity of
f̂ . Thus

f̂ (ψ ′ ∪ (e, φ′(e))) − f̂ (ψ ′) ≤ f̂ (ψ ∪ (e, φ(e))) − f̂ (ψ)

If the state of φ′(e) is not consistent with ψ ′ which means φ′ ∼ ψ ′ is not satisfied, but the
state of φ(e) is consistent with ψ , then f̂ (ψ ′ ∪ (e, φ′(e))) = 0 and f̂ (ψ ∪ (e, φ(e))) ≥ 0.
We have f̂ (ψ) ≤ f̂ (ψ ′), since ψ ⊆ ψ ′ and the monotonicity of f̂ . Thus

f̂ (ψ ′ ∪ (e, φ′(e))) − f̂ (ψ ′) ≤ f̂ (ψ ∪ (e, φ(e))) − f̂ (ψ)

which complete the proof. ��
Theorem 6 L(S, φ) is adaptive monotone and submodular.

Proof Adaptive monotonicity is readily proved after observing that L(·, φ) is monotonic for
each φ according to Lemma 6. Moving on to adaptive submodularity, we define a coupled
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distribution θ(φ, φ′) over pairs of realizations φ ∼ ψ and φ′
∼ φ′ which is the same as

Theorem 5. So we have

θ̂ (X,X′) =
∏

(u,w) unobserved by ψ

pXuw
uw (1 − puw)1−Xuw

and otherwise θ̂ (X,X′) = 0. Note that p(φ | ψ) = Σφ′θ(φ, φ′) and p(φ′ | ψ ′) =
Σφθ(φ, φ′). We next claim that for all (φ, φ′) ∈ support(θ),

L(dom(ψ ′) ∪ {v}, φ′) − L(dom(ψ ′), φ′) = f̂ (ψ ′ ∪ (v, φ′(v)) − f̂ (φ′))
≤ f̂ (ψ ∪ (v, φ(v)) − f̂ (φ))

= L(dom(ψ) ∪ {v}, φ) − L(dom(ψ), φ) (22)

from the submodularity of f̂ according to Lemma 7. We now proceed to use it to show
�(v | ψ ′) ≤ �(v | ψ).

�(v | ψ ′) =
∑

(φ,φ′)
θ(φ, φ′)(L(dom(ψ ′) ∪ {v}, φ′) − L(dom(ψ ′), φ′))

�(v | ψ) =
∑

(φ,φ′)
θ(φ, φ′)(L(dom(ψ) ∪ {v}, φ) − L(dom(ψ), φ))

we have �(v | ψ ′) ≤ �(v | ψ) according to (22), which completes the proof. ��

6 Algorithm

In this section, we propose a greedy policy with lazy evaluation based on submodularity of
the upper and lower bound, and design an adaptive sandwich strategy for APMP which can
get a data dependent approximation solution. To the best of our knowledge, this is the first
paper trying to address the problem that is not adaptive submodular.

6.1 Lazy evaluation

As we know, when adaptive greedy algorithm selects a seed in the round i , it computes
Δ(v|ψi ) for all v ∈ V and 0 ≤ i ≤ k, unless v ∈ dom(ψi ), whereψi is the partial realization
after round i and k is constraint on number of seeds. The key insight is that i �→ Δ(v|ψi )

is nonincreasing for all v ∈ V , because of the adaptive submodularity of the objective.
Specifically speaking, in the round i of selecting a seed, if we know Δ(v′|ψ j ) ≤ Δ(v|ψi )

for some items v′ and v and j ≤ i , then Δ(v′|ψi ) ≤ Δ(v|ψi ) follows, since Δ(v′|ψ j ) ≥
Δ(v′|ψi ) based on the adaptive submodularity. So there is no need to compute Δ(v′|ψi ) in
the round i .

6.2 Accelerated adaptive greedy algorithm

Pseudocode of the adaptive greedy algorithmwith lazy evaluation is given in Algorithm 1. Its
core idea is to choose the seed with the most expected marginal benefit at each step. S is used
to store the seeds selected, T is the profit gained by the seeds in S. The expected marginal
gain of each node is stored in the list Q. According to the strategy of lazy evaluation, the
while loop computes conditional expected marginal benefit Δ(v|ψ) for node v in decreasing
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Algorithm 1 Adaptive greedy algorithm with lazy evalutation
1: Input: Seeds number k; G(V , E, P), profit function f.
2: initialize S ← ∅; ψ ← ∅; T = 0;
3: for v ∈ V do
4: Qv ← +∞;
5: end for
6: for i = 1 to k do
7: δmax ← −∞; vmax ← Null;
8: while δmax < Q.max() do
9: v ← Max(Q); δ ← �(v|ψ); Qv = δ;
10: if δ > δmax then
11: δmax ← δ; vmax ← v;
12: end if
13: end while
14: Observe the realization Φ(vmax ) of vmax ;
15: ψ ′ ← ψ ∪ {(vmax , Φ(vmax ))};
16: δ

ψ ′
vmax = f (vmax ∪ S|ψ ′) − f (S|ψ);

17: T = T + δ
ψ ′
vmax

18: S ← S ∪ vmax ;
19: ψ ← ψ ′;
20: Delete vmax and I (vmax , ψ

′) in Q;
21: end for
22: return (S, T );

Algorithm 2 Adaptive Sandwich Approximation Policy
1: Let πU be a α greedy policy to the upper bound U (·);
2: Let πL be a β greedy policy to the lower bound L(·);
3: Let π f be a greedy policy to the original problem f (·);
4: f̂avg(π) is a multiplicative γ -error estimate of favg(π);

5: π̂max = argmaxπ∈{πU ,πL ,πP } f̂avg(π) ;
6: return π̂max ;

order of upper bounds knows on them, until it finds an item whose value is at least as great
as the upper bounds of all other nodes. Note the Q.max() return max value in the marginal
gain list Q, and Max(Q) return the node which has the maximum marginal gain. When a
seed with the greatest marginal benefit is found, we observe its realization denoted by ψ ′ as
shown in line 15. After observing the realization, we need to compute the actual marginal

benefit of node vmax denoted by δ
ψ ′
vmax under partial realization ψ ′ as shown in line 16. We

will delete node vmax and the nodes activated by it as shown in line 20 since their marginal
gain will be 0 in the next round. The greedy policy will return the seeds and its profit.

6.3 Adaptive sandwich approximation policy

By adopting the sandwich strategy which is first proposed by [16], and using the proving
technique introduced by [26], we design an adaptive greedy sandwich approximation policy
for adaptive profit maximization problem, which is given in Algorithm 2. The basic idea of
the sandwich strategy is that we find an adaptive greedy strategy based on the upper bound,
the lower bound, and original function respectively. Then we choose the best greedy strategy
for the original problem as the solution. Specifically, the adaptive sandwich approximation
strategy works as follows. First, according to the upper bound we find a greedy strategy by
calling Algorithm 1. When selecting the seed, we need to calculate the expected marginal
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gain �(v|ψ) according to the upper bound function as shown in line 9, i.e., �(v|ψ) =
E[U (dom(ψ) ∪ v,Φ) − U (dom(ψ),Φ)|Φ ∼ ψ]. Note that after a node with the largest
expected return is found, we need to calculate the actual marginal benefit of the node based

on the original function instead of upper bound, i.e., δ
ψ ′
vmax = f (vmax ∪ S|ψ ′) − f (S|ψ)

as shown in line 16. This is a very important point. Because our purpose is choosing the
best strategy for the original function, we need to evaluate the strategy with benefits of the
original function. In the same way, for the lower bound we calculate �(v|ψ) according to
the lower bound function, i.e., �(v|ψ) = E[L(dom(ψ) ∪ v,Φ) − L(dom(ψ),Φ)|Φ ∼ ψ].
And calculate the actual marginal benefit of the node based on the original function instead

of lower bound, i.e., δψ ′
vmax = f (vmax ∪ S|ψ ′) − f (S|ψ).

6.4 Approximation ratio

Theorem 7 Let π̂max be the policy return by Algorithm 2, then we have

favg(π̂max ) ≥ max

{
favg(πU )

Uavg(πU )
α,

Lavg(π
∗
L)

favg(π
∗
f )

β

}
1 − γ

1 + γ
favg(π

∗
f )

whereπ∗
f ,π

∗
U ,π

∗
L is the optimal policy for f (·),U (·), L(·) respectively, andα = β = 1−1/e.

Proof We have

favg(πU ) = favg(πU )

Uavg(πU )
Uavg(πU ) ≥ favg(πU )

Uavg(πU )
· α ·Uavg(π

∗
U )

≥ favg(πU )

Uavg(πU )
· α ·Uavg(π

∗
f ) ≥ favg(πU )

Uavg(πU )
· α · favg(π

∗
f )

favg(πL) ≥ Lavg(πL) ≥ β · Lavg(π
∗
L) ≥ Lavg(π

∗
L)

favg(π
∗
A)

· β · favg(π
∗
f )

Let πmax = argmaxπ∈{π f ,πU ,πL } favg(π), then

favg(πmax ) ≥ max

{
favg(πU )

Uavg(πU )
α,

Lavg(π
∗
L)

favg(π
∗
f )

β

}
favg(π

∗
f ).

Since ∀π ∈ {π f , πU , πL }, | f̂avg(π)− favg(π)| ≤ γ favg(π), we have (1+γ ) favg(π̂max ) ≥
(1 − γ ) favg(πmax ). It follows that

favg(π̂max ) ≥ 1 − γ

1 + γ
favg(πmax )

��

6.5 Implementation

To implement the proposed adaptive greedy algorithm, the key step is to calculate the con-
ditional expected marginal gain �(v|ψ) for the upper bound, lower bound, and original
function. Unfortunately, all of them are �P-hard.

Theorem 8 Given a seed v and partial realization ψ , computing conditional expected
marginal gain �(v|ψ) for upper bound is � P-hard.
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Proof We prove the theorem through a special case in which the partial realization is ∅. Since
ψ is empty set, we have �(v|ψ) = E[U (v,Φ)], where the expectation is taken with respect
to p(φ). Apparently, it equals to compute the upper bound profit of node v in non-adaptive
settings under the IC model. This is actually weighted influence spread computation problem
which was proved �P-hard [2], the theorem follows immediately. ��
Theorem 9 Given a seed v and partial realization ψ , computing conditional expected
marginal benefit �(v|ψ) for lower bound is � P-hard.

Proof We prove the theorem through a special case in which the partial realization is ∅. Since
ψ is empty set , we have �(v|ψ) = E[L(v,Φ)], where the expectation is taken with respect
to p(φ). Apparently, it equals to the problem about computing the lower bound profit of node
v in non-adaptive settings. According to Remark 1 we can reduce it from AMP problem, and
computing the lower bound of AMP is �P-hard which is proved in [26], the theorem follows
immediately. ��
Theorem 10 Given a seed v and partial realization ψ , computing conditional expected
marginal benefit �(v|ψ) for original problem is � P-hard.

Proof We prove the theorem through a special case in which the partial realization is ∅. Since
ψ is empty set, we have�(v | ψ) := E[ f (v,Φ)], where the expectation is takenwith respect
to p(φ). Apparently, it equals to the game profit computing problem in non-adaptive settings
which is �P-hard according to Theorem 2, the theorem follows immediately. ��

Although they are difficult to calculate, we can employ the Monte Carlo simulation to
obtain an accurate estimation. By the Hoeffding’s Inequality, the error of the estimation can
be infinitely small when a sufficient number of simulations are performed.

7 Experiment

7.1 Settings

We use four social networks in our experiments. All datasets are publicly available. Email,
DBLP can be obtained from SNAP website (http://snap.stanford.edu), while Facebook and
Douban can be obtained from KONECT website (http://konect.uni-koblenz.de). The details
of datasets are shown in Table 1.

The propagation probability for IC model is set to 1
degree(v)

as widely used in other
literatures [2,22], and the profit between nodes is proportional to propagation probability on
corresponding edges. For the nodes that are not directly adjacent, we set the profit between
them as 0. For comparison,we propose two other algorithms as baselines. One is non-adaptive
greedy algorithm in which we select k seeds in advance regardless of their realization. We

Table 1 The statistics of the data
sets

Network Vertices Edges

Email 1005 25,571

Facebook 63,731 817,035

Douban 154,908 327,162

123

http://snap.stanford.edu
http://konect.uni-koblenz.de


Journal of Global Optimization (2022) 82:413–432 429

Fig. 2 The relationship between profit and seed set size on Email

denote it as Non in Figs. 2, 3 and 4. The other one is a random algorithm which selects the
next node in a randomway based on the current realization. Wemark it as Random in Figs. 2,
3 and 4.

For non-adaptive greedy algorithm, we actually select k seeds in one step without observ-
ing the realization of any seed. So the non-adaptive greedy algorithm is similar to the greedy
algorithm propose by Kempe [14] except that our objective function is the profit between
activated nodewhile their objective function is the number of the activated nodes. For random
algorithm, it selects the next node v in a random way based on the current realization.We can
employ the Monte Carlo simulation to obtain an estimation. As shown in [14] 10k iterations
could get a acceptable quality of approximation. We simulate the process 10k times for each
targeted node v and get the average value for conditional expected marginal gain�(v|ψ). For
the adaptive policy value we use the same idea simulating the realization 1k times and get
the average value. We implement all the algorithms in Python and the experiments run on a
workstation with an Intel Xeon 4.0GHz CPU and 64GB memory.

7.2 Effectiveness and analysis

The results of profit computed by our proposed algorithms on four data sets are shown inFig.2,
3 and 4 respectively. As the number of selected seeds increases, the performance of sandwich
algorithm donated as Adapt in the figure is always superior to the baseline algorithms. This
is because non-adaptive greedy algorithm ignores the stochastics of influence propagation
and always chooses the same seed set under any realization. And our adaptive strategy must
make a decision based on the actual situation of current network propagation when selecting
a seed. Moreover, his submodular upper bound and lower bound guarantee its performance.
An interesting question in adaptive optimization is how much better adaptive policies can
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Fig. 3 The relationship between profit and seed set size on Facebook

Fig. 4 The relationship between profit and seed set size on Douban
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perform when compared to non-adaptive policies. This is quantified by the adaptivity gap,
and the gap as shown in Fig.2, 3 and 4 between the two algorithms is a good illustration of
the effectiveness of adaptive strategy in social network impact issues. Not surprisingly, the
performance of a random algorithm is the worst because it does not consider any validity or
propensity whenmaking a choice. On both small-scale and large-scale networks, the adaptive
sandwich algorithm perform quite well and demonstrate good scalability.

8 Conclusion

In this paper, we propose the adaptive profit maximization problem which is not adaptive
submodular, and analyze its complexitywhich isNP-hard. To address the stochastic optimiza-
tion problem, we find the upper and lower bounds of it and prove both of them are adaptive
submodular, so an adaptive greedy algorithm could gain a guaranteed approximate solution
for them. Based on the upper and lower bound, we design an adaptive sandwich policy for
APMP to get a data dependent approximate solution. To the best of our knowledge, this is
the first paper applying the sandwich strategy to stochastic optimization problem which is
not adaptive submodular.

Funding Funding was provided by National Natural Science Foundation of China (Grant Nos. 61832012,
61771289 and 61672321).
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